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Časopis pro pěstování matematiky a fysiky, roč. 72 (1947) 

On //-closed extensions of topological spaces. 
By Miroslav KatStov, Praha. 
(Received March 18th, 1947.) 

Like many other notions in General Topology, the //-closed 
spaces are due to Alexandroff and Urysohn [l]1). In their paper 
they stated two problems concerning //-closed spaces: (i) is a space 
every closed subspace of which is //-closed necessarily compact? 
(ii) may any Hausdorff space P be imbedded as a dense subset in 
a //-closed space /?? A step towards the solution of (ii) was made 
by Tychonoff [2] showing that P may be imbedded in a //-closed 
space -R (without being, in general, necessarily dense in R). In his 
important paper [3] M. H. Stone solved both (i) and (ii) and 
showed moreover that there exists a H-closed space R D P which 
is a strict extension (loc. cit., definition 14) of P and has the same 
character (i. e. the minimal power of an open base) as P. Another 
notion introduced by Stone in connection with his algebraic con
siderations is the semiregularity which is less restrictive than re
gularity but simplifies the theory of //-closed extensions conside
rably. In his paper M. H. Stone uses an elaborate algebraic theory. 
A part of his results was proved in a similar but more direct way 
by Fomin [4]. ' • • • . 

In his paper [2] A. Tychonoff showed that ariy completely 
regular space may be imbedded in a compact space (as a matter 
of fact, he showed more, namely that there exists an universal 
compact space of character X for any infinite cardinal N). A further 
important result is due to E. Cech [5] who proved that any comple
tely regular space P possesses a compact extension2)-j3P such that 
P = (iP and that every bounded continuous real function on P 
may be extended to a continuous real function on pP; the space 
(IP is uniquely determined by these properties. Later on, H. Wall-
man [6] proved that every topological space P may be imbedded 

*) The nirrnbers in brackets refer to the list at the end of this paper. 
9) If P is a subspace of a space R D P, then we say that P is imbedded 

in R or that R is an extension of P. 
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as a dense set in a compact space coP. The space coP is a Hausdorff 
space if and only if P is normal; in this case coP = j3P. The space 
coP possesses the same homology theory as P . 

The question arises whether a off-closed extension of a similar 
kind exists for Hausdorff spaces. This problem is solved in the 
author's paper [7]. Every Hausdorff space P possesses a H-closed 
extension T P such that (i)P — T P ; (ii). every mapping / of P into 
a Hausdorff space S such that f(P) = S may be extended to a 
mapping of a subspaceP' QxP onto S. The space T P is uniquely 
determined by the properties (i) and (ii). 

The extensions J3P, coP, xP have been so far characterized 
either by their ,,construction" (e. g. the ,,ideal" points of coP 
correspond to certain collections — the so called maximal basic 
sets — of closed subsets of P) or by certain properties of mappings 
of P, viz. by possibility of their continuous extending. This cannot 
be considered as a wholly satisfactory descriptive characterization 
of the extensions /JP, coP, xP. Such a characterization for coP was 
not given till recently by Cech and Novak [8]. The space coP is 
characterized by P being imbedded in coP both combinator ia l ly , 

n 
which means that J~JP{ = 0 whenever Fi are relatively closed 

I 
n 

in P and]~[Pi = 0, and regular ly, which means that every 
I 

closed set 0 C coP may be represented as intersection of a family 
of sets F, F C P. -

In the present paper I intend to give an analogous descriptive 
characterization of the space T P and three other types of Ff-closed 
extension which are obtained by imposing different conditions 
concerning relative semiregularity. • 

In § 1 of the present paper semiregularity of a point relatively 
to a set is defined and examined. It is shown that M. H. Stone's 
strict extension and E. Cech's regular imbedding are equivalent 
notions and may be both expressed in terms of relative semiregu
larity. Certain modifications (we call them /Si?-modification3) are 
considered, transforming a given Hausdorff space into a space 
satisfying appropriate relative semiregularity conditions. A modi
fication of this kind occurs implicitly already in the author's 
paper [7]. 

In § 2 hypercombinatorial and paracombinatorial imbedding 
are examined which are closely * related to Cech's combinatorial 
imbedding. Whereas however there is a difference between 7&-com-
binatorial (n = 2, 3, . . . ) , combinatorial and combinatorial in the 
strong sense imbedding (Cech and Novak [8]), the analogous no-
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tions coincide for hypercombinatorial and paracombinatorial im
bedding as shown in (2,1) and (2,4). 

In § 3 a descriptive characterization of the extensions T P , 
T ' P , aP, a'P is given. The space i:P occurs already in [7]. The 
spaces aP and a'P may be obtained as Fomin's [4] spaces a(P) by 
taking for the basic collection {G} the family of all open sets for 
aP and the family of all regularly open sets for a'P. 

