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A CONTRIBUTION TO KHINTCHINFE’S (XHHYHH)
PRINCIPLE OF TRANSFER.
ALOIS APFELBECK, Praha.
(Received September 18t 1951.)

Let #;; (1 <4 < m, 1 < j < m) be real numbers. Put
Si(@) = ey + oo+ By, F 2 E=1,..,0),
Tily) = Syyy + o + Fngyn + ynyy G=1,..., ..,m).

It is possible to introduce a number « (the “index‘ of the system 19,-,-)

indicating to what degree of precision the system of equations S;(z) =

= 0 can be solved by means of integers z,. Let # have an analogous

meaning for the system 7';(y) = 0. The author investigates the
relations between x and f.

§ I. Introduction.

Let ¥ be a real number. Then there exists an infinite set of pairs of
integers [p; ¢:], ¢: >0, ¢t=1,2,3,..., so that limg,= + oo and

’I, - 00
l 9 — P4
'
The preceding problem may be generalized as follows: Let m and n
be two positive integers and let ¢;; (1 < 4 < n; 1 < § < m) be a system
of mn real numbers; m, » and the numbers &;; are given. The question
is to solve the system of inequalities

1 1
< pe or otherwise |¥9q; — p;| < =

€

1 ,
[Diy1 + Pty + .o P Ts| < - 1<i<n)

by means of integers x;, ,, ..., yps Tpygq, -+, Tpip in such a way that
max (|z;]) > 0.

sism

1
The solution of this problem is contained in the following theorem:

Let 9;; (1< i< m; 1 <5< m) be real numbers, m>1,n>1;
further let ¢ > 1. Then there exists at least one lattice point [z, ..., xm,
Tt 1s -+ Tmtm] SO that the inequalities
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} 1
9y + Digp + .. A Din¥m T Tmti] < 57
n

0« max (&))<t
1Z7i=m
are fulfilled simultaneously.
Let ¢(t) indicate a non-negative, non-increasing and continuous
function of the positive argument ¢. We shall say that the system

ﬁ‘ilxl + ’I?izxvz + cee _{" ’ﬂimxm + xln-{-i (l é i f::' n)
admits of the approximation ¢(t), if to every number 4 > 0 there exist
integers @, Ty, ..., Ty, Tpppys - - -» Tmtn SO that the relations

X = max (Jz;]) > 4,

1SiZEm
!ﬂilxl + -t ﬁimxm -+‘ xm+i' < W(X) (l g ‘é n)

are fulfilled simultaneously.

We then see immediately that the system 9,2, 4 ... + 9,2, +

m

+ Xy (1 <0< n) admits of the approximation i

KuiNtcaiNe [4] investigated only the following special systems
{corresponding to the cases m = 1 or n = 1):

1. systems formed by a single linear form of m - 1 variables:
?9'1‘?;1 + '921"2 + tee + ﬂmxm + Lty OT

2. systems formed by m linear forms of m 4 1 variables: 9y, +
+ ¥ AT m).

For ¢ > 1 he introduced the non-negative functions:

Wi(t) = (¢, 9y, ..., ) =  min (|2, + ..o+ D + Tppga])
0 < max|z,| <t
15iZ=m
and .
Po(t) = wot, Oy, .., ¥) = min ( max |9y, + yj44])-
O<y St 15 5m

In order to investigate the connection between the functions y,(£)
and y,(t), when 9,9, ..., ¥, are given, he introduced the following
numbers: #; =8,(d,,...,9,,) and = f,(9,,...,9,) respectively is the upper

. 1424
bound of those A for whichlim infy, (#) tm+2 << 4 00 and lim infy,()t ™ <

t—> t—
< + oo respectively. In other words: , is the upper bound of those A
for which the form &2, + 9522+ ... + &2, + x,,4, admits of the
approximation K¢-m+d and similarly 8, is the upper bound of those

120



J for which the system &9, + ¥;+1 (1 < § < m) admits of the appro-

—1+2
ximation K¢ ™ , K and K’ being some finite positive numbers.
From the previous theorem it follows immediately that £, 2> 0,
p.=0
In what concerns the relations between f$;, and 8, KuintcHINE [4]
proved the so called principle of transfer:

If 94, ..., Oy (m = 1) are given, we have

B
| heb= Ty e
JARNIK [1], [2] showed that the latter inequalities are sharp in the
followmg sense: If m > 1 and y > 0, then thereexist systems {9, ..., &}
and {¥;, ..., 9.} of such kind that

/31(191; (EEY) m) = /31(19]’,’ ce l(},’,n) = M

. ’ Py 14
ﬂg('{?l, .oy ﬁm) = U; 132(19'1, ey ﬁm) = mi‘

JARNIK [3] investigated further the same systems, examining, how-
ever, the maximum order of the functions ;(f) and y,(t) instead of
their minimum order. For the purpose of this investigation he again
introduced the numbers x = &(&y,...,9,,) and = (..., d,) in
the following way: « and 8 respectlvely is the upper bound of those 4
for which the respective inequalities lim supy,(f)im+* < - oo and

t—

1+
lim sup w,(t)t ™ < + oo hold. He dealt only with non.-trivial “proper‘

sytems i. e. such ones for which ¥, (¢) > 0 and y,(!) > 0 for every finite
t > 0.

Now we sum up the most important results of his paper [3] into
following theorems:

1. Let m = 2; let {0y, 95} be a proper system. Then

2p
o=y i
(one to one correspondence of cc and f).
2. Let {01, o O} be a proper system, m > 2, x = x(¥y, ..., P)s
=By, ..., . Then the following relations take place:

&

a) m_lzﬁZO,“gﬂZm-
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b) If o > 2m(m — 2), B fulfils the inequality
B> x— 2(m — 2)

“(m—1)x — m2+4 5m — 4’
28 — (m — 2)
m—1—p "

It is obvious that the assertion b) as well as the assertion ¢) is a
sharpening of the assertion a).
These resultsof JARNIK are sharp, too, at least in the case & = - oo:
3. For m > 2 there exist two proper systems {$,, ..., 9,,} and {95, ...,
., 90} so that
(0 -0y O) = (I, ..., ) = + 00,
1
By, Op) =m— 1, /3(19{, e 19;”) T e,

m— 1

¢) If p > m — 2, then similarly «x =

The present paper forms a generalization of JarNik’s results to
systems containing any number of linear homogeneous forms in any
number of variables. We shall get results quite analogical to those of
Jarnik [3], and shall finally show that there are no such integers m > 1
and » > 1 for which a single-valued or even a mutually single-valued
dependence between « and f would hold, as it isinthe cases m =n =1
andm = 2, n=1.

§ 2. Auxiliary Theorems.

Throughout this treatise the letters =, y, w, v,z with any indices
will always denote integers and ¢ with any indices real numbers.

Let m and » be two positive integers and let 9;; be a set of mn real
numbers (1 <7< n; 1 < §< m). From these numbers let us construct
two systems of hnear forms (we shall keep on using this notation)

Sy(x) = 791‘1"['1 T+ oot Fim® + Tt (1 __—<—__ v g n) (1)
Ta(Y): ﬁliyl‘f‘ +"9myn+yn+7 (1§7§m) (2)

It will be our task to investigate the relationsbetween the approm-
mate solution of the system S;(x) = 0 (1 < 7 < n) by means of the in-
HEZETS 1, + -+, Ty Loy + - +» Tutn and of the system Ty(y) =0 (1 <5 <
< m) by integers Y1 ooos Ym> Ynt1 -+ Ym+n- Lhe respective trivial
solutions z;, =2, = ... = xm+,,: 0 and Y=Y = . =Yptn =0
will be not considered here.

and

Definition 1. We shall call (1) a regular system if for each point
[y, ..., @) different from the origin the inequalities |S;(x)| >0 (1 < i< n)
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are fulfilled. We shall call (1) a proper system, if the equalities Sy(x) = 0
1< i< n) imply that 2 = 2y = ... = Xy, =0. The other systems, 1.
e. those which are neither regular nor proper, shall be called improper
systems.

Similarly, we define the regular, proper and improper systems
corresponding to the system (2).

We see that a proper system has the property that to every point
[®4, Tg, «.v; Tppyp] there is at least one form of the above system which
is different from zero in that point.

For the respective systems (1) and (2) and real ¢t > 1 we define
further the functions

() = min ( max [ 24 ...+ Py + Tpgel), ()
0 < max|z| St 15150
15is=m
po(t) = min ( max [Py, + oo+ Pt + Yuti))- (4)
0 < max[yi[‘gt 1Z5jsSm
1<iZn

It is obvious that both functions w,(f) and y,(f) are non-negative
and non-increasing functions of the variable ¢. If we denote by [¢] the
integer defined by [¢]< ¢ << [t]4 1, then v (f) = v,([¢]) and p,(¢) =
= py([t]).

1/)We shall study (if the numbers 9,; are given) the relation between
the asymptotic behaviour of y,(¢) and that of y,(t) for ¢ — + 0.

In our further discussions we will often use Mingowski’s well-

known theorem, which I quote without proof [6].

Theorem I: Let &;(xy, ..., x,) (1 < 7 < r) be a system of r linear ho-
mogeneous forms in r variables x,, x,, ..., x, with any real coefficients and
with the determinant A = 0. Further let t,,t,, ..., ¢, be positive numbers
such that t.3, ... ¢, = |A|. Then there is at least one lattice point different
from the origin and such that

[Ex(@y o )| Sy, ]

Ei(y, )| <t; 20 < r).

Remark: The condition that [z,,...,2,] is different from the
r

5

—_
~

origin may be also written 0 < lniqi((lxi[) or 2‘.;&% > 0.
Sisr i =

Theorem 2: Let m and n be positive integers, 9;; (1 <1 X m; 1 < j <
< m) and t > 1 real numbers. Then the inequalities

‘ﬁilxl + ce + 0imxm + xm+i] é t—z (1 é 'l‘g n)’ }
0< max (jo;)) <t

1S7iEm
have at least one solution by integers ,, ..., Ty n-

—_
=)
-
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Proof of Theorem 2. In Theorem 1 I put r = m + n; &;(xq, ...,
" xm+n) - S,(X) (l é Zé n); £n+j(x17 RS xm+n) = Z; (1 :<: 7§ ’”L);
m

bh=ty=...=t,= i boty = tuts = ... = tpy, = t. The determi-
nant of this system is then 4 = 4- 1. Thus Theorem 2 is proved.
An immediate consequence is

Theorem 3: lim sup v, (¢) t” <1, hm sup s(t) t <L

t— oo t— o

I shall finally need another auxiliary theorem, found by MaHLER
and sharpened by KaiNTcHINE [5] the proof of which may be reproduced
here. KHINTCHINE s sharpening is founded on making a weaker assump-
tion (7): |fu(®)] < ¢, 1 < A< ), |fi(x)] > 0 instead of MABLER’S former
aSSumptlon If(@)] = t, and |f,(x)] < t, (2< h < n). This enables me
to choose two 1ndependent parameters 4 and B instead of one in the
proof of Theorem 5 so that I get the result very easily.

Theorem 4. Let n > 2 be an integer; besides let us suppose that
n n
fux) = 2 apery (L RS ) and g,(y) = 3 by (1 < b < n) are two
E=1 E=1

systems of linear forms and that the determinant of the second system is

A = |builprx=1> > n F 0. Further suppose that the bilinear form
n

f (%) guly)= X euxyrhasintegral coefficients and that t,, t,,.. .t

=1 k=1
denote positive numbers.

n—1»

If there are such integers x,, x,, ..., x, that

W)l =t 1< k< n),

§x§>0 (7)

=1

and if at least for one b (1 < h < n) the inequality |f4(X)| > O holds then
there are integers Yy, Yo, - .., Y, SO that

i=1

(8)

A
WIS <A, 3 g2>0, l
h
where
1
M= Aty .. by, ¢ = (2n)" L J
Proof: Without loss of generality, I may assume that |f,(x)| > 0.

T will construct the n + 1 forms g,(y) — f ( u, 92(¥)s -+, 9n(Y), u which
depend on n -+ 1 variables ¥, ¥, ..., ¥n, %. The determinant of this
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system is equal to the determinant of the system gn(y) (1 < A< n),
i.e.to A+ 0.

If I choose the numbers s, so that s;8,...8,.8,4; = |4], 5, >0
(1 < k< n+ 1), there is according to the Theorem 1 at least one lattice
point [y, ..., ¥,, #] of such kind that

< 8y

o
)

nea
191(” — m

lga(Y)] <sn S A< m),
] < 81 l
n
Xyt ur > 0. J
i=1
Next I put z= 12 fa(x) gn(y) so that according to (7) and (9) I get
h=1
[F1(%) g1(y) — nedu| < sitys |fa(X) gu(Y)| < sutn 2Z R < n), thus
n 7
!z - 7162,’1,6| = |I E fh(x) gh(Y) —_ nc},u| < z Sht’h: (10)
h = 1 h=1
hence
2] < meAfu] + hi Sul (1)
=1
cl

th
the relation s;s, .. s, . 8,4, = |4| takes the form

(cA)?=1 = 2n|d| t;t,.. L, (12)
and the relation (11), the form |z| << ncA(1 + |u|).

Now I put s,=— (1< n), $pyq = 2—1— and in this case

neA

For |u| > 1 the last inequality gives further
lz] < 2nedlu] < 2neds,q, =1
and thus z = 0. But inequality (10) gives then

n
ned|ul < X sty = nel,
h=1

therefore |u| << 1, which is a contradiction with the above assumption
ju > 1.

Hence necessarily # = 0 and the inequalities (9) take the form of
the inequalities (8) which we had to prove. Equation (12) is satisfied by
the choice of A*-1= |A|#t,...t,, ¢"~1= 2n, whereby Theorem 4 is
entirely proved.

125



§ 3. The relation between the Maximum Orders of the functions
Py (t) and dy(t).

We shall now use the notation introduced in § 2 by the formulae
(1), (2), (3), and (4).

Definition 2: We shall denote by o and 8 the upper bound of the num-
bers w and o' for which the relations
m + o
limsupy,(f)t » < + ©
t—>
and
n o
limsupyp,(t)t ™ <+ oo
t—>
hold [6].
Theorem 3 immediately implies that « > 0 and f > 0. Throughout
this paper we shall eliminate the following cases:
a) m = n = 1, where y,(t) = y,(f) and & = B.
b) The given system (1) is improper, i. e. for t = ¢, there is p,(¢) = 0.
In this case we put o« = 4 00.
¢) Finally I will not make detailed investigations of the properties
of the functions p,(t) and y,(?), if one of the numbers m or n is equal to
unity, since this case has already been solved by JArNiK [3].

Theorem 5. Let m and n be positive integers satisfying the relation
m + n > 3; further let the system (1) be regular or proper and 0 << K <
<+ 0. Let @, (t) bea functionwhich is positive, increasing and continuous
in the interval {t,, -+ 00), where ty > 0, and letlim @, () = + co. Finally,

t—> o

let us suppose, that
limsup g, (¢) v, () < K. (13)
t—> 0

Then the following assertions hold:
I. a) If m=1, then
Sn
i 3 M1 —e < 2 1 K 14
imam i (5 i 5 20 1) "

b) If m > 1, then
1
875 m—1

1
lim sup (—T:T’_) . w(8) < (2(m + n)ym =1, (15)
§—>® ¢2(Km+n:13) )

where @2(8) denotes the inverse function to the function (tmpp-1(f))™ +a—1,
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II. If m > 2, if besides (13) for t = ¢, the inequality
2tm +n—2)* +m—2
(pl(t) __>: om+n—2 Kt n (16)
_2m+n—4
s satisfied and if the function @,(t) . ¢ n isincreasing, it even holds

that
1

=i
- Pa(8) < B(m A+ m), (17)

where py(8) 5 the inverse function to the function
_m—1
_ (m—2)2m+n—3)\m Fn—2
(‘Pl(t) ¢ m—1)n )

Proof of Theorem 5. Theorem 3 implies thatlimy,(t) = 0 and since

t—©

,(8) = py([¢]), it is possible to find a sequence of integers ; < f,<<1; <...
diverging to infinity in such a way that v;(f;) > ;(ts) > p,(t5) > ...
and that y,(t) = y,(t;) for ¢e {tx, tesy)-

To every k there certainly exists at least one lattice point x(® =
= [aP, ..., a®, a® ..., a® ] such that
max [a®] = ¢ and y, () = max (|92 + ...+ Dm0 4+ 2@ ). (18)
1=5iSm 1<iZn

The greatest common divisor of the numbers 2, aP, ..., x®  is
then necessarily equal to unity, for if it were equal to the number d > 1,
it would hold w,(¢) = max (|9n2® 4 ... 4 Fppa® + 2P ) =d.

2.

n

==

2 2 a® .
cmax (|8, L+ . Dy “2E) > d. min (max|de -+
15izn d d d b, 1<i<n
0<max1xj|,§,——
a
1<j=m

t ¢
+ oo i + Togs]), sO that () = d .9y (3") >, (?ik) whichisa
contradiction with the fact that () is a non-increasing function.

For sufficiently large #'s and &’s respectively it will be ¢, > ¢, and
¥, (t) p,(t) < K. For any & > 0 we get with regard to the definition of
the sequence {#;} the following relation: ;(¢x) @1(tr+; — &) = ¥, (tey —
— &) @, (tr41 — &) < K, whence we get (for £ — 0)

Y1(te) @1(tisy) < K. (19)

As the system (1) is regular or proper, v,(t) is positive for every
finite ¢ > 0. The relation (18) and (19) give 0 < max ix;k\l =1, 0<
1Sism
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, so that if we choose two parameters

< max |8 (x®)] <
P1(tet1)
Az / 1 and B> 1, it will the more appear that

0 < max ITE"’l < Bt
15iSm -

(20)
0 < max |S;(x®)] < K

15isn (tk+1)

Let us now apply Theorem 4 so that we therein substitute the num-
ber m -+ n for number n and put:

fil%) = S;(x®) (1 < i < m), frgiX¥) = 2P (LG < m), gily) =9, (1 <

1 AK
i), gurily) = — T A< G < m) by = ty— ... =1,
%(t/ﬂ,
tn+1 = tn+2 = ,..— tm-}-n — Btk
AK \"
We have |4] = 1, ¢m+"=1 = 2(m + n) and A+"~1 = Bryn| ——— | .
P1(Cx+1)

According to Theorem 4 there exists such a lattice point y = [y,, ¥, - ..,
s Ymt+ n] that
1 ]
Bmimgm-1 m+n—1
(2(m + ) By (tk+l)) 1<i<n),
Am—1Km—1
(21)

m+n
T >0, |y <

i=1

1

m+n—
" asizm

2(m + n) A"K™
Ty < (2T 2
Tl = ( Bttt )

I. a) Let m = 1. If s is large enough, it is possible to find just one
k to it so that

I~

1
Cr+1De)"<s<(2m+ 1) te)"-

In(2l)Iput A=1, B= (n—[— )——>1andIge’c
lszSS(ISién),%y2~+y21>0,lT (D] < 2t DE
= == " = o1 i n+ = gn— 1(]9 (tk+1)

- Ifsislargeenough,wehave |T,(y)| < 1 and if 2 y2 were equal to
Zero, y,,+ 1 would be necessarily equal to zero, too, 1ajn.d ) 11; would hold

also Z yi + %2,, =0 which is not possible. Therefore E y2>0. As

=1
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‘l’l

¢1(t) is increasing, the inequality ¢, (2(n T 1)) < @1(teq) takes place

s0 that there exists a lattice point ¥ = [¥Y1; ¥a, -- > Yn+1] for which the
inequalities

24 1)K
0 < max [y, <5, py(s) £ [To(y)] < o2t DK

1Sisn 8"
=l sn—1 —_—
%( B 1 ))
hold, what just implies the relation (14).

b) Let m > 2. For each sufficiently large ¢ it is possible to find
a positive integer k so that £, < ¢ << #;4,. By putting

! <]7 (tA+1)
A=(@2m+n)m1 DL > 1, B=—>1

‘P1(t) t_
in formula (21) we get
1
tm m—l(t) mEn—1 m+n
lyil<( e ) A<i<n, = g2>0.

_l_ K m+n—1 )
[T5(0)| < (2(m + n)ym—1 (W) 1=<iZ m).

