Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral in $\mathbb{R} ^n$
Summary:
It is known that there is no natural Banach norm on the space $\mathcal {HK}$ of $n$-dimensional Henstock-Kurzweil integrable functions on $[a,b]$. We show that the $\mathcal {HK}$ space is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. On each $\mathcal {HK}(X)$ space, an $F$-norm $\|{\cdot }\|^X$ is defined. A $\|{\cdot }\|^X$-convergent sequence is equivalent to a control-convergent sequence. Furthermore, an $F$-norm is also defined for a $\|{\cdot }\|^X$-continuous linear operator. Hence, many important results in functional analysis hold for the $\mathcal {HK}(X)$ space. It is well-known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space. Hence, results in functional analysis can be applied to the $\mathcal {HK}$ space. Compact linear operators and the existence of solutions to integral equations are also given. The results for the one-dimensional case have been discussed in V. Boonpogkrong (2022). Proofs of many results for the $n$-dimensional and the one-dimensional cases are similar.
References:
[1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron- Henstock-Kurzweil integral. Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. DOI 10.36045/bbms/1105733252 | MR 1457075 | Zbl 0929.26009
[2] Boonpogkrong, V.: Compact operators and integral equation in the $\Cal{HK}$ space. Czech. Math. J. 72 (2022), 239-257. DOI 10.21136/CMJ.2021.0447-20 | MR 4389117 | Zbl 07511564
[3] Chew, T. S., Lee, P. Y.: The topology of the space of Denjoy integrable functions. Bull. Aust. Math. Soc. 42 (1990), 517-524. DOI 10.1017/S0004972700028689 | MR 1083288 | Zbl 0715.26004
[4] Köthe, G.: Topological Vector Spaces. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). DOI 10.1007/978-3-642-64988-2 | MR 0248498 | Zbl 0179.17001
[5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[6] Lee, P. Y.: Multiple integral, Chapter 7. Available at { \let \relax \brokenlink{ https://www.researchgate.net/publication/370871440_Lanzhou_Lectures_on_}{Henstock_Integration_Chapter_7_Multiple_integrals}}
[7] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). DOI 10.1142/7933 | MR 2789724 | Zbl 1246.26002
[8] Morris, S. A., Noussair, E. S.: The Schauder-Tychonoff fixed point theorem and applications. Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. MR 0397486 | Zbl 0304.47049
[9] Royden, H. L.: Real Analysis. Macmillan, New York (1988). MR 1013117 | Zbl 0704.26006
[10] Swartz, C.: A gliding hump property for the Henstock-Kurzweil integral. Southeast Asian Bull. Math. 22 (1998), 437-443. MR 1811186 | Zbl 0935.28004
[11] Talvila, E.: The distributional Denjoy integral. Real Anal. Exch. 33 (2008), 51-82. DOI 10.14321/realanalexch.33.1.0051 | MR 2402863 | Zbl 1154.26011
[12] Thomson, B. S.: The space of Denjoy-Perron integrable functions. Real Anal. Exch. 25 (2000), 711-726. DOI 10.2307/44154028 | MR 1778525 | Zbl 1016.26010
Partner of
EuDML logo