Previous |  Up |  Next

Article

Title: An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients (English)
Author: Škerlík, Anton
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 2
Year: 1995
Pages: 155-161
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to obtain a new oscillation criterion for equation \[ y^{\prime \prime \prime }+ p(t)y^{\prime } + q(t)y = 0 \] with a nonnegative coefficients which extends and improves some oscillation criteria for this equation. In the special case of equation (*), namely, for equation $ y^{\prime \prime \prime }+ q(t)y = 0$, our results solve the open question of $Chanturiya$. (English)
Keyword: nonoscillatory and oscillatory solution
Keyword: second order Riccati equation
MSC: 34C10
MSC: 34C11
idZBL: Zbl 0843.34039
idMR: MR1357983
.
Date available: 2008-06-06T21:28:37Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107535
.
Reference: [1] Barrett, J. H.: Oscillation Theory of Ordinary Linear Differential Equation.Advances in Math. 3 (1969), 415–509. MR 0257462
Reference: [2] Chanturiya, T. A. and Kiguradze, I. T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Nauka, Moscow, 1990. (in Russian)
Reference: [3] Džurina, J.: Asymptotic properties of third-order differential equations with deviating argument.Czech. Math. J. 44 (1994), 163–172. MR 1257942
Reference: [4] Erbe, L.: Existence of oscillatory solutions and asymtotic behavior for a class of a third order linear differential equations.Pacific J. Math. 64 (1976), 369–385. MR 0435508
Reference: [5] Greguš, M.: Linear differential equation of the third order.Veda, Bratislava, 1981. (in Slovak) MR 0657356
Reference: [6] Hanan, M.: Oscillation criteria for a third order linear differential equations.Pacific J. Math. 11 (1961), 919–944. MR 0145160
Reference: [7] Heidel, J.W.: Qualitative behavior of solutions of a third order nonlinear differential equation.Pacific J. Math. 27 (1968), 507–526. Zbl 0172.11703, MR 0240389
Reference: [8] Khvedelidze, N. N., Chanturiya, T. A.: Oscillation of solutions of third-order linear ordinary differential equations.Differencialnye Uravneniya 27 (1991), no. 3, 4, 452–460, 611–618. (in Russian) MR 1109137
Reference: [9] Kiguradze, I. T.: On the oscillation of solutions of the equation $d^m/dt^m+a(t)|u|^n sign\,u= 0$.Mat. Sb. 65 (1964), 172–187. (in Russian) Zbl 0135.14302, MR 0173060
Reference: [10] Kiguradze, I. T.: Some singular value problems for ordinary differential equations.University Press, Tbilisi (1975). (in Russian) MR 0499402
Reference: [11] Lazer, A. C.: The behavior of solutions of the differential equation $y^{\prime \prime \prime } + p(x)y^{\prime } + q(x)y = 0$.Pacific J. Math. 17 (1966), 435–466. Zbl 0143.31501, MR 0193332
Reference: [12] Rovder, J.: Oscillation criteria for third-order linear differential equations.Mat. Časopis 25 (1975), 231–244. Zbl 0309.34028, MR 0412521
Reference: [13] Škerlík, A.: Integral criteria of oscillation for a third order linear differential equation.Math. Slovaca (to appear). MR 1387057
Reference: [14] Škerlík, A.: Oscillation theorems for third order nonlinear differential equations.Math. Slovaca 42 (1992), 471–484. MR 1195041
Reference: [15] Šoltés, V.: Oscillatory properties of solutions of a third order nonlinear differential equations.Math.Slovaca 26 (1976), 217–227. (in Russian)
Reference: [16] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New York-London, 1968. Zbl 0191.09904, MR 0463570
.

Files

Files Size Format View
ArchMathRetro_031-1995-2_7.pdf 248.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo