Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$(m,n)$-prime ideal; $(m,n)$-closed ideal; $n$-absorbing ideal; avoidance theorem
Summary:
Let $R$ be a commutative ring with identity and $m$, $n$ be positive integers. We introduce the class of $(m,n)$-prime ideals which lies properly between the classes of prime and $(m,n)$-closed ideals. A proper ideal $I$ of $R$ is called $(m,n)$-prime if for $a,b\in R$, $a^{m}b\in I$ implies either $a^{n}\in I$ or $b\in I.$ Several characterizations of this new class with many examples are given. Analogous to primary decomposition, we define the \hbox {$(m,n)$-decomposition} of ideals and show that every ideal in an $n$-Noetherian ring has an $(m,n)$-decomposition. Furthermore, the $(m,n)$-prime avoidance theorem is proved.
References:
[1] Anderson, D. F., Badawi, A.: On $n$-absorbing ideals of commutative rings. Commun. Algebra 39 (2011), 1646-1672. DOI 10.1080/00927871003738998 | MR 2821499 | Zbl 1232.13001
[2] Anderson, D. F., Badawi, A.: On $(m,n)$-closed ideals of commutative rings. J. Algebra Appl. 16 (2017), Article ID 1750013, 21 pages. DOI 10.1142/S021949881750013X | MR 3590874 | Zbl 1355.13004
[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). DOI 10.1201/9780429493638 | MR 0242802 | Zbl 0175.03601
[4] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[5] Badawi, A.: $n$-absorbing ideals of commutative rings and recent progress on three conjectures: A survey. Rings, Polynomials, and Modules Springer, Cham (2017), 33-52. DOI 10.1007/978-3-319-65874-2_3 | MR 3751690 | Zbl 1390.13005
[6] Badawi, A., Celikel, E. Y.: On 1-absorbing primary ideals of commutative rings. J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. DOI 10.1142/S021949882050111X | MR 4120088 | Zbl 1440.13008
[7] Badawi, A., Issoual, M., Mahdou, N.: On $n$-absorbing ideals and $(m,n)$-closed ideals in trivial ring extensions of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950123, 19 pages. DOI 10.1142/S0219498819501238 | MR 3977784 | Zbl 1448.13006
[8] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173. DOI 10.4134/BKMS.2014.51.4.1163 | MR 3248714 | Zbl 1308.13001
[9] Chhiti, M., Mahdou, N., Tamekkante, M.: Clean property in amalgamated algebras along an ideal. Hacet. J. Math. Stat. 44 (2015), 41-49. DOI 10.15672/HJMS.2015449103 | MR 3363762 | Zbl 1320.13020
[10] Cox, J. A., Hetzel, A. J.: Uniformly primary ideals. J. Pure Appl. Algebra 212 (2008), 1-8. DOI 10.1016/j.jpaa.2007.03.007 | MR 2355029 | Zbl 1126.13001
[11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006
[12] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. DOI 10.1142/S0219498807002326 | MR 2337762 | Zbl 1126.13002
[13] Khashan, H. A., Celikel, E. Y.: A new generalization of $(m,n)$-closed ideals. J. Math. Sci., New York 280 (2024), 288-299. DOI 10.1007/s10958-023-06814-2 | Zbl 1543.13005
[14] Khashan, H. A., Celikel, E. Y.: On weakly $(m,n)$-prime ideals of commutative rings. Bull. Korean Math. Soc. 61 (2024), 717-734. DOI 10.4134/BKMS.b230319 | MR 4752269 | Zbl 1546.13012
[15] Kim, N. K., Lee, Y.: On right quasi-duo rings which are $\pi$-regular. Bull. Korean Math. Soc. 37 (2000), 217-227. MR 1757489 | Zbl 0963.16011
[16] Koç, S., Tekir, Ü., z, E. Yıldı: On weakly 1-absorbing prime ideals. Ric. Mat. 72 (2023), 723-738. DOI 10.1007/s11587-020-00550-4 | MR 4649462 | Zbl 1530.13005
[17] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages \99999DOI99999 10.1142/S0219498821501759 . DOI 10.1142/S0219498821501759 | MR 4326079 | Zbl 1479.13006
Partner of
EuDML logo