Previous |  Up |  Next

Article

Title: Dynamic portfolio optimization with risk management and strategy constraints (English)
Author: Krommerová, Csilla
Author: Melicherčík, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 1032-1048
Summary lang: English
.
Category: math
.
Summary: We investigate the problem of power utility maximization considering risk management and strategy constraints. The aim of this paper is to obtain admissible dynamic portfolio strategies. In case the floor is guaranteed with probability one, we provide two admissible solutions, the option based portfolio insurance in the constrained model, and the alternative method and show that none of the solutions dominate the other. In case the floor is guaranteed partially, we provide one admissible solution, the portfolio insurance with spreads. (English)
Keyword: power utility maximization
Keyword: risk management
Keyword: convex constraints
MSC: 49L20
MSC: 60J65
MSC: 91G10
MSC: 91G20
idZBL: Zbl 06416872
idMR: MR3301784
DOI: 10.14736/kyb-2014-6-1032
.
Date available: 2015-01-13T10:06:37Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144121
.
Reference: [1] Basak, S., Shapiro, A.: Value-at-Risk based risk management: optimal policies and asset prices..Rev. Financ. Stud. 14 (2001), 371-405. 10.1093/rfs/14.2.371
Reference: [2] Baxter, M., Rennie, A.: Financial Calculus..Cambridge University Press, Cambridge 1996. Zbl 0858.62094
Reference: [3] Bertrand, P., Prigent, J.-L.: Portfolio insurance strategies: Obpi versus Cppi..University of CERGY Working Paper No. 2001-30; GREQAM Working Paper (December 2001), available at SSRN: http://ssrn.com/abstract=299688.
Reference: [4] Hakansson, N. H.: Optimal investment and consumption strategies under risk for a class of utility functions..Econometrica 38 (1970), 5, 587-607. Zbl 0205.48902, 10.2307/1912196
Reference: [5] Leland, H. E., Rubinstein, M.: The evolution of portfolio insurance..In: The Evolution of Portfolio Insurance (D. L. Lushin, ed.), Wiley Sons, New York 1976.
Reference: [6] Leland, H. E., Rubinstein, M.: Replicating options with positions in stock and cash..Financ. Anal. J. 37 (1981), 4, 63-71. 10.2469/faj.v37.n4.63
Reference: [7] Krommerová, Cs.: Expected utility maximization with risk management and strategy constraints..In: Zborník z prvého česko-slovenského workshopu mladých ekonómov (2012), electronic document, pp. 1-21.
Reference: [8] Mehra, R., Prescott, E.: The equity premium: a puzzle..J. Monetary Economics 15 (1985), 145-161. 10.1016/0304-3932(85)90061-3
Reference: [9] Merton, R. C.: Lifetime portfolio selection under uncertainty: the continuous-time case..Rev. Econom. Statist. 51 (1969), 3, 247-257. 10.2307/1926560
Reference: [10] Nutz, M.: Power utility maximization in constrained exponential Lévy models..Math. Finance 22 (2012), 4, 690-709. Zbl 1272.91102, MR 2968281, 10.1111/j.1467-9965.2011.00480.x
Reference: [11] Nutz, M.: The Bellman equation for power utility maximization with semimartingales..Ann. Appl. Probab. 22 (2012), 1, 363-406. Zbl 1239.91165, MR 2932550, 10.1214/11-AAP776
Reference: [12] Perold, A., Sharpe, W. F.: Dynamic strategies for asset allocation..Financ. Anal. J. 44 (1988), 1, 16-27. 10.2469/faj.v44.n1.16
Reference: [13] Prigent, J.-L.: Portfolio Optimization and Performance Analysis..Chapman and Hall/CRC Financial Mathematics Series, Boca Raton 2007. Zbl 1188.91003, MR 2317120
Reference: [14] Samuelson, P. A.: Lifetime porfolio selection by dynamic stochastic programming..Rev. Econom. Statist. 51 (1969), 3, 239-246. 10.2307/1926559
.

Files

Files Size Format View
Kybernetika_50-2014-6_10.pdf 342.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo