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The sets of numbers the Lebesgue measure of which is zero can be
investigated by means of the Hausdorff measure. In this way Jarnik
investigated the null sets of the numbers = for which there are in-
finitely many pairs of integers p, ¢ such that the inequality
] , -
o —E < gl0) (1)
1 q
is fulfilled. (¢(g) is a given positive function.) Jarnik proved his
results in the case of the general simultaneous approximation.
In this paper the null sets of the numbers x are investigated for which
there is only a finite number of pairs of integers p, ¢ such that
the inequality (1) holds.

§ I. Discussion of the problem.

Let us denote by ¢(g) a given positive function defined for positive
values of ¢. An irrational number z is said to admit the approximation
9(q), if there exist infinitely many pairs of integers p, ¢ (¢ > 0) in such
a way that the inequality

1,01. r——| < o—— (1,01)

q " ¢.9@

p‘ 1
holds.

By means of continuous fractions it is easy to show that to any
given function g an irrational number x can be found which admits the
approximation g.

The question arises now, ,,how many‘‘ such numbers z esixt to a
given function g. KmintorINE (Xununm) [1]1) showed that the Lebesgue
measure of the set of the numbers x belonging to the interval (0, 1) and

o]

: d
admitting the approximation, g is zero, if f g—c—g(;—) ‘converges and that

1) Cf. the references at the end of the paper,
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. . . . dx
this measure is unity, if —
. g(x)
function g(g) increases steadily to infinity as g increases to infinity.)
Jarnix [2],[3]showed that it is possible to investigate the set of the

numbers z belonging to the interval (0, 1) and admitting the approxi-
o]

diverges. (He supposed that the

d
mation g by means of the Hausdorff measure, if f av_gf(—x_) converges.

(=}

1f f ;%;w diverges then the Lebesgue measure of the set of the num-

bers x belonging to the interval (0, 1) and not admitting the approxi-
mation ¢ is zero. Consequently this set can be investigated by means of
Hausdorff measure and this investigation is contained in this paper.

1,02. Let f(d) be a continuous positive function defined for 0 << d <
< D and let us suppose that f(d) — co steadily with d — 0 and that
d . f(d) — 0 steadily with d — 0.

Let @ be a given set of real numbers. The Hausdorff measure f of
the set @ is defined as follows:

Let the set @ be covered by a finite or enumerable aggregate of
intervals, the lengths of which are denoted by d;, d,, ...; these lengths
fulfil the inequalities d, << D, d, < D, ... Now we define the number
o by the relation:

o= Sd,. {(dy).
3=1

(We write 0 = o0, if the sum on the right side diverges.)

Now we choose another number p, 0 < ¢ << D, and find the number
o for each aggregate of intervals covering ¢ and fulfilling the inequalities:
d, < 9, dy < g, ... The lower bound of these numbers ¢ will be denoted
by L,. L, apparently does not decrease as g tends to zero and

limZL, = Hmf(Q) for o -0

the limit of the function L,, as o tends to zero, is called the outer Haus-
dorff measure f of the set .

It is all the same, whether we used for this definition open, closed,
half-closed intervals or all together and following theorems are appa-
rently true:

1,03. If @, D Q,, then Hmf(Q,) = Hm{(Q,). )

1,04. Let the functions f5(2) and f4(d) fuifil the conditions (1,02) and
let us suppose that

fs(d) > cfeld); ¢ >0, 0 < d < D.
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If Hmfy(Q) = co, then Hmf5(@) = 0; if Hmfy(Q) = 0, then
Hmfs(@) = 0.
1,05. Let the functions f5(d) and fe(@) fulfil the conditions (1,02) and
let us suppose that
fs@
fo(d)
If Hmfy(Q) > 0, then Hmfy(Q)= co, if Hmf5(€) < oo, then
Hmfs(Q) = 0.

1,06. Let 7', be sets of real numbers, 7= X T,, Hmf(T,)= 0,
n=1

n=12,...

Then Hmf(T) = 0.