For sufficiently large ¢’s the inequality max |7;(y)| <1 will be again
15ism

”
satisfied so that X »2 cannot be equal tozero for in this case it would also
i=1

m+n n
hold % y# = 0. Thus X y2 > 0. As {mpm-1(t) is a continuous, increasing
i=1 i

t=1
function. it is possible to find to each sufficiently large s just one ¢ so

1
tmpm=1(f) mn—1

that s = — ; accordingly there is a lattice point y =

Km—1 gly P Yy
= [¥1,Y2 - Ym+n] 50 that 0 < max |y,|< sandy,(s) < max |Ty(y)| <

1=i<n 15is<m
1 1

1 Kn mtn—1 1 £\ 1

é (2(m + n))m—l (f" 1y \t)) = (2(m + m)ym—1L. (?,) =

1 AR\t
1 K m
= (2(m + n))m—1 (%(—S;—s)) , what implies (15).
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II. Let m > 2. Let us take two successive terms of the sequence
{tx}: 4 and ¢,,,; we write down the respective lattice points x(¥) =
= [a®, aP, ..., a® ] and x(b+D) = [af+D aF+D, g &+D].

Now we show tha.t there exist the values jand 1 (j,1=1,2,...,m)
in such a way that a¥@xf+l — a¥+12% & 0. Were it not so, we
should have

]x,‘,{‘t’ﬁx‘l"“’ _ t‘l&ii’x‘,’“’l — 'E & (x(k)x(lk-q D __ z(k+17x(k)) + x"" z(k+1)
j=1
- x(k“)x(") IT('“H)S (x(B)) — (k)Si(x(k+1))l §_ ey Pa(fe) + t/c’l’l(ik+1) <
2(m +n—2)* +m—2
M < 9—(m+n—3) tl n <1,
Paltiss) —

therefore also a® al%+1 — x‘“l.’x‘l"’ =0fori=1,2,...,n
As ma,x ]x""] b < tk+1_ max ]x"‘“’[ we have for a certain

1< l< m) the relation |z{| < |Q‘k+1)|

If 2% =0, we have necessarily a® = a¥ = ... =2a® =0, a
case we have excluded.
a® »
= Z <1, (p,q) = 1. Hence we have
q
pla® for j=1,2,...,m,m-+1, .., m+n and ga¥+? for j=1,2,
Lm-n, pg > 1 so that the greatest common lelsOI'S satisfy the
relatxons

((AJ( ) () 41 k+1) -(k+1)
(x]_ H xg 5 xm-}-n) =P (1‘1 +1 H 'Tz +1 LI a“'m+n) _2_ '8

If 2 4 0, let us write |-

(k+1’
%1

which are imposs1ble according to (18).

Without loss of generality it can be, therefore, assumed that
[P derD — r‘k+1’x"", =az1, (22)
a being an integer.

Fori=1,2,...,n I put further

9 W LW S(ik)K 0
l)ilx]_k + .. ﬁnnxk + 7,’54.5 - )’ lgi )I :<: 1
P1(et1
e*+ K ,
9 lx‘lk+1‘ ! _}_ O @D | gl — ZE le®+?] < 1,

m+ ¢ ¢1(tk+1)

choose any integers 2,, zy, ..., Zn, Zntgs - -» Zmin 20d by means of them
I construct the integers y; = az;, Yy = a2y, ..., Yn = A2y, Yn+z = W3,
oo Ymbn = @Zm4p. I can then find such integers Ynt1 a0d Ypto, depen-
ding on the numbers ¥y, ¥s, - - s Yns Yn-tgs - - -» Ym+n» that the relations
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n m
(0] (k) (Te+1) A{k+1)
2 Jime =, 2 Yt Elyixm, = Zlynmj *
= j=

are fulfilled mmultaneously.
n m m
According to this we have X y,( X #;,2® 4 2 ) = x"" Z ﬁ,,yz +
i= 1 j=1
m
+ 3 Yyl =X al 2 2 + 2 Ynt 575 P = E x""T (y)
i=1 j=1
or
K g
Z 27 ( ) 2 ik), ;
j= ! Y @1(te4q) i Y
and similarly (23)
K - 2 8(k+1>y

5 o7 (y) =

i=1 Prles1) i=1

1. If m = 2,1 choose z; = 1,2, = 23 = ... = 2, = 0, thus according

(22) 0 < max |y| = |y;| = a < 244834, and according to (23)
KePa
2RIy (y) + aPToly) = — 2,
P1(trty)
Kt
P1(tety)

CEVT(y) - 2T (y) =
v Y Ynt1s yn+2] satisfy-

therefore there exists a lattice point y = [y, .

ing the relations
0 < max |y,| < 248544,
1<isn l
2Kt4q (24)
T, < - =1,2
)< = 1,2). |
there are

2. Suppose that m > 2, C = 1. According to Theorem 2
integers 295295+ -0y 2y Znkgs -+ > Zm4n 50 that 0 < max |z:] < ¢ and
1Sisn
n

9121+ oo Onzat 24 <& m2(3 < j < m), whence
0 < max lyll é a‘C:

1=isn
" (25)
7 <Lat m2 3<7< m).
According to (23) we have
ALY + L) = — E T + - ey,
j=3 P1(trtq) 1=
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_K_ 3 gDy,
P1(g1) i=1

thus we get in account of (25), (22) and of the inequalities |2¥| < ¢,
jaf+P] <t ., the relation:
2(m — 2) tybrqy QnKtIhC

thnfz ‘Pl(tk+1)

x;k+1)T1(y) + x(zlc+l)T2(y) R %n: x}k+l)T].(y) —I_
j=3

175y < (G1=1,2). (26)

Since a < 2t#,44, 1 further get by means of (25) and (26): 0 <

< max|y1| < Ztktk-lqc,
1<

2(m — 2) tktk+l 2nKtk+1&'

Ti(y)l < = I1<jism
I 7(Y)I % q’1(kk+1) — )
Cm 2
m—2
t}c(P (t + ) m-+n—2
The best estimation is given by the choice { = (————IKLL .

Thus for m > 2 there exists a lattice point y= [y}, ..., ¥ns Yn+1,
«+> Ym+n] for which the relations
m—2

¢ ¢ mrn—2
0 < max |y;| < 2btp4q (i’)—l}{k‘tl) )

1<iZn

]

! (27)
e |
max |T(y)| < 2(m + n — 2) tk+1( " )
1<j<m (Z{ZY)
hold good.

With respect to (24) the inequalities (27) hold good for all integers

m > 2.

~ To each sufficiently large s it is then possible to find a positive in-
teger k so that

m—2 m—2
¢ ¢ m-+n—2 ¢ f m+n—2
204tp41 (k—%——yﬂl) <8< 2pptire (Lﬂ%ﬁ) - (28)
m—1
it st

_ (P14 n(m+n—2)
I put now s, = (—K—) e+l
Next it appears that i —— >

b P1(Pr+1) mn—2
Rty |
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< 2

for

1

min—2 (m—2)(2m +2n—3)
o Lete)" T T s
5\ K e =
2(m +n—2)*+m—2 _2_(m—2)(2m +2n—3)
t n(m+n—2) n(m+n—2) — 1
=t
Let s < s,. According to (27) and (28) we have
m—2 1— (m—2)(2m +n—3) _n
Vs ( )< 2(m dm— 2) m+n-z t. (m—1)(m +n—2) LS m—
k41
1 m—1
—1 mn—2
bigy " ‘Ps(K So)
..(m—l—n—‘Z)(—sn— =2m+ n—2) B
0 0
1
_m—l_ \m—I
m+n—2
ps(K S)
2(m 4 n — 2) e
n(m—1)
(m—2)(2m+n~3) 2m +n—4a\ m+n—2
@ (S) ) f m+n—2 ¢ n
3 7 —
st nm—1) t
@ (t))m+n_2 @4()
1

is, according to our supposition, a decreasing function.

