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OF THE DIFFERENTIAL EQUATION y" = Я q{t) у WITH 
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(Received April 21, 1978) 

Dedicated to Academician O. BORÛVKA on the occasion of the 80th anniversary of his birthday 

1. INTRODUCTION 

We consider two differential equations: 

(q) y"-4[t)y, 

where q e C°(R) (R = ( - oo, oo)), q{t + n) = q{t) for t e R, q{t) ф 0 and 

(Xq) f = Xq{t)y, 

where À represents a real parameter. 

It is well known from [7] that (q) is either disconjugate (on R), in other words 
every nontrivial solution of (q) has at most one zero on R, or it is both-sided oscil
latory (on R), in other words + oo are cluster points of zeros of any nontrivial solution 
of (q). In case of A = 0, the equation (A.q) is disconjugate. It is equally well known 
from [7] that the set of all numbers X for which the equation (Xq) is disconjugate, is 
closed and convex. 

Our object now is to obtain necessary and sufficient conditions on the function q 
for the equation (Xq) to be oscillatory for every Я e R — {0}. The result is given in 
the following 

Theorem. Let ^ e C°(R), q{t -{- n) = q{t) for t e R and let q[i) ф 0. Then the 
equation {Xq) is oscillatory for every XeR — {0} iff 

i: q{t) dt = Q. 

In fact we shall prove more: Let the assumptions of the Theorem be satisfied. 
Then the equation (Xq) is oscillatory for every Я e R — {0} iff there exists fx > 0 
such that the equation (Xq) is oscillatory for every Я 6 ( — û, 0) и (0, fi). 
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Corollary 1. Let the assumptions of the Theorem be satisfied. Then the equation 
y" = X{a + q(tf^ y, where a is a constant, is oscillatory for every Я G R — {0} iff 

1 f" a = - - q(t)dt. 

2. PRELIMINARY RESULTS 

In this paragraph and through the rest of this paper we shall assume that q e C°(R), 
q(^t + n) = q{t) for r e R and q{t) ф 0. In [6, p. 487] and [7, p. 103] we find the 
following criterion for oscillation of (q). 

Lemma 1. In case of 

q{t) dt йО i: 
the equation (q) is oscillatory. 

Remark 1. Some estimates of 

q{t)dt 

in the case of (q) having only periodic or half-periodic solutions with period n, 
are presented in [9]. 

Corollary 2. At least one of the two equations y" = q{t) y, y" = —q{t)y is 
oscillatory. 

The p roof follows immediately from Lemma 1 and from the inequality 

Г q{t)dt r{-q{t))dtuO. 
Jo Jo 

Remark 2, Corollary 2 is available only for equations having a periodic coefficient» 
If the coefficient is not periodic, Corollary 2 does not hold. 

Example. Let 

1 

K0: = 
for f б(—00, —1> u <1, oo) ; 

4r^ 
36t — 28 ^ ^ / 1 i4 

for ^ e ( — 1 , 1) . 3^^-14/^-21 
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Then p G C°(R) and 

for r 6 ( - 00, —1> u <1, oo) ; 

; -3r^ + 14r^ + 21) for te (-1,1) 

is a solution of y" = p{t) y on R. Evidently the equation y" = p[t) y is non-oscillatory 
on R. The equation y" = -~p{t)y is also non-oscillatory on R, because —p{t) > 0 
for r G ( - O O , - 1 > u <1, oo). 

Corollary 3. Let the function q change its sign on R and let the equation (q) be 
disconjugate. Then there exists a number jx (^^i) such that the equation (Xq) is 
disconjugate for X e <0, yCy and oscillatory for Я 6 (— oo, 0) u (^, oo). 

Proof. Let (q) be a disconjugate equation. Then by Lemma 1 

I q{t) dt > 0 

and consequently 

À q{t) dt <Q 

for Я e (— 00, 0). Hence the equation (Xq) is oscillatory for A e (— oo, 0). By assump
tion the function q changes its sign on R. Therefore there exists an interval (JQ, t^) 
such that q{t) < 0 for te (to, t^). If Яо ( > Ö) is a number large enough, then the 
equation (A ôq) has a nontrivial solution having at least two zeros in (to, t^), which 
implies that the equation (A ôq) is oscillatory. The set of all numbers Я, for which the 
equation (À,q) is disconjugate, is closed, convex and upper bounded. Consequently 
there exists a number / г ( ^ 1) such that the equation (A.q) is disconjugate precisely 
for À e <0, fi}. 

