Previous |  Up |  Next

Article

Title: On some boundary value problems for second order nonlinear differential equations (English)
Author: Došlá, Zuzana
Author: Marini, Mauro
Author: Matucci, Serena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 113-122
Summary lang: English
.
Category: math
.
Summary: We investigate two boundary value problems for the second order differential equation with $p$-Laplacian \[ (a(t)\Phi _{p}(x'))'=b(t)F(x), \quad t\in I=[0,\infty ), \] where $a$, $b$ are continuous positive functions on $I$. We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: \[ {\rm i)}\ x(0)=c>0, \ \lim _{t\rightarrow \infty }x(t)=0; \quad {\rm ii)}\ x'(0)=d<0, \ \lim _{t\rightarrow \infty }x(t)=0. \] (English)
Keyword: boundary value problem
Keyword: $p$-Laplacian
Keyword: half-linear equation
Keyword: positive solution
Keyword: uniqueness
Keyword: decaying solution
Keyword: principal solution
MSC: 34B18
MSC: 34B40
MSC: 34C10
MSC: 34D05
idZBL: Zbl 1265.34113
idMR: MR2978257
DOI: 10.21136/MB.2012.142856
.
Date available: 2012-06-08T10:04:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142856
.
Reference: [1] Agarwal, R. P, Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Acad., Dordrecht (2003). MR 2091751
Reference: [2] Cecchi, M., Došlá, Z., Kiguradze, I., Marini, M.: On nonnegative solutions of singular boundary value problems for Emden-Fowler type differential systems.Differ. Integral Equ. 20 (2007), 1081-1106. Zbl 1212.34044, MR 2365203
Reference: [3] Cecchi, M., Došlá, Z., Marini, M.: On the dynamics of the generalized Emden-Fowler equations.Georgian Math. J. 7 (2000), 269-282. MR 1779551, 10.1515/GMJ.2000.269
Reference: [4] Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 (2001), 419-436. Zbl 0996.34039, MR 1842385
Reference: [5] Cecchi, M., Došlá, Z., Marini, M.: Principal solutions and minimal sets of quasilinear differential equations.Dynam. Systems Appl. 13 (2004), 221-232. Zbl 1123.34026, MR 2140874
Reference: [6] Cecchi, M., Došlá, Z., Marini, M., Vrkoč, I.: Integral conditions for nonoscillation of second order nonlinear differential equations.Nonlinear Anal., Theory Methods Appl. 64 (2006), 1278-1289. Zbl 1114.34031, MR 2200492, 10.1016/j.na.2005.06.035
Reference: [7] Cecchi, M., Furi, M., Marini, M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. Zbl 0563.34018, MR 0777986, 10.1016/0362-546X(85)90070-7
Reference: [8] Chanturia, T. A.: On singular solutions of nonlinear systems of ordinary differential equations.Colloq. Math. Soc. Janos Bolyai 15 (1975), 107-119. MR 0591720
Reference: [9] Chanturia, T. A.: On monotonic solutions of systems of nonlinear differential equations.Russian Ann. Polon. Math. 37 (1980), 59-70.
Reference: [10] Došlá, Z., Marini, M., Matucci, S.: A boundary value problem on a half-line for differential equations with indefinite weight.(to appear) in Commun. Appl. Anal. MR 2867356
Reference: [11] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). Zbl 1090.34001, MR 2158903
Reference: [12] Garcia, H. M., Manasevich, R., Yarur, C.: On the structure of positive radial solutions to an equation containing a $p$-Laplacian with weight.J. Differ. Equations 223 (2006), 51-95. Zbl 1170.35404, MR 2210139, 10.1016/j.jde.2005.04.012
Reference: [13] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. Zbl 1128.34011, MR 2331870, 10.1016/j.na.2006.09.016
Reference: [14] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Nat. Univ. Masaryk. Brun. Math. 14 (2004). Zbl 1154.34300, MR 2144761
.

Files

Files Size Format View
MathBohem_137-2012-2_1.pdf 242.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo