[1] Adlakha, V., Kowalski, K.: 
On the fixed-charge transportation problem. Omega 27 (1999), 3, 381-388. 
DOI [2] Adlakha, V., Kowalski, K.: 
A simple heuristic for solving small fixed-charge transportation problems. Omega 31 (2003), 3, 205-211. 
DOI [3] Adlakha, V., Kowalski, K., Vemuganti, R. R.: 
Heuristic algorithms for the fixed-charge transportation problem. Opsearch 43 (2006), 132-151. 
DOI  | 
MR 2764169[4] Adlakha, V., Kowalski, K., Lev, B.: 
A branching method for the fixed charge transportation problem. Omega 38 (2010), 5, 393-397. 
DOI  | 
MR 2764169[5] Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N.: 
A new approach to Mergesort algorithm: Divide smart and conquer. Future Generation Computer Systems 157 (2024), 330-343. 
DOI [6] Balinski, M. L.: 
Fixed-cost transportation problems. Naval Research Logistics Quarterly 8 (1961), 1, 41-54. 
DOI [7] Biswas, A., Roy, S., Mondal, S. P.: 
Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario. Applied Soft Computing 129 (2022), 109576. 
DOI [8] Calvete, H. I., Gale, C, Iranzo, J. A., Toth, P.: 
A matheuristic for the two-stage fixed-charge transportation problem. Computers Oper. Res. 95 (2018), 113-122. 
DOI  | 
MR 3789199[9] Cosma, O., Pop, P. C., Danciulescu, D.: 
A novel matheuristic approach for a two-stage transportation problem with fixed costs associated to the routes. Computers Oper. Res. 118 (2020), 104906. 
DOI  | 
MR 4067956[10] Dantzig, G. B.: 
Linear programming. Oper. Res. 50 (2002), 1, 42-47. 
DOI  | 
MR 1885208[11] Ebrahimnejad, A.: 
New method for solving fuzzy transportation problems with LR flat fuzzy numbers. Inform. Sci. 357 (2016), 108-124. 
DOI  | 
MR 3414360[12] Eiben, A. E., Smith, A. E.: 
Introduction to Evolutionary Computing. Springer-Verlag, Berlin, Heidelberg 2015. 
MR 3379133[13] El-Sherbiny, M. M., Alhamali, R. M.: 
A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem. Computers Industr. Engrg. 64 (2013), 2, 610-620. 
DOI [14] Hakim, M., Zitouni, R.: 
An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem. Kybernetika 60 (2024), 3, 271-292. 
DOI  | 
MR 4777310[15] Nejad, E. Hazrati, Yigit-Sert, S., Amrahov, S. Emrah: 
An effective global path planning algorithm with teaching-learning-based optimization. Kybernetika 60 (2024), 3, 293-316. 
DOI [16] Hirsch, W. M., Dantzig, G. B.: 
The fixed charge problem. Naval Res. Logist. Quarterly 15 (1968), 3, 413-424. 
DOI  | 
MR 0258464[17] Hitchcock, F. L.: 
Distribution of a product from several sources to numerous locations. J. Math. Physics 20 (1941), 224-230. 
DOI  | 
MR 0004469[18] Hong, J., Diabat, A., Panicker, V. V., Rajagopalan, Sand .: 
A two-stage supply chain problem with fixed costs: An ant colony optimization approach. Int. J. Product. Econom. 204, (2018), 214-226. 
DOI [19] Hosseini, A., Pishvaee, M. S.: 
Capacity reliability under uncertainty in transportation networks: An optimization framework and stability assessment methodology. Fuzzy Optim. Decision Making 21 (2022), 3, 479-512. 
DOI  | 
MR 4456241[20] Rani, J. Jansi, Manivannan, A., Dhanasekar, S.: 
Interval valued intuitionistic fuzzy diagonal optimal algorithm to solve transportation problems. Int. J. Fuzzy Systems 25 (2023), 4, 1465-1479. 
DOI [21] Jawahar, N., Balaji, A. N.: 
A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge. Eur. J. Oper. Res. 194 (2009), 2, 496-537. 
DOI [22] Jawahar, N., Gunasekaran, A., Balaji, N.: 
A simulated annealing algorithm to the multi-period fixed charge distribution problem associated with backorder and inventory. Int. J. Prod. Res. 50 (2012), 9, 2533-2554. 
DOI [23] Jo, J. B., Li, Y., Gen, M.: 
Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Computers Industr. Engrg. 53 (2007), 2, 290-298. 
DOI [24] Kartlı, N., Bostancı, E., Guzel, M. S.: 
A new algorithm for the initial feasible solutions of fixed charge transportation problem. In: 2022 7th International Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82-85. 
DOI  | 
MR 4567841[25] Kartli, N., Bostanci, E., Guzel, M. S.: 
A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63. 
DOI  | 
MR 4567841[26] Kartli, N., Bostanci, E., Guzel, M. S.: 
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227. 
DOI  | 
MR 4794582[27] Kartli, N.: 
A Metaheuristic Algorithm for the Fixed Charge Transportation Problem. In 2024 9th International Conference on Computer Science and Engineering (UBMK) IEEE (2024) 1030–1033. DOI:10.1109/UBMK63289.2024.10773580 
DOI [28] Lotfi, M. M., Tavakkoli-Moghaddam, R.: 
A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems. Appl. Soft Comput. 13 (2013), 5, 2711-2726. 
DOI [29] Mardanya, D., Roy, S. K.: 
New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO Oper. Res. 57 (2023), 1, 99-120. 
DOI  | 
MR 4534569[30] Mirjalili, S.: 
Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27 (2016) 1053-1073. 
DOI [31] Mohammed, A. S., Amrahov, S. E., Celebi, F. V.: 
Bidirectional conditional insertion sort algorithm; An efficient progress on the classical insertion sort. Future Generation Computer Systems 71 (2017), 102-112. 
DOI [32] Mondal, A., Roy, S. K.: 
Behavioural threeway decision making with Fermatean fuzzy Mahalanobis distance: Application to the supply chain management problems. Appl. Soft Computing 151 (2024), 111182. 
DOI [33] Panicker, V. V., Vanga, R., Sridharan, R.: 
Ant colony Optimization algorithm for distribution-allocation problem in a two-stage supply chain with a fixed transportation charge. Int. J. Prod. Res. 51 (2013), 3, 698-717. 
DOI [34] Paojiyah, A. N. S., Az'zahra, A. P., Aulia, V. F., Wulan, E. R.: Penerapan Dragonfly Optimization Algorithm (DOA) untuk Menyelesaikan Fixed Charge Transportation Problem (FCTP). KUBIK: Jurnal Publikasi Ilmiah Matematika 9 (2024), 2, 187-197.
[35] Pop, P. C., Sabo, C., Biesinger, B., Hu, B., Raidl, G. R.: 
Solving the two-stage fixed charge transportation problem with a hybrid genetic algorithm. Carpathian J. Math. 33 (2017), 3, 365-371. 
DOI 10.37193/CJM.2017.03.11 | 
MR 3728059[36] Raj, K. A. A. D., Rajendran, C.: 
A genetic algorithm for solving the fixed-charge transportation model: two-stage problem. Comput. Oper. Res. 39 (2012), 9, 2016-2032. 
DOI [37] Rao, R. V., Savsani, V. J., Vakharia, D.: 
Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-aided Design 43 (2011), 303-315. 
DOI  | 
MR 2847014[38] Saikia, B., Dutta, P., Talukdar, P.: 
An advanced similarity measure for Pythagorean fuzzy sets and its applications in transportation problem. Artif. Intell. Rev. 56 (2023), 11, 12689-12724. 
DOI [39] Sandhiya, S., Dhanapal, A.: 
Solving neutrosophic multi-dimensional fixed charge transportation problem. Contemp. Math. 5 (2024), 3, 3601-3624. 
DOI [40] Singh, G., Singh, A.: 
Extension of particle swarm optimization algorithm for solving transportation problem in fuzzy environment. Appl. Soft Comput. 110 (2021), 107619. 
DOI [41] Shivani, Chauhan, D., Rani, D.: 
A feasibility restoration particle swarm optimizer with chaotic maps for two-stage fixed-charge transportation problems. Swarm Evolutionary Comput. 91 (2024), 101776. 
DOI [42] Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D.: Tabu search heuristic procedure for the fixed charge transportation problem. Eur. J. Oper. Res. 106 (1998), 2-3, 411-456.