Title:
|
Pseudoprvočísla (Czech) |
Title:
|
Pseudoprimes (English) |
Author:
|
Křížek, Michal |
Author:
|
Somer, Lawrence |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
48 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
143-151 |
. |
Category:
|
math |
. |
Keyword:
|
Fermat theorem |
Keyword:
|
prime |
Keyword:
|
Carmichael number |
MSC:
|
11-xx |
MSC:
|
11A51 |
idZBL:
|
Zbl 1053.11005 |
. |
Date available:
|
2010-12-11T19:52:27Z |
Last updated:
|
2015-11-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141171 |
. |
Reference:
|
[1] Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers.Ann. of Math. 140 (1994), 703–722. Zbl 0816.11005, MR 1283874, 10.2307/2118576 |
Reference:
|
[2] Baillie, R., Wagstaff, S. S.: Lucas pseudoprimes.Math. Comp. 35 (1980), 1391–1417. Zbl 0458.10003, MR 0583518, 10.1090/S0025-5718-1980-0583518-6 |
Reference:
|
[3] Banachiewicz, T.: O związku pomiędzy pewnym twierdzeniem matematyków chińskich a formą Fermata na liczby pierwsze.Spraw. Tow. Nauk, Warszawa 2 (1909), 7–11. |
Reference:
|
[4] Beeger, N. G. W. H.: On even numbers $m$ dividing ${2^m-2}$.Amer. Math. Monthly 58 (1951), 553–555. MR 0043798, 10.2307/2306320 |
Reference:
|
[5] Carmichael, R. D.: Note on a new number theory function.Bull. Amer. Math. Soc. 16 (1910), 232–238. MR 1558896, 10.1090/S0002-9904-1910-01892-9 |
Reference:
|
[6] Carmichael, R. D.: On composite numbers $P$ which satisfy the Fermat congruence ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$.Amer. Math. Monthly 19 (1912), 22–27. MR 1517641, 10.2307/2972687 |
Reference:
|
[7] Cipolla, M.: Sui numeri composti P, che verificano la congruenza di Fermat ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$.Annali di Matematica (3) 9 (1904), 139–160. 10.1007/BF02419871 |
Reference:
|
[8] Dickson, L. E.: History of the theory of numbers, vol. I, Divisibility and primality.Carnegie Inst., Washington 1919. |
Reference:
|
[9] Duparc, H. J. A.: On Carmichael numbers, Poulet numbers, Mersenne numbers and Fermat numbers.Rapport ZW 1953-004, Math. Centrum Amsterdam 1953, 1–7. Zbl 0053.02401, MR 0062143 |
Reference:
|
[10] Erdős, P.: On almost primes.Amer. Math. Monthly 57 (1950), 404–407. MR 0036259, 10.2307/2307640 |
Reference:
|
[11] Jarden, D.: Existence of an infinitude of composite $n$ for which ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$ (Hebrew, Engl. Summary).Riveon Lematematika 4 (1950), 65–67. MR 0038995 |
Reference:
|
[12] Jeans, J. H.: The converse of Fermat’s theorem.Messenger of Mathematics 27 (1897/98), 174. |
Reference:
|
[13] Joo, I., Phong, B. M.: On super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 25 (1990), 121–124. MR 1102204 |
Reference:
|
[14] Kiss, E.: Notes on János Bolyai’s researches in number theory.Historia Math. 26 (1999), 68–76. Zbl 0920.11001, MR 1677471, 10.1006/hmat.1998.2212 |
Reference:
|
[15] Kiss, P.: Some results on Lucas pseudoprimes.Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 153–159. MR 0856986 |
Reference:
|
[16] Korselt, A.: Problème chinois.L’Interm. des Math. 6 (1899), 143. |
Reference:
|
[17] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry.CMS Books in Mathematics, vol. 9, Springer-Verlag, New York 2001. Zbl 1010.11002, MR 1866957 |
Reference:
|
[18] Lehmer, D. H.: On the converse of Fermat’s theorem.Amer. Math. Monthly 43 (1936), 346–354. Zbl 0014.10204, MR 1523680, 10.2307/2301798 |
Reference:
|
[19] Mahnke, D.: Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung.Bibliotheca Math. 13 (1913), 29–61. |