There remain several unsolved problems. 
1. I do not know what CDnditions a space P must satisfy in 

order tha t it might be imbedded combinatorially in a H-closed 
space. If such an extension exists it need not be unique. E x a m p l e : 
Let P 0 be the space of all pairs of ordinals (f, rj), | _1 co0, rj ;_ col9 

(|, rj) 4= (co0, cox) with the usual topology. The set coP0 — P 0 contains 
exactly two points and by cancelling any of them a H-closed 
space is obtained. The two spaces are not topologically equivalent 
but P 0 is combinatorially imbedded in either of them. — I t seems 
probable that an extension of this kind is possible and unique if 
and only if P is normal (in tha t case it coincides, of course, with 
coP). 

2. I t is perhaps of some interest to examine the conditions 
under.which several of the spaces T P , T ' P , aP, a'P, coP, /IP coincide. 
I t is known only that coP = (}P if and only if P is normal. The 
conditions for the other equivalences should be far more restrictive. 

3. If completely regular spaces Px and P 2 satisfy the first 
countability axiom, then pPx = /?P2 implies Px = P 2 ( = denotes 
topological equivalence here). I t could be of some interest to 
find sufficiently broad conditions under which a similar implica
tion holds for T P and the other //-closed extensions. 

§ i . ! 

All spaces considered are Hausdorff spaces even if it is not 
explicitly stated. The signs => and <-> denote logical implication 
and equivalence. 

D e f i n i t i o n s . Let P be a space, M C P . A set G C P is said 
to be regularly open (Kuratowski [9]) if G = In t Gz) and is said 
to be regularly open relatively to M if G = In t (Q-+ MG). 

A point x e P is called semiregular relatively to M if whenever 
G is open and x e G there exists an open set H such that x € H C 
C In t (H + MH) C G. 

If every point x e P is semiregular relatively to M, then P 
is said to be semiregular relatively to M<. If a point x e P is semi-
regular relatively to P , then it is called simply semiregular. If 

3) Int A is th int гioг of th s t A9 i. . th s t P — P—-A. 
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every point x e P is semiregular, then the space P is said to be 
8emiregular. This definition is evidently equivalent with M. H. 
Stone's [3] definition of semiregularity. 

(1.1) If Gi (i = 1, ... n) are regularly open relatively to M, 
n 

then Y\ Gi is so as well. 
I 

n n 

Proof. Denoting \ \ G{ by H we have H + MH C Tl (Gi + 
I i 

n n 

+ MGi), whence Int (H + MH) C IntV[ (0t + MGi) = V [ I n t (G* + 
I I 

+ MGi)=f]Gi=H. 
1 

Clearly: 
(1.2) For any open GcP the set Int (G + MG) is regularly 

open relatively to M. 
(1.3) A point x e P is semiregular relatively to M if and only if 

it possesses fundamentel neighborhoods which are regularly open 
relatively to M. 

Proof. If x is semiregular relatively to M, then for any open 
G, x eG, there exists an open H such that x e H C Hx = Int (H + 
+ MH) C G. By (1.2) H1 is regularly open relatively to M. The 
other half of the lemma is obvious. 

Definit ions. Let P be a space, Q C P. Q is said to be regu
larly imbedded [8] in P if for any closed set F C P and every x e P — 
— F there exists AcQ such that FC&CP — a:. P i s said to be 
a strict extension [3] of Q if Q = P and for any open G C P and 
'every x e G there exists an open neighborhood H of x such that 
Int (H + A) C G whenever A is nowhere dense and AQ = 0. 

(1.4) Let S be demise in P. S is regularly imbedded in P if and 
only if P is semiregular relatively to P — S. 

Proof. I. Let P be semiregular relatively to M = P — S and 
let F C P 'be closed, x e P — F. Then there exists an open set G 
such jthat xeG, F. Int (G +_MG) = 0. Setting A = P — (G + 
+ MG) = (S — G) + (M — G) we have FcAcP — x. Since 

M — GCP — G = S — G we have A = S — G. Hence the im
bedding S C P is regular. II. Let S be regularly imbedded in P 
and let H C P be open, x € tl. There exists a set A C S such that 
P — H = FcAcP — x. Setting G = P — A,M = P — S we 
liave H D P — A_= Int (P — SA)_= Int (G + M) = Int [G + 
+ MG + (M — G)] = Int (G + MG) which proves the theorem. 
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(1.5) Let Q CP, Q = P. P is a strict extension of Q if and only 
if P is semiregular relatively to P — Q. 