The theorem (1,05) enables us to establish the notion of Hausdorff
dimension. Let f,(d) be an aggregate of functions which fulfil the con-
ditions 1,02 and let s be an element of a densily ordered set S. Let for
any pair s;, 8,5, §; << S, the following condition take place:

/5(d)

fs(d)
and let the given set @ and two elements s’, s, s’ < s” fulfil the equations
Hmf,(Q) = oo, Hmf,(Q) = 0. If there exist such an element s*, that
for any element s, s > s* the relation Hmf,(@) = 0 holds and for any
element s, s << s* the relation Hmf,(Q) = oo holds, then such an element
s* will be called the dimension of the set @ and we write

dim@) = s*.

Such an element exists at most one and its existence is warranted,
if we suppose that the set § is ordered without gaps. From (1,03) it
follows easily

1,07. If @, D @, and if dim@), and dim@), exist, then dim¢), = dim@,.

The usefulness of the notion of the dimension is illustrated by two
theorems due to V. Jarnik:

1,08. Let « be a real number, & > 2. Let us denote by P, the set
of the numbers z from the interval (0, 1) which admit the approximation
q*-2. If we put f,(d) = d*-1, then

> o0 as d— 0.

— 0 with d -0

dimP == % (Jarnix [2]).

1,09. Let « be an integer, & > 8. Let M, be the set if all numbers
x, 0 < x << 1, having a development in a regular continuous fraction
the partial denominators of which are at most «. If we put again f,(d) =
== d*-1, then
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4 .
1— =5 <dimM, <1 — — (JARNIK [4]).

x . 1g2 == - 8x . 1gnx

!,10. From now we mean by ¢(q) a function fulfilling the following
conditions:

o) g(q) is defined and continuous for ¢ =>w

B) g(q) > 4]/2

@

dx
diverges
) f vog@ e

) ‘q_(g_h(qjél as ¢— oo, if h(g) is any function such that

g
1< mg) < g(g) + 2.

1,11. Let us denote by @, the set of the numbers x from the 1nterva1
(0, 1) which do not admit the approximation g.

1,12. Let us put

1 1

Va Ja
v d
hid) = xp{ f 7(“} fold) = exp{:z f r;z;)} (1,12)

w
The main result of the present paper is the
Theorem 1. If g(q) > 103, then Hmf,(@y) = 0 and Hmf,(Q,;) = 0.
According to this theorem and to the theorem 1,04 we obtain a cer-
tain survey about the question, what is the value of the Hausdorff
measure of a given set ¢, for different functions f. If we put special
functions for g(¢) and }(d), we may find dim@, by means of this theorem .

§ 2. Deduction of two inequalities.

In regular continuous fractions we have an extraordinary powerful
means for investigating the question whether a given number x does or
does not admit the approximation g.

Tt is known that to any irrational number z from the interval (0, 1)
a sequence of integers a,, a,, ... can be uniquely found in such a way that
the following relation takes place:

1
2,01. = —_— (2,01)
Wt T

Conversely to any such a sequence an irrational number x is uni-

quely defined by means of the relation (2,01).
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The number a; is called the i-th partial denominator, the numbers
Py 4; defined by the equation ,

. 1 i
2,02. S =B Ps> q; relatively prime integers,

1 9
@+ @+ ... (2,02)
- — q; positive, ¢ > 0
are called the i-th approximate numerator and denominatorrespectively.
We put for completeness:
Po1=191=0,p,=0,¢,=1

We shall need the following formulae:

2,03, Pig1= Qiy1- Pit Pic1s Qi1 = Qg1 - @+ ¢imps (622 0) (2,03)

2,04. Piv1- ¢ — Pi-Gisr=(— 1)} (1= —1) (2,04)
1 DPi .
205 s <|r— < oy (120,
(@411 2) . ¢ qi‘ PR ) (2,05)
We shall also need the theorem
1 . . )
2,06. If a;——Z} < =, % irrational, r, s integers, then r_ P
s 252 s 7
for a suitable %
and
2,07. q, > i 2,07)

Let g be a given function satisfying (1,10) and let us define the
sets Sp, T7, and T as follows:

Let us denote by w the least integer greater than w and D. Let P
be an integer greater than w.