Reference:
|
[20] Mąkowski, A.: On a problem of Rotkiewicz on pseudoprime numbers.Elem. Math. 29 (1974), 13. MR 0335424 |
Reference:
|
[21] Malo, E.: Nombres qui sans être premiers, verifient exceptionnellement une congruence de Fermat.L’Interm. des Math. 10 (1903), 88. |
Reference:
|
[22] Phong, B. M.: On super Lucas and super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 23 (1988), 435–442. Zbl 0597.10004, MR 0982690 |
Reference:
|
[23] Pomerance, C.: On the distribution of pseudoprimes.Math. Comp. 37 (1981), 587–593. Zbl 0511.10002, MR 0628717, 10.1090/S0025-5718-1981-0628717-0 |
Reference:
|
[24] Pomerance, C.: A new lower bound for the pseudoprime counting function.Illinois J. Math. 26 (1982), 4–9. Zbl 0474.10035, MR 0638549 |
Reference:
|
[25] Pomerance, C., Selfridge, J. L., Wagstaff, S. S.: The pseudoprimes to ${25\cdot 10^9}$.Math. Comp. 35 (1980), 1003–1026. MR 0572872, 10.1090/S0025-5718-1980-0572872-7 |
Reference:
|
[26] Porubský, Š.: Fermat a teorie čísel aneb Problematika dělitelů a dokonalá čísla.In: Matematik Pierre de Fermat (eds. A. Šolcová et al.), Cahiers du CEFRES 28 (2002), 49–86. |
Reference:
|
[27] Poulet, P.: Table des nombres composés vérifiant le théeorème de Fermat pour le module $2$ jusqu’à $100.000.000$.Sphinx 8 (1938), 42–52. Errata in Math. Comp. 25 (1971), 944–945, Math. Comp. 26 (1972), 814. MR 0655816 |
Reference:
|
[28] Ribenboim, P.: The book of prime number records.Springer, New York 1988, 1989. Zbl 0642.10001, MR 1016815 |
Reference:
|
[29] Ribenboim, P.: The new book of prime number records.Springer, New York 1996. Zbl 0856.11001, MR 1377060 |
Reference:
|
[30] Rotkiewicz, A.: Sur les nombres pseudopremiers de la forme ${ax+b}$.C. R. Acad. Sci. Paris Sér. I Math. 257 (1963), 2601–2604. Zbl 0116.03501, MR 0162757 |
Reference:
|
[31] Rotkiewicz, A.: Sur les formules donnant des nombres pseudopremiers.Colloq. Math. 12 (1964), 69–72. Zbl 0129.02703, MR 0166138 |
Reference:
|
[32] Rotkiewicz, A.: On the pseudoprimes of the form ${ax+b}$.Proc. Cambridge Philos. Soc. 63 (1967), 389–392. Zbl 0152.03102, MR 0209220 |
Reference:
|
[33] Rotkiewicz, A.: Pseudoprime numbers and their generalizations.Stud. Assoc. Fac. Sci. Univ. Novi Sad 1972. Zbl 0324.10007, MR 0330034 |
Reference:
|
[34] Rotkiewicz, A.: Lucas and Frobenius pseudoprimes.Proc. of the 10th Internat. Conf. on Fibonacci Numbers and their Applications, Flagstaff, Arizona, 2002 (to appear in Kluwer), 1–21. MR 2076674 |
Reference:
|
[35] Sierpiński, W.: Remarque sur une hypothèse des Chinois concernant les nombres ${(2^n-2)/n}$.Colloq. Math. 1 (1948), 9. MR 0023256 |
Reference:
|
[36] Somer, L.: On Fermat $d$-pseudoprimes.In: Théorie des nombres (éd. J.-M. De Koninck, C. Levesque), Walter de Gruyter, Berlin, New York, 1989, 841–860. Zbl 0687.10004, MR 1024609 |
Reference:
|
[37] Somer, L.: On Lucas $d$-pseudoprimes.In: Applications of Fibonacci numbers, vol. 7 (eds. G. E. Bergum, A. N. Philippou, A. F. Horadam), Kluwer Academic Publishers, Dordrecht 1998, 369–375. Zbl 0919.11008, MR 1638463 |
Reference:
|
[38] Steuerwald, R.: Über die Kongruenz ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$.S.-B. Math.-Nat. Kl., Bayer. Akad. Wiss. 1947, 177. MR 0030541 |
Reference:
|
[39] Szymiczek, K.: Note on Fermat numbers.Elem. Math. 21 (1966), 59. Zbl 0142.28904, MR 0193056 |
Reference:
|
[40] Szymiczek, K.: On pseudoprimes which are products of distinct primes.Amer. Math. Monthly 74 (1967), 35–37. Zbl 0146.26803, MR 0205921, 10.2307/2314051 |
. |