Proof. The implication: strict extension => relative semiregu-
larity follows at once from the above definition of strict extension 
by setting A = (H — II) (P — Q). Let P be semiregular relatively 
to P — Q and let G be open, x e G. There exists an open set H 
such that x e H c Int [H + (H — Q)] C G. Now let A_C P be now
here dense, AQ = 0. Then Int (H + A) C Int (H + AH) C Int [H + 
+ (H — Q)] C G. Hence P is a strict extension of Q. 

(1.4) and (1.5) imply: 
(1.6) Let S C P , S = P. P is a strict extension of S if and only 

if S is regularly imbedded in P. 
D e f i n i t i o n . Let P be a space,~# C P , M C P . Let ® denote 

the family of all open sets G C P such that every x e QG possesses 
a neighborhood H C G which is regularly open relatively to M. 
The space P' which is obtained by choosing ® as an open base 
will be called the SB-modification of the space P on the set Q rela
tively to M. 

Since for open sets G and H GH = 0 =-> Int G. In t H = 0 
and by (1.1) G1e®, G2 e ® => GXG2 € ®, any ^-modif ica t ion of 
a Hausdorff space is a Hausdorff space again. If P' is a SR-modi-
fication of P , then the identical transformation P -> P' is a mapping. 

We may consider any set A C P either as a subset of P or as 
a subset of P \ If A is closed, open, . . . if considered as a subset 
of P (or P') we shall say, for convenience, tha t A is closed, open, . . . 
in P (or in P'). 

(1.7) Let Pbea space, QcP,MC Pand denote by P' the SR-modi-
fication of P onQ relatively to M. Then (i) if G is open in P, then G 
has the same closure both in P and in P'\ (ii) if G is regularly open 
in P relatively to M, then it is open in P'\ (iii) if G is open in P' and 
regularly open in P relatively to a set Mx, then G is regularly open 
relatively to Mx in the space P' as well. 

Proof . For any A CP denote by A, A*, In t A, In t* A the 
closure and the interior of A in P and in P' respectively. Then 
clearly Gc G*\ if x e P — G, we have HG = 0, where H == P — G, 
hence HG which implies, by the definition of /SiZ-modification, 
xtP — G*. Hence <?*_== G. 

IiG = In t (G + GM), then by (1.2) and by the definition of 
/S-R-modification G is open in P \ If G'•• = In t (G + GMt) and G is 
open in P\ then G C In t* (G + G*MX) = Int* (G + GMx) C 
C In t (G + GMx) -= G, hence G is regularly open in P' relatively 
toMx. 
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(1.7) and (1.3) imply 
(1.8) Let P' be the SR-modification of P on Q relatively to M. 

Then every point x e Q is semiregular in P' relatively to M. 
(1.5), (i) implies 
(1.9) Let P' be a SR-modification of P. A set G C P is regularly 

open in P' if and only if it is regularly open in P . If a point x e P 
is semiregular in P then it is so in P' as well. 

(1.10) If a subspace QcP is semiregular, then its topology 
remains unchanged under an arbitrary SR-modification of P. 

Proof. Let H C Q be a relative neighborhood of a point 
x c Q in Q. Since Q is semiregular there exists a set G C Q such 
that x e G C H and G is regularly open in Q. Let G0 be open in P, 

G = QG0 and denote Int G0 by Gx. We have G = Q — Q — Q& = 
= Q. (P — Q(P — G)) = Q.(P — P — G0) = QGX which proves the 
theorem since (1.2) and (1.5) imply that Gx is open in P', P' denoting 
an arbitrary ^-modification of P. 

(1.11) Let QCP, MCP- The topology of both P1 = P — Q 
and P2 = P — M remains unchanged by the SR-modification of P 
on Q relatively to M. 

_Proof. If G is open in P, then*by (1.2) and (1.5) H = Int (G + 
+ GM) is open in P', P' denoting the /S_R-modification of P on 
Q relatively to M, and HP2 = GP2 which proves the theorem for 
P2. For Pl9 it follows immediately from the definition of SR-
modification. 

§2. 

Defini t ions. Let Q be a dense subspace of a space P. Then 
Q is said to be 

(i) combinatorially imbedded [8] in P if whenever Fi C Q are 
relatively closed in Qn 

n n 

n ^ = 0 = > I W = 0 (n=2,3,...y, 
1 1 

(ii) combinatorially imbedded in P in the strong sense [8] if 
whenever Fl9 F2 are relatively closed in Q we have 

F,F2 = F,F2; 

(iii) hypercombinatorially imbedded in P if whenever Fi C Q 
toe relatively closed in Q we have 

n n n 

f i Fi nowhere dense in Q => J~l Fi = 17 &i (n = 2> 3> • • •)' 
I i i 
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(iv) paracombinatorially imbedded in P if for any relatively 
open sets OiCQ we have 