According to (28) wehave 0bv10us1y —_>>

accordingly
1 m+n—1 m _ m+4n—1
A~ tam Tt P1(trreo) [ ml
- : K ]
n—1 (m—2)(m+n—1) (m+n—2)*—n (m+n—2)>:—n

<

1
m—1

AN

For s > s, we use (21), where we put k 4 1 instead of k, and besides

1

sm+n—

1 m
4= 2Pl o, 4 gy (‘tL : )

m-—

—1

2 m 1.

, B=
25k+1tk+2 (

b Pal tk.+z))

m—2
m+n—2

5

.t m—1 (m—L)m+n—2) > g(m—1)(m+n—2) t (m—L)m+n—2) > ],

k+1 T k+2 E+1

so that after putting it in (21) we get
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1 1 1
0 < max |y, | < < s, Pa(8) = < max [T (y)| _g_ om (2(m+ n))m*1 (t'ﬂ) —1

1Zign s"
and as the relation s > s, holds good, we have

1
m—1 m—1
@3 (Km+n——2 q,
—_—

n

1

P(8) < am (2(m n))m—l -

1 1
But further max(2(m + n — 2), 2'—5( 2(m 4 n))'zrl)< max(2(m-

-+ n), 2V2 (m 4+ n)) < 3(m 4 n) so that mequahty (17) is also proved,
and hereby, therefore, the whole theorem 5

Theorem 6. (The generalized principle of transfer). Let m and n

be positive integers; we choose x and 8 according to Definition 2. Then it
holds that:

nx
L ﬂ_ mJ,—'n-—l)—}—(m——])a

nm+n—1)4+ n—1)p"
2. If m 2> 2 and if « > 2(m + n — 1) (m + n — 3), then we have

nx — 2n(m -+ n — 3)
(m—1)x+m—(m—2)(m+n—3)

even

=

Remark 1: If e. g. we have x = - 00, the mentioned inequalities
are to be understood so that

nx n
p i AT D F =T~ m—1

and

. nx — 2n(m + n — 3) _m
ﬁ};:gl; m—1ax+m—m—2)(m+n—3) m—1

This occurs if system (1) is either improper or if (1) is regular indeed,
but can be approximated with a great precision. Such systems will be
constructed in the next paragraph.

Remark 2: The reader will easily convince himself that in the

case & > 2(m + n — 1) (m + » — 3) the second statement of Theorem
6 is sharper than the first one.
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Proof of Theorem6:Form = n = 1wehaveobviously « = f. Let
thus m 4 n > 3. For regular or proper systems the first as well as the

m+o'
second statement follow from Theorem 5, if I put ¢,(¢) = t (& <,

& - ).

It remains to show that both the statements remain true for im-
proper systems, too. In this case y,(¢) is equal to zero for sufficiently
large ’s and therefore we put o« = + o0. According to Remark 1 it is

necessary to show that > ——n—l- for m >1, and p= + oo for
==

m=1.
The case m = 1 is trivial, as we have, for sufficiently large s’s,
Yo(8) = min  (|[Fyy; + oo+ P T Vo) S
0<max|1/i|§s

15isn

< min [93y; + Ypsa| S 9i(s) = 0, thus f= 4 oo.

To0<|nlss
If m > 1, there is such a lattice point X = [x}, ..., Ty, Tongys -+
o Tpyn] that 0 < max |z;| = X and &2, 4+ ... + Py + Ty = 0
1<ism
(1< i< n). Without  loss of generality let |xl| = X. According to
Theorem 2 there is such a lattice point [z}, 25, -+, Zps Zpgas -5 Zmtnl that

0 < max |z,| < ¢,
1<i<n -

o (29)
|01121 + o Dngzn + 2ntil < t m—1 2 < j < m).

I Put z xm+zyz - Z xayn+]’ where Y1="121 -+ s Y = T1Zns Ynte=
= m

= T1%n425 <+ vy Ymtn = L12m+p SO that I get Ypi1 = 2 Tm+4%5 2218 #ntie
i=1 7—

We have next Z T 5(y) = Z x; ( Z 191-,,~y,~ + Ynys) = Z yiz 19ijw'j+
1=

7 1 j=

+Ewm+ly1ﬁ2y,‘9(x)—o so that 1<y>-—sz( ).

j=
But according to (29) the relations

0 < max |y < tX,
1<i<n

n
{01:iy1 + e + 0ni:’/n + y'rrl'il g Xt m—1 (zg 7 __é_ m)
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hold and we have
X|Ty(y)] = | Z o Ty(y)] < (m— 1) Xy~ i,
j=2

n

1Ty (y)] < (m — 1) Xt ™=,

so that putting tX = s we finally get

m-+n—1 n
= —

1/)2(8) :<: (m . l) X m—1 m—1
n
But X is some finite fixed integer, thus lim sup s»—ly,(s) < (m — 1)
§—> 0
m+n—1
. X m—1 and hence +ﬂ:m_n‘l /3\ l’ Q. E.D

The indices « and 8 depend, of course, on the given system @ —

P11> Do over Ve
""""""" and therefore, if we want to distinguish the

19711’ 29712: e &nm
indices of various systems, we write o = x(0), f = p(O)

Now the question arises to what degree Theorem 6 is definitive,
i. e. whether it is not possible to replace the inequalities of this theorem
by sharper ones, eventually whether it does not suffice to know for the
given system @ but one of the indices « or §, asit is the caseform = n =
=lorm=2,n=1][3]

Some answers to these questions are given in the following para-

graph.

§ 4. The Existence and the Properties of some special Systems 0,
Theorem7. Letm > 2,n > 2. Let ¢(t) denotea function of ¢, increasing

as rapidly as we wish and hamng the followm_q properties:

1. @(t) is defined for ¢ > t, >0,

2. it is continuous and tncreasing in the tnterval (t,, ),

3. in (¢,, 00) the inequality @(t) = ¢ holds and

4. t—1p(t) is not decreasing in t,, o0).

Then there are systems O which are regular in their rows and columns

-

in such @ way that we have y,(t) = y,(t, ©) = ( (t)) Po(t) = alt, O) =

- ofsw)
- e/
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I will prove Theorem 7 by constructing a system of such kind.
Iput

i (1< i 1< 51 m), (30)

and therefore 0 < a;; < mn and I choose the prime number p, >
= max(mn-}—l t,). Besides I choose the sequence of prime numbers
Do < Py < Py < ... in such a manner that the inequality

Pit1 = P+ P DDy D), (31)

may be fulfilled for each positive integer k.

