[3] Galaktionov, V. A., Vazquez, J. L.: 
Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison.  Commun. in Partial Differential Equations, 19 (1994), pp. 1075–1106. 
DOI 10.1080/03605309408821046 | 
MR 1284802 
[4] Galaktionov, V. A., Vazquez, J. L.: 
Extinction for a quasilinear heat equation with absorption II. A dynamical systems approach.  Commun. in Partial Differential Equations, 19 (1994), pp. 1107–1137. 
DOI 10.1080/03605309408821047 | 
MR 1284803 
[6] Nakaki, T., Tomoeda, K.: 
A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena.  SIAM J. Numer. Anal., 40 (2002), pp. 945–964. 
DOI 10.1137/S0036142900380303 | 
MR 1949400 
[7] Polubarinova-Kochina, P.Y.: 
Theory of Ground Water Movement.  Princeton Univ. Press, 1962. 
MR 0142252 
[8] Rosenau, P., Kamin, S.: 
Thermal waves in an absorbing and convecting medium.  Physica, 8D (1983), pp. 273–283. 
MR 0724593 
[9] Scheidegger, A.E.: 
The Physics of Flow through Porous Media.  Third edition, University of Toronto Press, 1974. 
MR 0127717 
[10] Tomoeda, K.: 
Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption.  Journal Math-for-Industry of Kyushu, 3 (2012), pp. 61–68. 
MR 2888003 
[11] Tomoeda, K.: 
Appearance of repeated support splitting and merging phenomena in a porous media equation with absorption.  Application of Mathematics in Technical and Natural Sciences (AMiTaNS’15), AIP Conference Proceedings, 1684 (2015), pp. 080013-1–080013-9. 
DOI 10.1063/1.4934324 | 
MR 2888003 
[12] HASH(0x2e2c438):  [12] D. Gilbarg and N. S. Trudinger, //Elliptic Partial Differential Equations of Second Order, Second Edition, Revised Third Printing 1998, Springer. 
MR 1063848