Y[Gi = 0=> fl&iCQ. (n = 2,3,...). 
- i 

(2.1) Let Q be dense in P. Q is hypercombinatorially imbedded 
in P if and only if one of the following equivalent conditions holds: 

(i) whenever Flf F2 are relatively closed subsets of Q and FXFZ 

is nowhere dense in Q we have FXF2 = F1F2\ 
(ii) if FiCQ are relatively closed in Q, then 

flFi-Q=flOi-Q, 
1 1 

where OiJienotes the relative interior of Fi in Q (n = 1, 2, 3, . . . ) . 
Proof. If (i) holds and x e Fj?2 — Q, then setting At = Fi — 

— Gx02 we have x e (GXG2 — Q) + (AXA2 — Q) which implies 
x € GXG2 — Q since AXA2 — Q = 0, Ai being nowhere dense. Hence 
(ii) holds for n = 2. Now let (ii) be true for n = 2,3,...m and 

m 

let F% (i = 1,2, . . . m + 1) be relatively closed in Q. Then Y\Fi — 

m m 
— Q = n ®i — Q a n d setting & =zQY\Gi,r = relative interior of 

i . i 
m _ ' • w * 1 _ _ 

0 in Q we h a v e H ^ — Q = * = Q> 17** — Q = ^ m - i — Q = 
: l l 

= rOm^.\ — Q. Since the sets Gi are regularly open in Q, so is 
m m ffl+1  

n Gi by (1-1), therefore r = Yl &u ^nce Y\ Fi — Q = fOm+1 — 
ro+1 

,— Q = J"]- Oi—Q. This yields by induction the implication (i) => (ii) 
i 

which proves the theorem since ievidently (ii) => hypercombina-
torial imbedding => (i). 

The following obvious lemma is useful sometimes. 
(2.2) Whenever OiQR are open in R we have 

f l i n t Gi = Int f\Oi = I n t f l ^ . 
I I I 

Proof. We have only to prove these equalities for n = 2* 
Evidently Int 0±G2 = Int Gx Int 02. Denoting this set by H we 
have H D Int Ofi%2JOfi% == ^ O HG2 = HS2 D H\ hence 
Int OxG2 DH, H = OxG2. 
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(2.3) Hypercombinatorial imbedding is both paracombinatorial 
and combinatorial in the strong sense. 

Proof. Let Q be hypercombinatorially imbedded in P. Let 
n 

Gi (i = 1, . . . n) be relatively open in Q, \ \ Ot = 0. Denoting QGi 
I 

n y. n n 

by At we have Yl^i ^Yl^i = TlAiCQ since by (2.2) YlAi i s 

i l l I 

nowhere dense in Q. Hence the imbedding Q C P is paracombina
torial. Now let F{, F2 be relatively closed in Q and denote by Hi 
the relative interior of F{. Then by (2.1) FjF2 — Q = HtH2 — Q, 
hence FXF2 = F1F2 which proves the theorem. 

(2.4) Let Q be dense in P. Q is paracombinatorially imbedded in 
P if and only if one of the following conditions holds: 

(i) whenever GXi G2 are relatively open in Q and Gf
16?2 = 0 we 

have GXG2 C Q\ 
(ii) for any choice of relatively open Gi C Q we have 

Y\Gi — Y\GiCQ (n = 2,3, . . . ) . 
I I 

n n 

Proof. Let the implication (*) Y] Gi = 0 => Yl #i C Q hold for 
I - I 

n = 2, . . . m. Then we have, for arbitrary relatively open G% C Q, 
tit m m m 

Y\(Oi — A) = 0, where A = YI&i, whence 1 7 ^ — 1 7 ^ = 
I i l l 

m m • .  

= ] 7 Ot— A C 17 &i — A C Q. If HiCQ are relatively open, 
I I 

ftt+l w + l m rn m  

Y\Bi = 0, then Y\Hi C (T[Bi — YlHi) +Y[Hi .Hm+1C Q, hence 
1 1 1 1 1 

(*) holds for n = m + 1. This yields, by induction, (i) => (ii) 
which proves the theorem, since clearly (ii) -=> paracombinatorial 
imbedding => (i). 

(2.5) A paracombinatorial imbedding Q C P is hypercombina-
torialif and only if every relatively closed set F CQ which is nowhere 
dense in Q is closed in P. 

Proof. We have only to prove that the condition is sufficient. 
Let Fx, F^ be relatively closed in Q, FtF% nowhere dense in Q. 
Denoting the relative interior of Fi by G% we have GXG2 = 0, 
Fi — Q=^(F^Gi — Q) + (Gi — Q) = Gi — Q, hence FXF2 — 
— Q = ^ 0 2 — Q = 0 which implies by (2.1) that the imbedding 
is hypercombinatorial. 
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The following theorems (2.6), (2.7), (2.8) are well known; (2.6) 
is due to Alexandroff and Urysohn [1], (2.7) and (2.8) are given 
in [7]. 

Definit ion. A Hausdorff space P is called H-closed if P is 
closed in any Hausdorff space in which it is imbedded. 

(2.6) A Hausdorff space P is H-closed if and only if every open 
n 

covering {G} contains a finite subcollection {Gi} such that ^Gi = P. 
I 

Proof. Let P be if-closed and let {6?} be an open covering. 
Let R = P + a and let the point a possess fundamental neigh-

n 
borhoods P — 2 ^f + *• Then R is a Hausdorff space, P is imbedded 

I 
n 

in R, therefore closed. Hence there exist Gi such that P —^Gi = 0. 
I 

If P is not #-closed, there exists a Hausdorff space RD P 
such that P is not closed in R. Let a € P — P. The family {G} 
of all G = P — H where H is a neighborhood of a in R is an open 
covering of P. For arbitrary Gi € {6?}, Gi= P — Hi (i = 1, . . . n), 
we lmveGiCR — Hl9 2<?iC B — f[-Ht', P—§<?< D P.fl-ffi + O, 

i i I I 
n 

since J~f£Ti is a neighborhood of a. 
I ' 

(2.7) If P is H-closed and Gc Pis open, then Q = Gis H-closed. 
Proof. Let {H} be an open covering of the space P-.. Then 

the collection consisting of the set P — Q and of all P — Q — H 
is an open covering of P, hence there exist H% (i = 1, . . . n) such 

n • , . n 
that2,r% + P — Q = P, where ri = P — Q — Hi, therefore2Pi3 

i i 
n 

DP — P — QDG, 2 rt D G = Q. Since fiQ = Ht we obtain 

2 ^ * D 2 ^ 2 = G^Ti^ G = Q which proves the theorem. 
1 1 - I 

(2.8) If a H-closed space P is continuously mapped on a Haus
dorff space R9 then R is H-closed. 

Proof. Denote by / a mapping of P onto R. Let {G} be an 
open covering of R. Then {f~~HG)} is an open covering of P, hence 

there exist Gi such that 2 /~1(®») = P> whence 2 Q< =* -B* Therefore 
I ' ' i 

by. (2.6) R is closed. 
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(2.9) / / a collection {G} of open subsets of a H-closed space 

B has the finite intersection property (i. e. ]~J ^» 4= 0 for any choice 
__. I 

of Gi € {G}), then the intersection of all G is non-empty. 
Proof. If nG were empty, then the collection {B — 6?} 

would be an open covering of B, hence by (2.6) there would exist 

Gi such that 2 iZ — Q% = B, whence J~J Gi = 0 which is not possible. 
i I 

(2.10) Let P be H-closed and let f be a 1 — 1 mapping of P onto 
a Hausdorff sjxice B.> Then Q C P is regularly open if and only if 
f(G) C B is regularly open. 

Proof. Denote f(G) by H. The set f(G) is closed by (2.7) and 
(2.8); hence f(G) = H, B — H = f(P — G) and since f(P — G) is 

closed by (2.7)_and (2.8) we have B — H = f(P—~G), therefore 
Int H = / (Int G) which proves the lemma. 

(2.11) Let Q be para^ombinatorially imbedded in a H-closed 
space P. Let f be a 1 — 1 mapping of P onto B. Then the imbedding 
f{Q) C B is paracombinatorial. 

Proof. Let Hl9 H2 be relatively open in 8 = f(Q), H1H2 = 0 
and denote f^Hi) by 6?*. If f(a) = b e H\ — S, then aj.QY — Q 
(cf. the proof of 2.10), hence aeP — G2, beB — f(G2). Since 
f(G2) is closed we have b e B — H2, therefore H1H2 C S which 
proves the lemma. 

E x a m p l e 1. Q denotes the plane; A, J?,. C denote the set of 
all (x, y) eQ such that y > 0, y = 0, y < 0 respectively. P1 == cuQ 
is Wallman's [6] compact space. The imbedding Q C -Pi is combi
natorial in the strong sense [8], but is not paracombinatorial since 
A and C are relatively open in Q, AC = 0, but AC — Q 3 B — 
— B * 0. 