.2 ak .
I now construct the series X ?7 Y which are absolutely conver-
k=1P1--- P

gent, and define the so called LiouviLLE’s numbers [7]

ak
ﬁ..wzﬂ % 1Zi<n 1< 5<m). (32)
k=1P1--- Pk T -
Finally I put
n ak ri® .
G=PPy- Py B = (IS 1<K j<m) (33)
E=1P1---Pr 9n ==
(h) 0 k nk
ThenIget 0<<dy— LA S Z i

Qh Chen41 e k= =h+19%

B+l . 2
_ N (1-;- o B +)
4nPr+1 Pr+2 Pr+2Pr+3

Asg(t) > ¢, wehave puy1 =Py + @Pi* . pipy ... p;) > p, and thus

p) p{H’l Py p%

k2

qn 91Pr+1 Pr+1 Phy1
pit _ P pi+
P — P) T G- PO PiPe ) g, (PG,
As (BQ is non-decreasing, we have

PPt ) . 9(an)

Pty T
hence
Bl 1
1:;1 1, <
e(PI*a) = e(gn)
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and thus

g, o L G<icami<i<m) (34)
Y an 2,9(42) - -
Accordingly, there is a sequence g, << g, < ... so that lim ¢ = + o
and that (34) holds good. e
Di1s <o Pim
The system @ = | *"" """ """ constructed in this way possesses
Dune-eos Do

already all properties stated by Theorem 7

If for some of the forms (1) a lattice point [z, ..., 2,,, ¥,,+;] Would
exist in such a way that the relation 4,2, + ... + &2, + ;=0
would be fulfilled, then according to (34) the expression,

PRy ()]
h 1'1 _I’ + 74};"%11 + AnX i
an

Suty T Sty 1 oo T Sintm ,where l¢;;| <1.As X = max |x;| is a finite
9.9(q) 1<j<m
integer, we have for all 7’s beginning from a certain one the relation

ough to be also equal to the fraction

mX
[¢)] (h)
lrzib Ty T s + ri’;n,xm '+' thm+i| < < 1,

®(4x)
thus
(h) X + (h)x + 9, mti = = 0. (35)
According to definition (33), however, we have:
rIal) Rl )
W N i<i<m1< i< m),

In+1 an In+1
thus

D — ELE2Y a1 i< n 1< m),
n - -

so that owing to (35) for ~ and » + 1 we have further

In+1 3
0= 7‘3’*’1)901 JT" + r(h+1)xm + Th+1%m+s = q (7‘ hxl + + r(h)zm +
h
+ qhxm-{—z') + a?f—lxl + cee + ag’,-;lxm = a?1+1x1 + cee + a?’,;lxm;

this is satisfied for all positive integers A which are large enough. But
then. the system of equations
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LooLo, 1 |
Q15 Q95 s Qym !
A= a1 0
L e |
la%-t eyt ant|
has only the trivial solution z; = #, = ... = z,, = 0, consequently the

system @ is regular in, its rows.
For sufficiently large ¢’s such a positive integer & can be found that
PR = ¢ < P}
Iput @) =2 1, = — @1, Gg=12y3= ... = ¥ =0,
h—1 — k) gk
S — 2

B (IS i< n).

Tmti =

k=1 9k
It is obvious that 0 << max |z;| < t and thus
1=5j<m
© Qhik __ Qkjk
'P1(t: @) é ax I19 1171 + 19:2“’2 + xm-l-zl = max X — Q-1 —
1<iZn 1<iZn \[k=1 qr:
h—1 (Qh __ Ok) 3k og (2h — 9k ok
— Z (——)——Qh—l):max ( bX '———2—%—1)<
E=1 9r 1<i<n \|[k=h+1 qr
o0 I 1
5 V4 < 7’1 (1+_&_+ S _}-_,.):
k=h+1PrPr+1---Pr PaPr+1 Pr+1 Phs1

${l+1 ph+1 p{»l 1
< < i
Pu(Prty — P1) = WP(W{‘“ - D12 - D) Pr 97(”

However, for »>2 we have p, > pl + @@} - PPy Pr—y1) >

R+l
P} PiP2- - Pr—y = PPy, thus @;h, < Pr » hence y,(¢,0) < 1‘P( )

But for £ —> oo we have & — oo and so p,_; — 00, whence 1/«'1(t, 0) =

- ()
e/
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1
In quite the same manner we should prove that ¥(t; 0) = O(W)

and the regularity of the system @ in the columns.
From Theorem 7 the following theorem results:

Theorem 8. For m > 2, n > 2 there are regular systems © having
the indices x(@) = -+ o0, (@) = + 0.

Proof: It suffices to put g(t) = et in Theorem 7 and according to
Definition, 2 we get x(@) = p(6O) = + co.

Theorem 9. For m=>2, n=>1 let ay, ..., @, Gutrs -+ @t DO
tntegers which are given in such a way that the numbers ay, @y, ..., @, are
different from zero and that for + + j (3,7 = 1,2, ..., m) the greatest com-
mon divisor of each pair (a;, a;) s equal to um'ty (e g. @y, Qgy + ooy Ay, MAY
be equal to m successive prime numbers); further let the relmfwn lalf =
= max |a;| = t; be true. Moreover let ¢(t) and D(t) respectively be continu-

1<55m
ous functions in the interval {t,, 00), first of them increasing as rapidly as
we wish and the second one increasing as slowly as we wish; for t — oo both
functions tend to infinity. Finally suppose that in the mn-dimensional space
of the points & =[P4, -, Fyms -+ 3 Pty - - ©» P ] @ mn-dimensional closed
cube K, is given so that there is_a point & within *)K, for which the
relation.

alﬁ/'l + (12‘1(}7'2 + ...+ amﬂim “*_ Apt-s = 0 (1 § Zé n) (36)
takes place.
Under these assum ptions there exist two z'ntegers sy and t (ii1 < 81 < t;)

and m —+ n iniegers ay, a,, ..., @r 1. a4y, Of which a can,
are different from "ero havmg the )‘otlowmg properties: for 1 4= 7 (z j=
=1,2,. m) the greatest common divisor of each pair (a;, o ARE ﬂqw‘l

to unity; it is la;| = max |a;| = t, and there exists a closed cube K,c K,
1<j<m
with following properties:
1. For no system of integers by, ..., 0., bytys ooy Uy and for mo
point & e K, the inequalities

0 < max [b] < sy,

1<i<n
1
[01015 + byDa; + -+ 0D + by § — < 7§ m— 1)
. s dD(sy)
(37)

are fulfilled simultaneously.

*) This means (here and in the following text) in the interior of K;.

140



2. For nosystemof integers ¢y, -+ “m> “mi1, ..., ¢,y and for no point
9 ¢ K,the inequalities
|
0 < max |65 <1,
1£igm

min (Je; Py + coPye + -+ + Cmbyy, +- Cmti]) =0

1<i<n

(38)

are satisfied simultaneously.