2,08. The number 2 belongs to the set Sp if and only if its partial
denominators fulfil these relations:

a; =1 fort=1,2,..., P;
@1 9(q) —2 fori=P,P+1,...

2,09. Let m and r be positive integers, m = w. The number z belongs
to the set 7' if and only if its partial denominators fulfil the relations

a;<r fori=1,2,..,m
i1 2 9(q) for i=m,m+41,..;
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2,10. T—3% X717, . (2,10)

r=1m=w

Now we shall prove the theorem

2,11. SPCQHCT.
Proof: If x ¢ Sp, then for 1 > P
1 1 P
=~ < |x —
9(q:) - 42~ (@54, + 2) ¢2 l 9

(cf. (2,05)) and according to (2,06) x does not admit the approximation g.

If x € @, then there exists such an index m that a;,, < g(q) for
i > m and we can find an index r in such a way that a; < r for i =1,
2, ..., m and consequently z « Tr.

According to (1,03) the following inequalities hold
Hnf(Sp) < Hmf(Q,) < Hmf(T)

In order to prove the Theorem I it is sufficient to prove:

2,12, There is such a P that

Hmfy(Sp) = o0
and for any m, r, m=w, w + 1,...,r=1,2, ... it is
Hmf,(T?)) = 0. (1,03, 1,06)
All irrational numbers from the interval (0, 1) having the first ¢
partial denominators (a,, @, ..., @;) in common, can be written in the
form
__ &Pq + Piy

, ¢irrational, ¢ > 1
&9; + Qi

and these are just all irrational numbers of an interval, which we shall
call the interval of the i-th order and denote by I or in detail I§

G
; Pit+ Piey P .
2,13. 1“1' ay.ya; = I:—————~qz T @ (closed interval). (2,13)
Apparently
2’14' Ii:,l..., az.,k c Igl, ...,ai‘ (2’14)
2,15. If j, k are different positive integers, then the intervals
I: ‘+ oy B and P ayi have at most one point in common.
The length of an interval I will be denoted by |I|. Then it holds:
1
2,16. Ii+1 = i >0. 2,16
e ""aiﬂl %i1(@iva+ ) (2,16)
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Let g*(g) be the greatest integer less or equal to g(g).

Let us choose the integers m, , m > w, r = 1 and define the sets
Vi ¢ =m, m -+ 1, ... which cover 7,,. We put

J— m
me Z Ial,A..,am
Qs By
where the sum runs over all possxble combmatlons of the mdlces ay, ...
@y, Where a, = 1,2, ....7, .50, = 1,2,.

If V, is defined as the sum of a f1n1te number of intervals It ¢ > m,
then let us define V4 as follows:

Instead of any interval I? . Which is used in the definition of
1?0 @
V; we put the sum

g"'(q )

i+l
l'?l I 1" ’ai’k
and so we can write
.
g (q;)
_ 1
Vijp= X DI
al""’aik=1 %y t

where the sum runs over all combinations of the indices 4, ..., @; which
occur in the definition of V.

According to the definitions of the sets V; and 77, it is clear that
2,17. VidoVig 2 Tr. (2,17)
Now we state the Theorem II, which together with Theorem III

_is the main aim of this paragraph.

Theorem Il. Supposethat there exists an integer P = w in such a way
that for any q and t satisfying the conditions ¢ = P, 0 << t << 1, the following
inequality is fulfilled

[ —
FOF9) 7w @+ 1) (k+ t+ 1)) ,
2,18. BV A IR . 2,18
: TT0 =2 I OGTITd @.18)
Then
Hmf(T1) < 00, m =%, %+ 1, ..,r=1,2,...
Proof: We divide the inequality (2,18) by ¢2, put ¢ =g¢;, t = %:l

and then for ¢+ = P we have

etz
7:(q; + Qii
9:(9; + 9i—) E

1
zq ) f ((/cq¢ +qi) (E+1) g+ qi_l))
—1  (kg;+ qi—y) (K4 1) q; + q:—1)

Il\/
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and according to (2,16) and (2,03) the following inequality holds for
any interval I, i > P
g¥(g,)

LR B (T AN = T SOV (R

> -

Let us put
o= X[l f(]I7])

where the sum runs over all intervals of the i-th order, which are sub-
sets of V.

