Previous |  Up |  Next

Article

Keywords:
Jensen–Shannon divergence; metric; multinomial distribution; Cauchy distribution
Summary:
Metrization of statistical divergences is valuable in both theoretical and practical aspects. One approach to obtaining metrics associated with divergences is to consider their fractional powers. Motivated by this idea, Osán, Bussandri, and Lamberti (2018) studied the metrization of fractional powers of the Jensen-Shannon divergence between multinomial distributions and posed an open problem. In this short note, we provide an affirmative answer to their conjecture. Moreover, our method is also applicable to fractional powers of $f$-divergences between Cauchy distributions.
References:
[1] Acharyya, S., Banerjee, A., Boley, D.: Bregman divergences and triangle inequality. In: Proc. 2013 SIAM International Conference on Data Mining, SIAM 2013, pp. 476-484. SIAM.
[2] Chrzaszcz, K., Jachymski, J., Turoboś, F.: On characterizations and topology of regular semimetric spaces. Publ. Math. Debr. 93 (2018), 87-105. DOI 
[3] Berg, M. de, Kreveld, M. van, Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications. (Second rev. edition.). Springer, Berlin 2000.
[4] Ehm, W., Genton, M. G., Gneiting, T.: Stationary covariances associated with exponentially convex functions. Bernoulli 9 (2004), 607-615. DOI 
[5] Elkan, C.: Using the triangle inequality to accelerate $k$-means. In: Proc. 20th International Conference on Machine Learning (ICML-03), 2003, pp. 147-153.
[6] Endres, D. M., Schindelin, J. E.: A new metric for probability distributions. IEEE Trans. Inform. Theory 49 (2003), 1858-1860. DOI 
[7] Fuglede, B., Topsøe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Proc. International Symposium on Information Theory, 2004. ISIT, IEEE 2004, p. 31.
[8] Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., Stanley, H. E.: Analysis of symbolic sequences using the Jensen-Shannon divergence. Phys. Rev. E (3), 65 (2002). DOI 
[9] Kafka, P., Österreicher, F., Vincze, I.: On powers of $f$-divergences defining a distance. Stud. Sci. Math. Hung. 26 (1991), 415-422. DOI 
[10] Kalugin, G. A., Jeffrey, D. J.: Unimodal sequences show that Lambert {$W$} is Bernstein. C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), 50-56.
[11] Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory 37 (1991), 145-151. DOI 
[12] McCullagh, P.: Möbius transformation and {C}auchy parameter estimation. Ann. Statist. 24 (1996), 787-808. DOI 10.1214/aos/1032894465
[13] Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21 (2019), 485. DOI 
[14] Nielsen, F., Okamura, K.: On $f$-divergences between Cauchy distributions. IEEE Trans. Inform. Theory 69 (2023), 3150-3171. DOI 
[15] Osán, T. M., Bussandri, D. G., Lamberti, P. W.: Monoparametric family of metrics derived from classical Jensen-Shannon divergence. Physica A, 495 (2018), 336-344. DOI 
[16] Osán, T. M., Bussandri, D. G., Lamberti, P. W.: Quantum metrics based upon classical Jensen-Shannon divergence. Physica A 594 (2022). DOI 
[17] Österreicher, F., Vajda, I.: A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Stat. Math. 55 (2003), 639-653. DOI 
[18] Rachev, S. T., Klebanov, L. B., Stoyanov, S. V., Fabozzi, F. J.: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York 2013.
[19] Schilling, R. L., Song, R., Vondraček, Z.: Bernstein functions, volume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter Co., Berlin 2010.
[20] Schoenberg, I. J.: Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 (1938), 522-536. DOI 
[21] Vajda, I.: On metric divergences of probability measures. Kybernetika 45 (2009), 885-900. DOI 
[22] Verdú, S.: The Cauchy distribution in information theory. Entropy 25 (2023), 346. DOI 
[23] Yianilos, P. N.: Data structures and algorithms for nearest neighbor. In: Proce. Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM 66 (1993), p. 311.
[24] Zolotarev, V. M.: One-Dimensional Stable Distributions. Americal Mathematical Society, 1986.
Partner of
EuDML logo