3. For no system of integers go, 91 (1 = 1< m; 1 <7< m) and for
no point & ¢ K, the inequalilies

0 < max |g:;] < t,,
. m (39)
S B¢, 051 9=0 J
i=1j=1

are fulfilled simultancously. (Of course, 2 is a consequence of 3.)

4. For all points & ¢ K, we have
1
max (Ial'ﬂil + (l'z'ﬁiz ’J(‘ o + a/nﬁim + a’m+ii) < —- (40)
1Zi<n P(ty)
5. Within K, there is a point & different from the origin for which
e+ o a Pt =0 (1< i< n). (41)

Proof of Theorem 9: First of all, it is evident thataccording to the
properties of the cube K, there exist real numbers y,;and d;; (1 < 1 < n;
1< < m — 1) with the following property: If

7ii <9 <0 1< i 1< j<m—1) (42)
and if we calculate the values 9,, (1< 7< n) from (36), the point
=[P Pm -3 np - s Fnm) is situated within K.

I next choose some integer s; > ¢, and investigate the inequalities
(37) for some given system of the numbers by, ..., b, 0pt1s -5 Oty
Among the numbers b,, b,, ..., b, there is certainly at least one that is

a maximum in its absolute value and without loss of generality we may
suppose that |b,| = ma,x |b;] = b. If I make any choice of the numbers
<izn

Do e Vs 17 < m — 1) according to (42), then every number 9, ;,
prov1ded that the inequalities (37) hold good and b,,,.; are fixed, is con-
tained in an interval of length

1
o(—-———,, )
bsflt.l@(sﬂ
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\

so that the volume of the set of such points [y, ..., &,;; 9., ..., P, -

ey

I 01;1”,—17 ERRE) ﬂfmm—l] (lf bly RS} bm bn+1> oo Ymtn~y are given) lb
1 0 —l
equal to g i)
But for each of the numkers b, ..., 0,, b,qq, ..., bmin—y We have

only O(b) possibilities so that the n(m — 1)-dimensional measure of the
set of the points [Py, .., Pugs -3 Disme1s - - o> Fpyin—q] fulfilling the in-
equalities (37) will be at most equal to:

81 1 ‘ 1
ol ———— __ pmin=2) O ____ ___
o (bm—ls@m—usl) ) (@*—1(81))‘

It is now sufficient to choose the number s, large enough in order
to assure that the measure of this set is less than that of the set defined
by the relations (42). In the set (42) there is, consequently, a point
P*=[9f,....9%; .. 191* T nm 1] which does not fulfil all the
inequalities (37 ) mmultaneously Ab the eliminated set (37) is closed,
there is a certain neighbourhood of the point P* every point of which
has the property that formula (42) is satisfied and that all the inequalities
(37) do not simultaneously hold good.

I will besides calculate ﬂz*m 1< < n) from the relations (36),
and then get the point 9* = [191,, e OF 5 OE, 9% ] situated
within K, to which I circumscribe a Sufﬁuently small cube K, CK,.
This cube has already the following properties:

a) Within K] lies a point that satisfies the conditions (36).

b) To no point & of K, there are such integers by, ..., by, bypy, - - .,

+es by n—; that ali the inequalities of (37) would hold good simultane-
ously.

I now can choose e. g. for the integers a;, a,, ..., a,, m successive
prime numbers, |a;| = t, > |ay| > ... > |a;,| > |a;|. In doing so, I
choose the signs in such a way that the relations

a0y — Ay, = |ayag| + |agay| > 1ty (43)

take place, for CHEBYSHEV'S inequality for prime numbers implies
lag] <lay| < 2Jey-

From the constructlon of the cube Kl, we see immediately: There
are real numbers y;; << 0;; (1 < i < m; 2< 5 < m) with the following
property: if

Vi <05<0y; 1< i<n; 2<5<m) (44)
and if I calculate 9;; (1 < ¢ < ) from (36), the point [9,,, ..., Py .- -3
Dpgs -y D] lies within K
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I now choose irrational numbers 93 (1 < ¢ < n) so that for ug + 0
the values 9ug 4wy, (1 < i < n) are different from zero. Further
I choose the numbers ¢, (1 <7< =) in such a way that for 0 <
< ma,lilu ;| < t, the expressions #}u, + 9, + Uy, are different from

=3,
zeri). This is always possible since, 9 being fixed there is at most a
finite number, namely O(t}) = O(1), of possibilities in the choice of the
number 9,,, for which dfu, + 9,0y + w0y, = 0.

Then I choose ;% so that for 0 < max|u,| < ¢, the values ¥;u; +
i=3,4,5
+ Djuy + 9515 + Uy are different from zero; it is possible to con-
tinue this construction by induction. I thus obtain numbers 9}, p; <
<¥5;<6,; 1< i< n; 3<j< m) which have the following pro-

perty: If O < max [u;| <t,, then
3<js=m

Bgus + Ohu, 4 .+ v £0 (10 ). (45)
The construction of these numbers falls, of course, off in the case
m= 2.
Now I put
Diay + Ohas 4 Ofhas + ...+ 94 a, + Ay =0,
79;5“' + Opay + Vpag 4 ...+ Oan, +a,, =0
By the solution of these equations I get

+ ’ ’ + ’ ’ v ’
Fpalasay — agay) 4 ... 4 97 (aga,, — @na,) 4 @y, ; — Gy g ]

} (1<i<n). 46)

+__
ﬂilh~

’ ’
10y — A0y
+(a! ’ ’ ’
9F — dplagay — ayag) + ... + 9} (alam a,a,) + @ ; — 1,
. Ayl — Ay,

(I=i<n); 47)

at the same time I require that the values &5 will satisfy the rela,tlons:
‘y,z < 9% 2 (1< 1< n). I have not yet chosen the numbers a,,,,,
Qo As the denominator of both the fractions (47) is according to

1
(43) at least 1lt¢,, the value of 9}, changes by O(t ; ) 0(7), if the
2 2

number a,,,; changes by unity; simultaneously we get different values
of 9 as Well as different values of 9;; for different choices of aj,,, (for
a # O ay % 0). Thus: in order that the number ¢}, may fall into the
given interval (y;,, d;,), I can choose a,, , ; in more than (konst. tz) manners,
i.e.fora sufflclent.ly large t, L have atleast Vt2 possibilities for a;, ;.

Having chosen a;, ,, in this way I calculate 9, and then 9}, from
the equatxons (47). According to (44) the point &+ =[9, .. 19;“,"; oo
o3 Opys oo D) must lie inside K.
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Let us now suppose (,,per absurdum*‘) that there isat (1< i< m)
so that for each of the admissible choices of am +4i 8 integers ¢, Cor ...,
» €m> Cm+ €Xist so that the formulae

0 < max [¢;] < ty, } 8)

1=ism
04+ 05+ oo iy =0
hold good. According to (45) we have then necessarily max(|c,|, |col) > 0.