According to the last inequality we apparently get:
Op = Opyy = Opip = - -
and the proof of the Theorem II is finished.
Now we shall state the Theorem III, which is in a certain sense an
opposite one to the Theorem II.

Theorem Ill. Let us suppose that

1
! (qz . gz(q))
2,19. T K, KE>0 for q>w (2,19)

/(3

and let P be such an integer satisfying P> w that for any q and ¢
satisfying ¢ = P and 0 << ¢ < 1 the following inequality holds

1 1
f?ﬁ13(<“m‘2f¢w+JMk+l+”.

2,20. _ <
1+t = .27 " k+ok+1+0

4

(2,20

Then
Hmj(Sp) > 0.

Proof: Similarly as in the preceding case we define the sets U,
t = P which cover the set Sp.
Up= If, s 1t

If U, is defined as a sum of a finite number of intervals I we de-
fine U,4, in the following manner:

Instead of any interval I? a; which is used in the definition of
o e
U, we put the sum
o) —2
Z ’I:l:,l. s B k

;=1
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and so we can write

U= % % I,
where the sum runs over all combinations of the indices ay, ..., @; occur-
ring in the definition of U,.

It is apparently true that U, is a closed set, U; D U 4, D Sp, and if

Lo}
we put U = II U, then U is a closed set, U; D Sp U is a perfect set, as
i=P
any interval I* contains at least two mutually disjoint, intervals Ii+2

) 1
and |I?| < =
Now we prove an auxiliary theorem:

2,21, U = Sp (and therefore Hmf(U) = Hmf(Sp)).

Proof: Let  be an irrational number, x ¢ U. Then x¢Sp for,
according to the definition of the sets U, its partial denominators fulfil
the conditions (2,08). But U cannot contain any rational number. For
to each rational number y from the interval (0, 1) there exists an in-
terval I¢ in such a way that y is an end point of this interval. Then y
does not belong to U, ,.

Now we return to the proof of the Theorem III.

If Z is a finite or enumerable aggregate of intervals, we put

*) 0z = Sdif(dy)

where d; is the length of the i-th interval from the aggregate Z and in
(*) the sum runs over all intervals from the system Z.

Let Z be an arbitrarily chosen finite or enumerable aggregate of
open, intervals which covers U.

According to the known Borel theorem we may select a finite ag-
gregate Y of open intervals from the aggregate Z which covers U too.
From the aggregate ¥ we eliminate such intervales which have no
point in common with U. Instead of each interval I from the aggregate
Y which has at least one point in common with the set U we take a closed
interval L, the endpoints of which « and j are defined as follows:

x=1infz, xe¢l n U;

p=supz, el nU.
(Note: I n U contains infinitely many points, as U is a perfect set and
I is an open interval.) As U is a closed set, we have o ¢ U and f ¢ U

Let us denote by X this aggregate of closed intervals L. Consequent-
ly X is a finite aggregate of closed intervals the endpoints of which
belong to U and which covers U. Then it holds: ox < oy < 0.

157



In order to prove that Hmf(Sp) > 0 we shall use the following
auxiliary theorem:

2,22. To any interval L from the aggregate X there is a finite number
of intervals I ’(I “ Iza p ‘s, 4, > P) satisfying the following two con-
ditions:

P
1.LAUC X IF,
k=1 %

2. |L|. (L) = _I_K {1;"1 (L.

This auxiliary theorem will be proved at the end of this paragraph.
But first of all we shall use it to prove the relation:

Hmf(U) >0

According to the auxiliary theorem we take instead of the aggregate
X the finite aggregate of intervals I* mentioned in (22,2), if needed we
omit some intervals from the new aggregate and denote by W the ag-
gregate of intervals /¢ which fulfils the following conditions:

1. W covers U,
2. If Ii‘ eW, I:“’ eW, Iil + 122 then the inclusion I:l c I;ﬁ cannot
be true.
Evidently we have [by (22,2)]
1
64K 0" = ox-
If all numbers ¢ in, (2,22) are equal to P, then
ow = oyp (W= "Up).

If the equation ¢, = P is not true for all numbers ¢, from (2,22), we
rewrite the inequality (2,20), similarly as in the proof of the Theorem II.
¥ () —2
223, Ih, o] AUTE, oS BT L G AGTE L ). (2,28)

Let be I+t , an interval of the highest order belonging to W.
. Gy
Then all the 1nterva]s If;j,l...,az.,k, k=1,2,...,9%(q;) — 2 belong to W
as every interval If_:r’l_“. apk contains infinitely many points of U and

according to the second condition fulfilled by the aggregate W the
intervals IZ ~  Ii-1 R 4 ap do not belong to W (cf. (2,14)),
' . .

12 g
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From the aggregate W we get the aggregate W,, if we take instead
of the intervals I;:l oo £=1,2,...,9%(q;) — 2 the interval I’
LIRS ] i, .

a5 ..,az.'
Then we have

O, < Ope

If W, + U,, we use the same method for the aggregate W, as we
already used in the case of the system W. After a finite number of
steps we get W, = U, consequently oy, < o, and
1

2,24. —
24 64K

Op, < Oy (2,24)

As on the left side of the inequality (2,24) is a positive constant,
the relation Hmf(U) = 0 cannot be true.

Now we shall prove the auxiliary theorem (2,22).

Proof: By L let us denote an interval from the systeni X. There
i just one interval I? o, that fulfils the following conditions
10

RS
B) The inclusion Ig:’lwai, w2 L is not true for any k, k=1,2, ...
Apparently ¢ > P.

We shall distinguish three cases:

1. There is such an interval I+t . that L > [i+1
12 B

Let us denote by vt
u the least integer for that L o I '+,1 o

v the greatest integer for that L > I i+'1 a0

u’ the least integer for that L n I"rl v ot + 0

o' the greatest integer for that L n Ii+_1 e + 0

The intervals Iz:,l...,ai,k’ k=, '+ 1,..,0" apparently fulfil

the condition 1. of the theorem (2,22). Now we show that they fulfil the
condition, 2. too.

v

Z lI"+1 l — 'L(/’ - Pi + Pi—1 _ (vl + 1) pl+ Pi—1 —
ko ot gt qy (VD) g gy
N v+ 1 —u
(u'.q;+ qi—1) ((v" 4 1)g; + ¢:—1) ’
LIz 3 I, )= vl ,
Th=u T (. g;+ ¢i—y) (v + 1) ¢ + ¢i—1)
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2’
% llczz+,1..:, a4y k]

R PR v+ 1 —
»201 |Z] = vtl—u’ (2,251)
) (ug; + ¢i—1) (0 + 1) ¢, + q;—1) <6
(g + qi-) (V' + 1) g+ qiy) =
1
2.959 f(II;:'I'"'“i' wl) < ! ((")’ it qi—y) (0 + 1) g5 + qi—l)) <
’ (L)) = / ( 1 ) =
q:¢: + 9i—1)
( 1 ) (2,252)
< ! 9°9:) 9] _ g
- 1
/(@)
as '
L < '13;1, ...,ail’ v+ 2<9%(g0), 0< iy < g5
Hence
2,953 i BT el HUEEE o D S

Qs o) . (2,253)
e .
< et B el

In the other two cases the inclusion L > It*1 . is false for any
integer k. Apparently there is an integer » in such a way that
Ln ]Z:,l...,ai,n #: ﬂ ’# Ig+1...,ai,1c+1 nL

17

and Lot =@ forn+k+ntl
12 0 B
2. Let the following inequality take place:
1
L| > |Ii+2 — )
= il ((n+ 2) ¢i + ¢i—y) (21 + 3) ¢; + 29;—,)
Then we may replace the interval L by the intervals Ii+t .=
1 G
=n,n+ 1. !
n+1 1
i+ .
. En etk ol _ L oAl
|L| !Igr,z...,ai, 'n+1,1i
_ A+ D i+ Gimn) (@04 3) g 200m0) _ M 3P
(ng; + qi—y) (m + 1) ¢: + ¢s—) n? =
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2

ILI<2 {It+1 i:

Qs oos Gy

(g + gimy) (R + 1) g5+ qi—y)

1

f(llg:,l...,ai, n+1“ < / (((n -+

1)+ 9i-1)

(n+2)gq; + %-1))

LD

2

! ((”%‘ + ¢i—) ((»+

1 2

f 2(1_{_2)2 (ng;)

) ¢; + ¢:-1)) )

|

< . <K
/(i
(ng.)?

and therefore
2,26 L gl Ii+1 [ e+ h<

. - [+ | ( i+

s Ta, o, a, k0 s By k
64K _, 4 i 1 e (2,26)
n +
< e M2 o) B (220 4l < 121 (LD
Let us turn to the last case characterised by the relation:
3. L < IIf;:,g...,az., e, 10"
i+1 i+1
:_ a,..,,n+1 { Q80 {
i+2 i+2 (+2 +2
|‘,a,...,a,-,n+1,1 / . | ,a,,,.. a1 l‘.,2 1 e |
] T T LI | T T L |
3
IH -.aq,n 1,1
—t
a 4

Let us suppose that = is even. Then according to (2,03), (2,04) and
(2,13) it follows that (see the figure)

i+1 1 1
I 1, ceey @y M1 preceds IH‘ s @y N
it i+2
I 1' .va, 1,5 Preceds I} oy 1R
i+ i+3
I 1» By Ty 1, %41 preceds Ial, s Gy n,1, k"
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¢+1 i+2
According to our assumptions x e [*1 4 ni1 and f e I w2, a1

v,+ i+3
andtherelsaua,nda,vsothatzxel ,a. n+1,u’/3 el? a1, o

Now we show that all the 1ntervals If;”r? @ nal, k =w,u-41,...
12 e Gy M, .

=g (91+1) —2 and Ii+’3 ,al,n,l,v k= v, v + .., g+(Qi+2) -2
Whlch have at least one pomt in common with the interval [«, 8] fulfil
the conditions of the theorem (2,22).

ot(g, ) —2 )
,I;t‘..,a.n-yl,kl 2 llzﬁz...,a.,n+1,k
E=u 1 i < —y i .
Iz =Ta
DI
. Gitq((w + 1) @41+ 42)
= < 3.
Qi1 (i1 + €2)
Similarly
g (qHz) 2
2 I 2+,3 QN1 Icl

< 3.

IZ|

The shortest from these intervals is either I i3 vapm 1,0t g3 OF

I': g m1, 0y, -2 Let us denote it by I*.
(|13 yay 1,0t )2 2 f(lfi*ﬁ sapn, 1, 0He, -sl)
f”LI) = l‘[l+, ,az.,n,lf) B

1
_ / (((g+(9i+2) — 2) Qo+ Giv1) ((GT(Gite) — 1) Givo + Qi+1)) <

Git+2(Qita + Git1)
=P ) _ g
- 1
. qz+2
-and similarly
i+2 Z
I(JI g3 o0e O n+1, g+(ql.+l)—2]z g f(,l :-, ey By n+l1, g+(a1+1) 2‘) <

AL -
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Consequently
()

<K
(T
and
1 [7H(g ) —2
2,27. 6_4E{ L2 iIH'z. "3, ntl, el - FOIE2 1o e Oy n+1.k|
o+, ) —2
+ k§” |I'+, R n,1, kl f o2 By n,1, kl)} (2’27)

gar TUNEIGE opmen, sl + DL 1} = 1L LY.

10 10

The auxiliary theorem (2,22) is true according to (2,251), (2,252),
(2,253), (2,26) and (2,27).

§ 3. The proof of the Theorem I.