(2.12) / / a normal space Q is paracombinatorially imbedded in 
P, then the imbedding is combinatorial. 

n 

Proof. If Fi C Q are relatively closed in Q and ]~J Ft = 0, then 
I 

n 

there exist4) relatively open "sets QiCQ such that Gi D Fi, ]~J Gi=0, 
I 

hence f\GiCQ, I l ^ C O , n ^ = f l ^ = 0. 
- - 1 . -

E x a m p l e 2. Denote by / the discrete space of natural num
bers. Choose a point a e fi I —-I, pi denoting Cech's [5] compact 

4) This is a well known property of normal spaces. 



space. P 2 is the set pi with the topology defined in the following 
way: the points n*I are isolated; the fundamental neighborhoods 
of a are the same as in pi; any point x e (JI — I — a possesses 
fundamental neighborhoods GI + x, G being a neighborhood of 
x in ^1. Denote P 2 — a by Q. Whenever Gi are open in Q and 
a e GjG2 we have a e GXI, a e G2I, hence G±G2I 4= 0. Therefore the 
imbedding Q C P 2 is paracombinatorial. 

Now choose for every infinite A C / a point #(.4) e J. — A, 
x(A) =f= a, and denote by F the set of all x(A). Then P is closed in 
Q, a e F (since a clearly belongs to the closure of F in pi) and the 
power of F does not exceed the power c of the family of all subsets 
of I. Now 0 = Q — / — F is closed in Q and for any infinite 
A C / we have J . $ 4= 0 since (Pospfsil [10]) A has the power 2C. 
Hence a e 0, a e P $ which implies that the imbedding Q C P 2 is 
not combinatorial, not even 2-combinatorial [8]. 

E x a m p l e 3. Choose again a point a e pi— J. The space P 3 

consists of the points xmn, xm, z (m, n = 1, 2, . . . ) . The points #w n 

are isolated; every point xm possesses fundamental neighborhoods 
Umo consisting of xm and all xmn, n e ff, G running over all neigh
borhoods of a in pi. The point z possesses fundamental neighbor
hoods U{ok} consisting of z and of the points xm and xmn such tha t 
n e Gm, m e G0, where {(?*} runs over all sequences of neighborhoods 
of a in pi. I t is easy to show tha t P 3 is regular, hence, being coun
table, normal. 

Denote P 3 — z by Q. If F C Q is relatively closed, z e P , then 
denoting by P * the set of all xn e P we have easily z e P* . 

Since the imbedding of the set A of all xn in A + 2 is clearly 
combinatorial, this proves tha t the imbedding Q C -P3 is combi
natorial. 

Now let Ol9 G2 be open in Q, z e 6rV78. Then QGft2 4= 0 (since 
the imbedding is combinatorial), hence either there exists a xmn e 
e GXG2 which implies xmn e GXG2, G±G2 4= 0, or there exists a #m e 
e 6?16r2 which implies again GXG2 4= 0 since, for a given m, the 
imbedding of the set Bm of all xmn in P w -f- xm is clearly paracom
binatorial. Therefore the imbedding Q C P 3 is paracombinatorial. 

The set .4 is relatively closed and nowhere dense inQ,ze A — A . 
Hence Q is not hypercombinatorially imbedded in P 3 . 

§3-
(3.1) Any Hausdorff space P may be hypercombinationally im

bedded in a H-closed space R = xP such that P is open in xP and 
the subspace xP — P is discrete. This imbedding is essentially unique, 
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i. e. if a space RX~D P possesses the same properties, then there exists 
a topological transformation of R onto Rx which is identity on P . 

If P is paracombinatorially imbedded in a Hausdorff space S, 
then there exists a I — 1 mapping f of a set T C *P, T D P , onto 
S such that f(x) = x for x e P ; if S is H-closed, then T = T P . 

Proof . I . Suppose that P is not //-closed since otherwise the 
theorem is trivial. A collection (2i of open sets A C P will be called 
an ^-collection if (i) A e<2l => A * 0; (ii) A1 e<2l, A2e<2l --> A^2e 21; 
(iii) the intersection of all J., A e <2l, is void. A maximal 
a-collection will be called a /S-collection. By Zorn's theorem every 
a-collection is contained in a /3-collection. 

The space rP = R consists of the points T73 each of them 
corresponding to a /S-collection 93 and of all x e P . Fundamental 
neighborhoods of the points x e P in R are their neighborhoods in 
P. Every TCQ possesses fundamental neighborhoods B -f- T<B, where 
B e 93- Clearly P is a Hausdorff space, P is open in R and the 
subspace P — P is discrete. 

Now let © be an open covering of R and denote by 2i the 
n 

collection of the sets P — ^ G i , Gi€®. 21 is no ^-collection since 
1 

otherwise there would exist a ^-collection 93 D 21 and we would 
have the implications G e ® ---> P — G e ? ! => z ^ e P — G = 

= P — G C R — G which is impossible. Evidently 21 possesses the 
properties (ii) and (iii) of an ^-collection; hence 21 does not possess 
the property (i), i. e. 0 e 21 which proves by (2.6) that R is 
//-closed. 

Let Fx and F2 be relatively closed subsets of P and let T93 e 
e FXF2. Then P — Fi non e 93 (i = 1, 2) and since 93 is a maximal 
^-collection there exists a set P i e 93 such that Bt(P — F'i) = 0. 
Hence B{ C F{, BXB2 e 93, 0 4= BXB2 C PiP2> therefore FlF2 is not 
nowhere dense. This proves by (2.1) that the imbedding P c P 
is hypercombinatorial. 

I I . Now let P be paracombinatorially imbedded in a space 
S. For every y e S — P denote by 93 (y) the collection of all open 
A C P such that y e A. The intersection of all PA, A e 93(2/), is 
void. If Ax € 93(y), A2 e 93(y), then 1/ e ^ X g , hence by (2.4) 
y*AxA2, AXA2 e 93(2/). Therefore 93(2/) is an ac-collection. If P C_P 
is relatively open and A e 93{j/) => P-4 4= 0, then clearly y e P , 
whence P e 93(2/). Hence 93(2/) is a /^-collection. 

For any y e S — P we set ry = T<£(y) and denote by T the set 
consisting of the points ry and of all x e P. Clearly y =t= 1/' => xy =t= ry». 
We set /(<%*) -== t/ and /(a:) =(x for a: e P; thus / is a 1 — 1 trans-



formation, f(T) = S. If G is an open neighborhood of a point 
yeS — P, then y e GP, GP € 03(2/), GP + Ty is a neighborhood of 
fxy = f~x(y) in R. If G is an open neighborhood (in S) of a point 
x € P, then fx(G) D GP and GP is a neighborhood of x in P . Hence 
/ is a continuous mapping. 

If S is //-closed, let x = T<% € R — P . Denote by C the inter
section of closures (in S) of all B c 33. Then by (2.7) jand (2.9) 
C 4= 0 since S is //-closed. If y e G, then P e 03 => 2/ e B, whence 
3 3 C 33(2/), therefore 33 = 33(2/) s i n c e *33 is a ^-collection. This 
implies a; = <xy, whence T = R. 

I I I . Let P be hypercombinatorially, hence by (2.3) para-
combinatorially, imbedded in a //-closed space Rx such tha t P is 
open in Rx and P x — P is discrete. There exists, by II . , a 1 — 1 
mapping / of R onto Rx such tha t f(x) = x for x e P . Let z = T<Q € 
eR — P; then P e 33 => y = /(z) € /(P) = B. The imbedding P C P i 
being hypercombinatorial, P e 33 => 2/ n o n € P — -8; hence Rx — 
— (P — B) is a neighborhood of y for any B e 33. Since P x — P 
is discrete, 2/ + P is a neighborhood of 2/, hence so is (y -f- P ) [Px — 
— ( P — P ) ] = 2/ + P = /(z + B). Therefore / is a topological trans
formation. This completes the proof. 

R e m a r k . I t is immediately seen from the first part of this 
proof tha t T P is identical with the H-closed extension described 
in [7], 2.1. ' 

(3.2) Any Hpusdorff space P may be paracombinatorially im
bedded in a H-closed space T'P such that P is open in T'P and every 
point x e T ' P — P is semiregular. The imbedding P C T ' P is essen
tially unique, and the SR-modification of TP on the set TP — P may 
be taken as T'P. 

Proof . Denote by T ' P = R the /SP-modification of T P on 
the set T P — P . Then by (1.11) P is imbedded in R. By (2.11) 
the imbedding is paracombinatorial and by (1.8) every x e R — P 
is semiregular. R is //-closed by (2.8). 

If a space Rx C P possesses the above properties, then by 
(3.1) there exists a 1 — 1 mapping / of R onto Rx such that f(x) = x 
for x e P. Both in Rx and in R the family consisting of all open 
sets contained in P and of all regularly open sets is an open base, 
since P is open and every point oi its complement is semiregular. 
This implies by (2.10) that / is a topological transformation, i. e. 
the imbedding P C B is essentially unique. 

(3.3) Any Hausdorff space P may be imbedded both regularly 
and hypercombinatorially in a H-closed space aP. This imbedding is 
essentially unique, and the SR-modification of TP relatively to TP — P 
may be taken as aP. 
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Proof . Denote by oP = R the SP-modification of xP rela
tively to xP — P . Then by (1.11) P is imbedded in R; the imbedding 
is regular by (1.8) and (1.4) and paracombinatorial by (2.11); R is 
.ff-closed by (2.8). If F C P is closed, then G = xP — F is open 
in xP and, for any x e G, the set H = GP + # is open in T P and 
H + (// — P) C G, H denoting the closure of H in T P , hence 6? 
is open in R. Therefore F is closed in R. This implies by (2.5) that 
the imbedding P C R is hypercombinatorial. 

