Summary: Let $R$ be a commutative ring with identity and $m$, $n$ be positive integers. We introduce the class of $(m,n)$-prime ideals which lies properly between the classes of prime and $(m,n)$-closed ideals. A proper ideal $I$ of $R$ is called $(m,n)$-prime if for $a,b\in R$, $a^{m}b\in I$ implies either $a^{n}\in I$ or $b\in I.$ Several characterizations of this new class with many examples are given. Analogous to primary decomposition, we define the \hbox {$(m,n)$-decomposition} of ideals and show that every ideal in an $n$-Noetherian ring has an $(m,n)$-decomposition. Furthermore, the $(m,n)$-prime avoidance theorem is proved.
[5] Badawi, A.: $n$-absorbing ideals of commutative rings and recent progress on three conjectures: A survey. Rings, Polynomials, and Modules Springer, Cham (2017), 33-52. DOI 10.1007/978-3-319-65874-2_3 | MR 3751690 | Zbl 1390.13005
[7] Badawi, A., Issoual, M., Mahdou, N.: On $n$-absorbing ideals and $(m,n)$-closed ideals in trivial ring extensions of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950123, 19 pages. DOI 10.1142/S0219498819501238 | MR 3977784 | Zbl 1448.13006
[11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006
[13] Khashan, H. A., Celikel, E. Y.: A new generalization of $(m,n)$-closed ideals. J. Math. Sci., New York 280 (2024), 288-299. DOI 10.1007/s10958-023-06814-2 | Zbl 1543.13005
[17] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages \99999DOI99999 10.1142/S0219498821501759 . DOI 10.1142/S0219498821501759 | MR 4326079 | Zbl 1479.13006