We put
1

Va
2 d
hid) = eXP{ﬁfw gaiw}

2,04 dz
fod) = ex p{l 025 fx.g(x)}

and then we prove by means of the Theorems IT and III that

3,01. the inequality Hmf,(TT,) << oo holfs for any positive integers
m, r and that

3,02. there is such a positive integer P that the inequality
Hmf,(S,) > 0 takes place.

Tt follows according to (1,05) that Hmf, (7'r,) = 0and that Hmf,(S,) =
= o0 and the Theorem I is now proved (cf. (2,12)).

First of all we make us sure that the functions f;(d) (: = 1, 2, 3, 4)
fulfil the suppositions (1,02).

Apparently the functions f;(d) increase steadily to infinity as d
tends to zero. Now we prove that d . f(d) — 0 steadily with d — 0. We
put ¢ = d—#, consequently g — c0.

163



Suppose that 0 < ¢ < 3. As g(x) > 4, we have

q
1 da 1 C
— e 3] il
¢ eXP{c fﬂc-g(%)}S ra exP{ € } q
w

and therefore d . f;(d) — co with d — 0.
Suppose that ¢; > g, > w. Then

/3% Q2 /43
1 exp{ﬁf da } 1 {cf da } (q2)2X {cf da }
— I —eX =[|=]e
a3 v.g9(x)) g3 P v . g(x) U2 P z.g(@)),
w qa
<[ orfpeg) - (3 <
h (91 P ng a1

and therefore d . f,(d) are monotonous functions. The proof that the
functions f,(d) fulfil the suppositions (1,02) is finished.

Now we prove (3,01) and (3,02).

We make us sure according to the assumptions made about the
function g (1,10) and according to the assumption of the Theorem I
(9(g) > 1000) that the function f; fulfils the inequality (2,18) and and
that the function f, fulfils the inequalities (2,19) and (2,20).

We choose P> w in such a way that the following inequality

IA

Z—%L 1]< 001, g<y< (o) +2).q¢  (3,04)

takes place for any ¢ > P. Then the following inequalities are true:

3,04.

3,05. 9(y) 1

R >0,99.0,998 > 0,98,9 << y < (9(q) + 2) . ¢ (3,05)

9(@)
a.A q.A
3,06. exp{ 2 f df )}< + QT(;%)—, 1<1<g(g) + 2. (3,06)

q.A

Proof: We put z= 229 f x—% and étart from the inequality

exp z<< 14 z(1+ 2) for 0 < z << 1. According to the mean value
theorem we have
2 lg(glg) + 2) 2 g(q) lgl. 002 2,9

L1+ g5 G S 1 5500 Tono < 0% < 35
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and therefore (2,06) is true.

(3,07) a%%;<LM4§y£@m+mq (3.07)
2 1gg(q) 2 .
2
(3,08) =3 T a3 <00 (3,08)

‘Now we show that the following inequality

i+t JEFDEFT+D
ox 2 dx < 2 dx
P 29) &g IR X ey
3,09. = X ° (3,09
Tr7 = T kF ORI D )
is true for ¢, ¢ > Pand ¢, 0 << ¢ << 1.
T+t
We divide the inequality by the expression ex 2 ____dx
equality by exp on eXpsg T 9@/
JEFDE + 1+
dx . .
then we replace the value exp { 59) v 9@ }by the following
AT re
greater terms
N ED )
2 da 11, (k6 (k+ 141
14+ = i
+23fx4m <lts5-7m ' 15
T ¥
where y does not depend on k (if ¢ is given).
Instead of (3,09) it is sufficient to prove
1 T 1
3,10. >3 +
T+¢ =2 EF)k+1+0)
(k40 (k+ 14 1) (3,10)
RS & 1+ ¢ ‘
28 .9 io1 b+ O+ 1+0)
1 1 1

Fro(kr1+t6 Fkirt kri1it¢
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and hence
"+§) 1 _ 1 . 1 <
r=1(k+8)(+1410) 1+¢ gHg)+ 1+t =
1 1
< — .
=141t gl@+2

