Title:
|
Theory of rapid variation on time scales with applications to dynamic equations (English) |
Author:
|
Vítovec, Jiří |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
263-284 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note that these results are new even for the linear (dynamic) case and for the half-linear discrete case. In the third part of this paper we give a complete characterization of all positive solutions of linear dynamic equations and of all positive decreasing solutions of half-linear dynamic equations with respect to their regularly or rapidly varying behavior. The paper is finished by concluding comments and open problems of these themes. (English) |
Keyword:
|
rapidly varying function |
Keyword:
|
rapidly varying sequence |
Keyword:
|
Karamata function |
Keyword:
|
time scale |
Keyword:
|
second order dynamic equation |
MSC:
|
26A12 |
MSC:
|
26A99 |
MSC:
|
26E70 |
MSC:
|
34C10 |
MSC:
|
34N05 |
idZBL:
|
Zbl 1240.26070 |
idMR:
|
MR2754065 |
. |
Date available:
|
2010-12-14T14:58:45Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141381 |
. |
Reference:
|
[1] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation.Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge Univ. Press, 1987. Zbl 0617.26001, MR 0898871 |
Reference:
|
[2] Bohner, M., Peterson, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Boston, 2001. Zbl 0978.39001, MR 1843232 |
Reference:
|
[3] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences.Math. Z. 134 (1973), 91–106. MR 0333082, 10.1007/BF01214468 |
Reference:
|
[4] Djurčić, D., Kočinac, L. D. R, Žižović, M. R.: Some properties of rapidly varying sequences.J. Math. Anal. Appl. 327 (2007), 1297–1306. Zbl 1116.26002, MR 2280005, 10.1016/j.jmaa.2006.05.024 |
Reference:
|
[5] Djurčić, D., Torgašev, A.: On the Seneta sequences.Acta Math. Sinica 22 (2006), 689–692. Zbl 1170.26300, MR 2219678, 10.1007/s10114-005-0684-4 |
Reference:
|
[6] Došlý, O., Řehák, P.: Half-linear Differential Equations.North Holland Mathematics Studies Series, Elsevier, 2005. Zbl 1090.34001, MR 2158903 |
Reference:
|
[7] Galambos, J., Seneta, E.: Regularly varying sequences.Proc. Amer. Math. Soc. 41 (1973), 110–116. Zbl 0247.26002, MR 0323963, 10.1090/S0002-9939-1973-0323963-5 |
Reference:
|
[8] Geluk, J. L., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems.CWI Tract 40, Amsterdam, 1987. Zbl 0624.26003, MR 0906871 |
Reference:
|
[9] Hilger, S.: Ein Maß kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten.Ph.D. thesis, Universität of Würzburg, 1988. |
Reference:
|
[10] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855, 10.1007/BF03322729 |
Reference:
|
[11] Karamata, J.: Sur certain “Tauberian theorems” de M. M. Hardy et Littlewood.Mathematica (Cluj) 3 (1930), 33–48. |
Reference:
|
[12] Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux.Bull. Soc. Math. France 61 (1933), 55–62. Zbl 0008.00807, MR 1504998 |
Reference:
|
[13] Marić, V.: Regular Variation and Differential Equations.Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000. MR 1753584, 10.1007/BFb0103952 |
Reference:
|
[14] Marić, V., Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions.Publ. Inst. Math. (Beograd) (N.S.) 48 (1990), 199–207. MR 1105154 |
Reference:
|
[15] Matucci, S., Řehák, P.: Regularly varying sequences and second-order difference equations.J. Differ. Equations Appl. 14 (2008), 17–30. Zbl 1147.26002, MR 2378889, 10.1080/10236190701466728 |
Reference:
|
[16] Matucci, S., Řehák, P.: Second order linear difference equations and Karamata sequences.J. Differ. Equations Appl. 3 (2008), 277–288. MR 2548130 |
Reference:
|
[17] Matucci, S., Řehák, P.: Rapidly varying decreasing solutions of half-linear difference equations.Math. Comput. Modelling 49 (2009), 1692–1699. Zbl 1165.39308, MR 2509016, 10.1016/j.mcm.2008.09.002 |
Reference:
|
[18] Řehák, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties.Nonlinear Funct. Anal. Appl. 7 (2002), 361–404. Zbl 1037.34002, MR 1946469 |
Reference:
|
[19] Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations.J. Inequal. Appl. 5 (2005), 495–507. Zbl 1107.26015, MR 2211854 |
Reference:
|
[20] Řehák, P.: Regular variation on time scales and dynamic equations.Aust. J. Math. Anal. Appl. 5 (2008), 1–10. Zbl 1167.26301, MR 2461676 |
Reference:
|
[21] Řehák, P., Vítovec, J.: $q$-Karamata functions and second order $q$-difference equations.submitted. |
Reference:
|
[22] Řehák, P., Vítovec, J.: $q$-regular variation and $q$-difference equations.J. Phys. A: Math. Theor. 41 (2008), 495203, 1–10. Zbl 1171.39006, MR 2515897, 10.1088/1751-8113/41/49/495203 |
Reference:
|
[23] Řehák, P., Vítovec, J.: Regularly varying decreasing solutions of half-linear dynamic equations.Proceedings of the 12th ICDEA, Lisabon, 2008. |
Reference:
|
[24] Řehák, P., Vítovec, J.: Regular variation on measure chains.Nonlinear Analysis TMA 72 (2010), 439–448. Zbl 1179.26005, MR 2574953, 10.1016/j.na.2009.06.078 |
Reference:
|
[25] Seneta, E.: Regularly Varying Functions.Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl 0324.26002, MR 0453936 |
Reference:
|
[26] Weissman, I.: A note on Bojanic-Seneta theory of regularly varying sequences.Math. Z. 151 (1976), 29–30. MR 0417349, 10.1007/BF01174722 |
. |