With ¢, fixed, there is a finite number of the above systems (c,, ...,

v Cons Cyts)s Viz. O(im+1) = O(1). If I choose t, sufficiently large, it is

certainly possible to choose two numbers Ma,, ., < ®a,, ; so that the

same system (cq, ..., Cpy.Ct;) cOrresponds (in the sense of (48)) to the
number Ma; . and to (a;,

‘Thus, according to (46) and (48), T get the following equations:
®Pfa, + DIGa, + 0,3a3 + .o+t Gy =0
<1>z9+a’ + WYL 4 g+ ...+ Opal, + Wal, =0
(1)29:'01 -+ (1)19+C2 + e+ o+ Ohem + Cpri =0
and  @A9La; + @ha, + Ifa,+ ...+ Ifamt+  Apri=0
@9ka; + @9 a, + fag + ...+ Ol + Pa;, =0
@9, + DVg5e, + Ijes + oo+ Vjpem + Cmri =0
If I put 4, = WY}, — @9}; A,= O} — 9}, then the previous
equations imply the following relations:

Ayay + Aya, =0, (49)
Ayey + Aoy =0, (50)
Ayay + Aqay * 0. (51)

According to (51) the values 4; and 4, cannot be both equal to
zero and thus according to (49) and (50) we have a,c, — a,¢; = 0. But
a, + 0, a, + 0, so that according to (49) both values 4, and 4, are
different from zero; as according to (45) we have max(|c,|), |cs]) > O,
both ¢; and ¢, are according to (50) different from zero. Thus a,|c, and
hence |a;| < |cy, i. e. |¢;] = #;, which is contradictory to (48)

For this reason there are such integers am 1 a:n 420 Oy +n that
(46) i is and (48) is not satisfied; hence I have got a point 3“" = [9y5, .

Fo - Oy -, O] within K for which (36) and (41) hold but
nelther (37) nor (38) holds Round the point &+ let us now circumscribe
a sufficiently small cube K; C K, which has already the properties 1.,
“2., 4., and 5. asserted by Theorem 9.

But the n(m — 1)-dimensional linear variety in the mn-dimensional
space of the points 9 which has the equations

Buath & o Dty + @ =0 (1L i< m) (41)
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cannot be contained in any (mn — 1)-dimensional hyperplane having the
cquation,
nm

X 9”19,7 +9,=0, (52)
i=1j=
where 0 << max |g;;| << ;.
1<i<n
1=55m

For were it the case, each point that lies in (41) ought to lie also
in (52). In other words: if I choose any 9,; (1 <7 < #;2< < m)and
calculate ¢ (1 < ¢ S n) from (41), the point & lies in (41). Substituting
these values of 9, in (52), I get identically for any choice of ¥ (1 <
<i<n 2Z 7§ m) the rvelation:

E ( Z alg” 7 gix(a;ﬁia + ..+ a':nﬁim -+ “;n+i)) +- “1‘70 =0,

i=1j=

since a; # 0 Hence it naturally follows that g, a; = g;0; (1 <1< m;

1<y < m). As we have ¢, > max |g;;| > 0, there are such 1ntegers 7
<i<
1EE

and § (1< i< 1< 5<m) that g; % 0. As the numbers a; (1 <
< i< m) are altogether different from zero, the values Jii will be dif-
ferent from zero, too, for the above index ¢ and for all j s 1<5i< m)

and besides this the followmg relation §i 1 Gsm .ot Gim =0y Qg ... QA
will take place. Since the numbers ay, .. ,a:" are by palrs relatlvely
prime, then necessarily a;|g;,, thus |a; | = ¢, < |g,4], which is a contra-
diction to #; > max |g,,l.

1<i<n

1=,7<m

Consequently in the cube K7 there are points & that, thoughlyingin
(41), do not lie in (52). But there is only a finite number of hyperplanes
(52) passing through the cube K7, viz. at most O(ty»+1) = O(1); for this
reason I may choose a point & e K;’, which lies in (41) and does not lie
in any of the hyperplanes (52). If I circumscribe a sufficiently small
cube K, C Kj round this point &, this cube has already all the properties
stated by Theorem 9, Q. E. D.

Now, in the same manner as we have constructed s,, ¢,, K, from ,,
K, we can by means of induction construct an increasing sequence of

integers 0 << #; <<s; < 8, << 8, << ... fulfilling the relation: lim¢, =

= lims, = 4 c0 and a decreasing sequence K, > K23K3 ; - of
mnrgl?nenswnal closed cubes. We have then lim K, = K = H K, + 0,
so that there is a point & = [9y,, ..., Py r—’,q':?nl, ,,m] Whlch lies

in all cubes K, (r=1,2,3,...). Now I construct the system
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7911: 7912: o ﬂlm

’921’ 22 . ﬁzm

=1 e
Ty Ongs o v es Dy

and investigate the functions y,(¢, @) and vo(t, O).
A. The system O is regular in its rows and also in its columns; and

even more is true:
B. Thereisno systemwhich of integers g,,g,: (1<i< n:1 < j< m) for

which
max Igz‘l >0,
1Zi<n
1=j<m
n m
% X g0+ g,=0.
i=1j=1

For, if such a system would exist, there would be an 7 such that
max |g;;] < t, and according to the property 3. of Theorem 9 the point

1<iZn
1<j<m
9 could not lie in X,,.

——. This results at once from the

1
C. For t >, it is p,(t, 0) < o0
4%t property of Theorem 9, according to which for points of K, the
— is satisfied. Thus for ¢, < ¢ < ¢,4, IThave

inequality Y. (t N @ <
v ) (F(tr-i-l
1

t, 0) < ey, 0) < ——— < —
b OISl B) < 565 = 50
D. Finally the 15t property of Theorem 9 implies that there is such
a sequence of positive integers 8;,<< 83383 < ... tending to infinity that
1

>

o, 0) > —5—

sm=10(s,)
n

hence we have lim sup sm—1(s) py(s, @) = 1.

8§—> 0
Thereby, accordingly, the following
> 2, n>1. Then there are such

’ Theorem 10 is d: Let m
eorem is prove olumns that the following relations

systems @ regular in their rows and col
lim sup ¢(8) i (t, ©) = 1,
t—>o
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n
lim sup s™—1D(s) py(s, @) > 1
§—>
take place, where @(t) and D(t) denote any preassigned continuous and
increasing functions of t, defined fot ¢t = ¢, > O with the properties:
lim ¢(¢) = + oo, lim @(¢) = + oo.
t—> 0 {—>o0

Theorem 1. Let m 2> 2, n > 1; then there are systems @ that are
regular in both their rows and columns and jor the indices of which the
folloving formulae are satisfied:

n
x(0) = + o0, f(O) = T

The respective proof results from Theorem 10, if we put e. g.
@(t) = et, D(t) = log ¢.

As it is evident from Theorems 8 and 11, the results of Theorem 6
are sharp in the following sense: For m > 2, n => 2, there exist two
systems @ and @', both of them regular in their rows and columns so
that

n

m — 1

2(0) = ¥(0') = + 05 (@) = + 0; f(O') =

In other words there is, provided that m + » > 4, no one to one
correspondence (in the case m, n > 2 not even a single-valued corre-
spondence) between the indices x(@) and B(@), what we intended to
prove.
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