[1] Belleri, V., Pata, V.:
Attractors for semilinear strongly damped wave equations on $\Bbb R^3$. Discrete Contin. Dynam. Systems, 7 (2001), pp. 719–735.
DOI 10.3934/dcds.2001.7.719 |
MR 1849655
[2] Carvalho, A. N., Cholewa, J. W.:
Attractors for strongly damped wave equations with critical nonlinearities. Pacific J. Math., 207 (2002), pp. 287–310.
DOI 10.2140/pjm.2002.207.287 |
MR 1972247
[4] Conti, M., Pata, V., Squassina, M.:
Strongly damped wave equations on $\Bbb R^3$ with critical nonlinearities. Commun. Appl. Anal., 9 (2005), pp. 161–176.
MR 2168756
[6] Ghidaglia, J.-M., Marzocchi, A.:
Longtime behaviour of strongly damped wave equations, global attractors and their dimension. SIAM J. Math. Anal., 22 (1991), pp. 879–895.
DOI 10.1137/0522057 |
MR 1112054
[7] Grasselli, M., Pražák, D., Schimperna, G.:
Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories. J. Differential Equations, 249 (2010), pp. 2287–2315.
DOI 10.1016/j.jde.2010.06.001 |
MR 2718659
[8] Kalantarov, V., Zelik, S.:
Finite-dimensional attractors for the quasi-linear strongly damped wave equation. J. Differential Equations, 247 (2009), pp. 1120–1155.
DOI 10.1016/j.jde.2009.04.010 |
MR 2531174
[9] Li, H., Zhou, S.:
Kolmogorov ε-entropy of attractor for a non-autonomous strongly damped wave equation. Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 3579–3586.
DOI 10.1016/j.cnsns.2012.01.025 |
MR 2913994
[10] Michálek, M., Pražák, D., HASH(0x2ff9058), Slavík, J.:
Semilinear damped wave equation in locally uniform spaces. Commun. Pure Appl. Anal., 16 (2017), pp. 1673–1695.
DOI 10.3934/cpaa.2017080 |
MR 3661796
[12] Pražák, D.:
On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dynam. Differential Equations, 14 (2002), pp. 763–776.
DOI 10.1023/A:1020756426088 |
MR 1940102
[13] Roubíček, T.:
Nonlinear partial differential equations with applications. Birkhäuser/Springer Basel AG, Basel, International Series of Numerical Mathematics 153 (2013).
MR 3014456
[14] Savostianov, A.:
Infinite energy solutions for critical wave equation with fractional damping in unbounded domains. Nonlinear Anal., 136 (2016), pp. 136–167.
DOI 10.1016/j.na.2016.02.016 |
MR 3474408
[15] Yang, M., Sun, C.:
Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity. Trans. Amer. Math. Soc., 361 (2009), pp. 1069–1101.
DOI 10.1090/S0002-9947-08-04680-1 |
MR 2452835
[17] Zelik, S. V.:
The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete Contin. Dynam. Systems, 7 (2001), pp. 593–641.
DOI 10.3934/dcds.2001.7.593 |
MR 1815770