Corollary 4. Let q{t) ^ 0 for teR. Then the equation [Xq) is oscillatory for 
Я G (— 00, 0) and disconjugate for Я e <(0, oo). 

Proof. It holds 

1\ q(t)dt<0 LJ^(0 
for я G (—00,0) and by Lemma 1 the equation (À,q) is oscillatory for this Я. The 
Sturm comparison theorem yields the disconjugacy of the equation (Xq) for Я ^ 0. 

Remark 3. The oscillation of the equation (Xq) with an arbitrary function q has 
been investigated in [4]. 
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Lemma 2. ([5, p. 408]). Let v be a nontrivial solution of (q) having two zeros 
in the interval {a, b>. Then 

q (t) dt < -

where q~{t) = min {q{t), 0). 
In the sense of the Floquet theory we can associate with every equation (q) (having 

a 7i-periodic coefficient q) SL certain algebraic equation, the so-called characteristic 
equation of (q), 

(1) Q^ -2ÄQ + 1=0, 

where Л is a constant. The roots of (1) are called the characteristic multipliers of (q). 

Lemma 3 ([1, 2]). The oscillatory equation (q) has real characteristic multipliers 
exactly if there exists a number x and a nontrivial solution v of (q) such that 
v[x) = v[x + 7c) = 0. 

3. PROOF OF THE THEOREM 

(<=). Let 

i: q{t) df = 0 . 

Then 

i* X q{t) dt = 0 

and Xq{t) ф 0 for Я e R — {O}. Consequently, by Lemma 1, the equation (Xq) is 
oscillatory for Я 6 R — {0}. 

(=>). Let (Xq) be an oscillatory equation for every Я e R — {0} and let 

Q^ - 2Ä{X) ^ + 1 = 0 

be the characteristic equation of (Xq). Then 

(2) 

with 

Л(А) = 1 + ^ ^ [ / „ ( Я ) + Ф;(Я)]Я" 

/o(0 = 1 , (Po(0 = t, 

m = 
0 J 

q{x)f,,_^{x)dxds. 
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^n{t) = q{x)(p,_i{x)dxds, 
Jo Jo 

(n = 1,2, ...; Ï G R ) , 

whereby the series on the right-hand side of (2) converges for every Я (cf. [3, p. 177] 
and [8, p. 232]), and Л(0) = 1. 

Let there be a sequence {Я„}, Я„ Ф О, lim Я„ == О such that A[À„) ̂  1. Then the 
n-*oo 

equations (X^q): y" = Я„ q{t) y have real characteristic multipHers and for any x G R 
we have 

/•Х + 7Г 

lim {Kq{t)y 
«-̂ °o Jx 

dt = 0, 

where (Я„ q[t)) = min (Я„ q[t), 0). By Lemma 2 the equations (X^q) for which 

4 [ {À,q{t)) dt> 

have no nontrivial solutions with at least two zeros in the interval <(x, x + n} and 
therefore, by Lemma 3, these equations have no real characteristic multipliers, which 
is a contradiction. 

Thus, there exists a number /i > 0 such that A{X) < 1 for Л e ( —/л, ji) — {0}. Since 
A(0) = 1, the function A{X) has a local extreme at the point À = 0 and ^'(O) = 0. 
Now (2) implies 

and after some evident modifications we obtain 

A\0) = - Г f [ q{x) dxdt + f tq{t) dH = - f q{t) dt 
^ L J o J o Jo J 2 J o 

(see [3, p. 178] and [6, p. 472]). Hence 

q{t) at =0, q.e.d. 
Jo 

By the Theorem the equation y" = X{a + ^(f)) y, where a is a constant, is oscil
latory for every Я G R -- {0} iff 

i: {a + q{t)) dt = 0 , 
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that is iff 
1 f" 

a = q(^t) dt. 
T î j o 

We have thus proved Corollary 1. 
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