Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Gelfand integral; Pettis integral; Henstock-Kurzweil-Gelfand integral; Denjoy-Khintchine-Gelfand integral; Henstock-Kurzweil-Pettis integral; Denjoy-Khintchine-Pettis integral; multifunction; decomposition
Summary:
Conditions guaranteeing Pettis integrability of a Gelfand integrable multifunction and a decomposition theorem for the Henstock-Kurzweil-Gelfand integrable multifunctions are presented.
References:
[1] Bongiorno, B., Piazza, L. Di, Musia{ł}, K.: A decomposition theorem for the fuzzy Henstock integral. Fuzzy Sets Syst. 200 (2012), 36-47. DOI 10.1016/j.fss.2011.12.006 | MR 2927843 | Zbl 1253.28010
[2] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308. DOI 10.1016/j.jmaa.2016.04.009 | MR 3488058 | Zbl 1339.28016
[3] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. DOI 10.1007/s10231-017-0674-z | MR 3747527 | Zbl 1400.28020
[4] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Some new results on integration for multifunction. Ric. Mat. 67 (2018), 361-372. DOI 10.1007/s11587-018-0376-x | MR 3864781 | Zbl 1402.28010
[5] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Integration of multifunctions with closed convex values in arbitrary Banach spaces. J. Convex Anal. 27 (2020), 1233-1246. MR 4183407 | Zbl 1461.28007
[6] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Multi-integrals of finite variation. Boll. Unione Mat. Ital. 13 (2020), 459-468. DOI 10.1007/s40574-020-00217-w | MR 4172946 | Zbl 1457.28010
[7] Cascales, B., Kadets, V., Rodríguez, J.: The Gelfand integral for multi-valued functions. J. Convex Anal. 18 (2011), 873-895. MR 2858100 | Zbl 1252.46031
[8] Piazza, L. Di, Musia{ł}, K.: Set-valued Kurzweil-Henstock-Pettis integral. Set-Valued Anal. 13 (2005), 167-179. DOI 10.1007/s11228-004-0934-0 | MR 2148134 | Zbl 1100.28008
[9] Piazza, L. Di, Musia{ł}, K.: A decomposition theorem for compact-valued Henstock integral. Monatsh. Math. 148 (2006), 119-126. DOI 10.1007/s00605-005-0376-2 | MR 2235359 | Zbl 1152.28016
[10] Piazza, L. Di, Musia{ł}, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions. Stud. Math. 176 (2006), 159-176. DOI 10.4064/sm176-2-4 | MR 2264361 | Zbl 1118.26008
[11] Piazza, L. Di, Musia{ł}, K.: A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions. Vector Measures, Integration and Related Topics Operator Theory: Advances and Applications 201. Birkhäuser, Basel (2010), 171-182. DOI 10.1007/978-3-0346-0211-2_16 | MR 2743985 | Zbl 1248.28019
[12] Piazza, L. Di, Musia{ł}, K.: Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space. J. Math. Anal. Appl. 408 (2013), 452-464. DOI 10.1016/j.jmaa.2013.05.073 | MR 3085043 | Zbl 1309.28012
[13] Piazza, L. Di, Musia{ł}, K.: Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. Monatsh. Math. 173 (2014), 459-470. DOI 10.1007/s00605-013-0594-y | MR 3177941 | Zbl 1293.28006
[14] Piazza, L. Di, Musia{ł}, K.: Decompositions of weakly compact valued integrable multifunctions. Mathematics 8 (2020), Article ID 863, 13 pages. DOI 10.3390/math8060863
[15] Fremlin, D. H., Talagrand, M.: A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means. Math. Z. 168 (1979), 117-142. DOI 10.1007/BF01214191 | MR 0544700 | Zbl 0393.28005
[16] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. DOI 10.4064/sm-92-1-73-91 | MR 0984851 | Zbl 0681.28006
[17] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[18] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. I. Theory. Mathematics and its Applications (Dordrecht) 419. Kluwer Academic, Dordrecht (1997). MR 1485775 | Zbl 0887.47001
[19] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. MR 0188994 | Zbl 0152.21403
[20] Musia{ł}, K.: The weak Radon-Nikodým property of Banach spaces. Stud. Math. 64 (1979), 151-173. DOI 10.4064/sm-64-2-151-174 | MR 0537118 | Zbl 0405.46015
[21] Musia{ł}, K.: Topics in the theory of Pettis integration. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177-262. MR 1248654 | Zbl 0798.46042
[22] Musia{ł}, K.: Pettis integral. Handbook of Measure Theory. I North-Holland, Amsterdam (2002), 531-586. DOI 10.1016/B978-044450263-6/50013-0 | MR 1954622 | Zbl 1043.28010
[23] Musia{ł}, K.: Pettis integrability of multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 18 (2011), 769-810. MR 2858094 | Zbl 1245.28011
[24] Musia{ł}, K.: Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 20 (2013), 833-870. MR 3136603 | Zbl 1284.28006
[25] Musia{ł}, K.: Gelfand integral of multifunctions. J. Convex Anal. 21 (2014), 1193-1200. MR 3331215 | Zbl 1320.28021
[26] Musia{ł}, K.: A decomposition theorem for Banach space valued fuzzy Henstock integral. Fuzzy Sets Syst. 259 (2015), 21-28. DOI 10.1016/j.fss.2014.03.012 | MR 3278742 | Zbl 1335.28005
[27] Musia{ł}, K.: Multimeasures with values in conjugate Banach spaces and the Weak Radon-Nikodým property. J. Convex Anal. 28 (2021), 879-902. MR 4374324 | Zbl 07470555
[28] Neveu, J.: Bases mathématiques du calcul des probabilités. Masson et CIE, Paris (1964), French. MR 0198504 | Zbl 0137.11203
[29] Talagrand, M.: Pettis Integral and Measure Theory. Memoirs of the American Mathematical Society 307. AMS, Providence (1984). DOI 10.1090/memo/0307 | MR 0756174 | Zbl 0582.46049
Partner of
EuDML logo