Title:
|
On some boundary value problems for second order nonlinear differential equations (English) |
Author:
|
Došlá, Zuzana |
Author:
|
Marini, Mauro |
Author:
|
Matucci, Serena |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
137 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
113-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi _{p}(x'))'=b(t)F(x), \quad t\in I=[0,\infty ), \] where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ {\rm i)}\ x(0)=c>0, \ \lim _{t\rightarrow \infty }x(t)=0; \quad {\rm ii)}\ x'(0)=d<0, \ \lim _{t\rightarrow \infty }x(t)=0. \] (English) |
Keyword:
|
boundary value problem |
Keyword:
|
$p$-Laplacian |
Keyword:
|
half-linear equation |
Keyword:
|
positive solution |
Keyword:
|
uniqueness |
Keyword:
|
decaying solution |
Keyword:
|
principal solution |
MSC:
|
34B18 |
MSC:
|
34B40 |
MSC:
|
34C10 |
MSC:
|
34D05 |
idZBL:
|
Zbl 1265.34113 |
idMR:
|
MR2978257 |
DOI:
|
10.21136/MB.2012.142856 |
. |
Date available:
|
2012-06-08T10:04:34Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142856 |
. |
Reference:
|
[1] Agarwal, R. P, Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad., Dordrecht (2003). MR 2091751 |
Reference:
|
[2] Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M.: On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems.Differ. Integral Equ. 20 (2007), 1081-1106. Zbl 1212.34044, MR 2365203 |
Reference:
|
[3] Cecchi, M., Došlá, Z., Marini, M.: On the dynamics of the generalized Emden-Fowler equations.Georgian Math. J. 7 (2000), 269-282. MR 1779551, 10.1515/GMJ.2000.269 |
Reference:
|
[4] Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 (2001), 419-436. Zbl 0996.34039, MR 1842385 |
Reference:
|
[5] Cecchi, M., Došlá, Z., Marini, M.: Principal solutions and minimal sets of quasilinear differential equations.Dynam. Systems Appl. 13 (2004), 221-232. Zbl 1123.34026, MR 2140874 |
Reference:
|
[6] Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. Zbl 1114.34031, MR 2200492, 10.1016/j.na.2005.06.035 |
Reference:
|
[7] Cecchi, M., Furi, M., Marini, M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. Zbl 0563.34018, MR 0777986, 10.1016/0362-546X(85)90070-7 |
Reference:
|
[8] Chanturia, T. A.: On singular solutions of nonlinear systems of ordinary differential equations.Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. MR 0591720 |
Reference:
|
[9] Chanturia, T. A.: On monotonic solutions of systems of nonlinear differential equations.Russian Ann. Polon. Math. 37 (1980), 59-70. |
Reference:
|
[10] Došlá, Z., Marini, M., Matucci, S.: A boundary value problem on a half-line for differential equations with indefinite weight.(to appear) in Commun. Appl. Anal. MR 2867356 |
Reference:
|
[11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). Zbl 1090.34001, MR 2158903 |
Reference:
|
[12] Garcia, H. M., Manasevich, R., Yarur, C.: On the structure of positive radial solutions to an equation containing a $p$-Laplacian with weight.J. Differ. Equations 223 (2006), 51-95. Zbl 1170.35404, MR 2210139, 10.1016/j.jde.2005.04.012 |
Reference:
|
[13] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. Zbl 1128.34011, MR 2331870, 10.1016/j.na.2006.09.016 |
Reference:
|
[14] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). Zbl 1154.34300, MR 2144761 |
. |