Now let P be both regularly and hypercombinatorially im
bedded in a //-closed space Rx. By (3.1) there exists a 1 — 1 map
ping / of xP onto Rx such that f(x) = x for xeP. Since the imbedding 
P C P is regular, the family © consisting of all R — P — G, G C P 
relatively open, is an open base of R. Since the imbedding P C R 
is hypercombinatorial, R — P — G = G + (C? — P) . Similarly, the 
family ®x consisting of all sets Rx — F = G + (G — P) , where 
F = P — G, G is open in P , and 6?, P denote the closures of G, F 
in Rx, is an open base of Rx. Now it is easily seen that f(G) = G 
for any relatively open G C P (since the closure of G in T P is 
//-closed it must be equal both to G and f~x(G)). Therefore we have 
the equivalence He® o f(H) e ®x. Hence / is a topological 
transformation. 

(3.4) Any Hausdorff space P may be both regularly and para-
. combinatorially imbedded in a H-closed space o'P such that every 
point x e o'P -— P is semiregular. The imbedding is essentially uni
que and the SR-modification of x'P relatively to x'P — P may be 
taken as o'P. 

Proof . Denote by o'P = R the SP-modification of x'P rela
tively to x'P — P . Then by (1.11) P is imbedded in R and the 
imbedding is paracombinatorial by (2.11) and regular by (1.8) and 
(1.4). The points x e R — P are semiregular by (1.8). R is //-closed 
by (2.8). 

Now let P be both regularly and paracombinatorially imbedded 
in Rx and let every point x e Rx— P be semiregular. By (3.1) 
there exists a 1 — 1 mapping / of R onto Rx. For every relatively 
closed set F C P the set F — F. (F denoting the closure in R) 
consists of all points y e R — P such that GF + 0 for any regu-

, larly open G Q.R containing y. Since the same holds for Rx we have 
by (2.10) f(F) = F, where F is relatively closed in P and F denotes 
closure in Rx. Since P is regularly imbedded both in R and Rx we 
have f(A) = A for any i C - 5 . Hence / is a topological trans
formation. 

(3.5) Any semiregular Hausdorff space P may be paracombinato-
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rially imbedded in a semiregular H-closed space R. The imbedding 
is essentially unique and we may set R = a'P. 

Proof. Let R be the /Si2-modification of xP on xf relatively 
to T P . Then by (1.10) P is imbedded in R and the imbedding is 
paracombinatorial by (2.H). R is -H-closed by (2.8) and semi-
regular by (1.8). Hence by (1.4) P is regularly imbedded in R. 
This implies by (3.4) the topological equivalence R = a'P and the 
essential uniqueness of R. 
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0 //-uzavřených obalech topologických p;ostorů. 

(Obsah p ř e d e š l é h o č lánku.) 

Nechť P je -áHP-prostor. Říkáme, že bod x e P je poloregu-
lární, když ke každému okolí H bodu x existuje otevřená množina 
0 taková, zexeOc Int GcH. 

Nechť QcP- Říkáme, že množina Q je regulární vnořena do 
P, když každá uzavřená množina F C P je průnikem některých 
množin tvaru A, A C Q>. 

Říkáme, že množina Q je hyperkombinatoricky vnořena do P, 
když Q = P a pro libovolné uzavřené v Q množiny Fi C Q platí: 

je-li f i Fi řídká v Q, pak f i P ť = f i *V 
i • / i i ' 

Říkáme, že množina Q je parakombinatoricky vnořena dc* P, 
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když Q = P a pro libovolné otevřené v o, množiny o. C o plati: 

no^o^fi^co,. 
1 ' 1 

Nazýváme ,4-ffP-prostor P H-uzavřeným, je-li P množina 
uzavřená v libovolném .á/ZP-prostoru R, do něhož je prostor . 
P vnořen. 

Hlavním výsledkem práce jsou tyto věty: 
Každý A HF-prostor P lze hyperkombinatoricky vnořit (a to v pod

statě jediným způsobem) do H-uzavřeného prostoru xP takového, ze 
množina P je otevřená v xP a všechny body prostoru xP — P jsou 
isolované (v xP — P). ' 

Každý AHF-prostor P lze parakombinatoricky vnořit (a to v pod
statě jediným způsobem) do H-uzavřeného prostoru x'P takového, že 
množina P je otevřená v x'P a každý bod x c x'P — P je poloregulární. 

Každý AHF-prostor P lze hyperkombinatoricky a regulárně 
vnořit (a to v podstatě jediným způsobem) do H-uzavřeného prostoru aP. 

Každý AHF-prostor P lze parakombinatoricky a regulárně vnořit 
(a to v podstatě jediným způsobem) do H-uzavřeného prostoru o'P 
takového, že každý bod x e o'P — P je poloregulární. 
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