The second sum we estimate similarly

o B+ (k41110

i@ 8 T+¢ B
ko1 (b8 (k+ L+ 0
T ki [ 1 1
TeTi 1+t Ne+¢ EFr1+¢
1@+ gt + 149 LR
__lg(2+t)__g 14+¢ y+(q)glc__1ﬂ
14t gt + 14t k=2 k-t
g2+ 7@ 1 lg(2 + 1) 2
<7 TRE G TGty 1t TTRe s
<lg21—}~2<2’7
1 2,7

and consequently it is sufficient to prove that >
anenty v QT 2= 28.99)
or, what is the same, that

9(y) 2,7

g1+ .(']'(q—)

but this is true according to (3,05) and so (3,01) follows from Theorem II.
Now we prove (3,02). First of all there is
q.9(0)

. 2,04 do
o 1,025 m) 2,04 o de
w H
= exp{ f } =
q 1,025 x.g(x
< 2,04 dz q 9(@)
P50z J 7 9@

w

= ex &04 11
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7<y<q.9(9
and the last expression is really bounded.

We show that the inequality

T3 NEFHE + 1+

< 2,04 do ox 2,04 dx

1025 ) = 9@ -2 P11.025 J = 9

3,11. W < = L 3,11)
Tt = 2 T EraeTirn

is satisfied.

Similarly as in the preceding case we divide the inequality by the

dTF¢
2,04 dx
. R . litv o 1Lz
expression eXP{l, 095 f o g(x)} and use the inequality exp z > 1+
w
(=>0),
JETHE+L T
dx ~ 1 | (k+8)(k+ 141
= g(@) =2 ¢ T+t '
AT+t

Instead of (3,11) it suffices to prove

ot@) —2
3,12, !

] 1
I B e i
1,02 1 ¢*@—2  (k41t)(k+ 14 1) (3,12)
ﬁ%aakﬁll 1117
(k4 (kT4 1)
gF@)—2 1 1 1 -
P (- 1w s Wy e ey e
= 1 . 1

=14+t glg)—2

The estimation of the second sum will be rather longer:

o O E L1+

st@—2 8 1+t
13. — 3,13
313 2 TETAELIED ®.18)
_a'ﬂ(qz):—zl 4+t (k+14+8( 1 1 _
BT 1+ ¢ k+i  k+1+p)
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g L@ —24+06" @141
g2+t 14¢ I
141 g7 (@) —1+1

Q-2 1 E+1+¢

P R 3.13)
2 2 2
mb+k—l+J>k~l+t*M—l+W
and so (3,13) is greater than
o gt(q)—2
s1a ECED 2l 1 _
1+4¢ 9(q) — 2 p=2 (k—1+1)((k+1)
7t@) —2 1 (3,14)
2 X
k=2 (E—1+402(k-+1)
g +(42):— 2 1
oy G—IFIPGETY
1 ‘ (/+(qz):—2 1
STFRCTH | w2y F—24hk—1+0kTD
1 1L 1
F e D= 1FhkFD  2k—2Ft k=13t
1 1
+§k+t
and therefore
aﬂ%— 2 1 1
oy B IFORGTD S (OF0rELn
11 11
+§1+t*§2+t
and consequently 3,14 is greater than
3w‘1a2+ty_2@mm_+ 2 2 2 .
’ 1+¢ g@—2 1+t glg—3 @A+22+1)
LI 3,15
_1+t+2+t (3.15)

and it is sufficient to prove, instead of (3,12), the inequality
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3,16.

gly) - 1,02 {lg<2+t) 1 1

glg) —2=1,025| 1+¢ A

_ 2 o 21gg(q) . 2 } (3,16)
A+022+9H g@—2 gl —3
According to (3,07) and (3,08) we get

9(y) 2 1gg(q) 2 ,
- 1,02, + ~ < 0,02.
gq) — 2 9(q)—2  g(g) — 3
Further we have
lg2+1t)  1g3 1 1 2 1

ir: — 2 1+t+ Si 7 TFEELy - 2

and (3,16) would follow from

= 1,025 2

but this inequality is true as Ig8 > 1,09 and (3,02) follows from the
Theorem III.

1,02 103 4+ 1
3,17. 1,02 < _’O_{lf-’g—i — o,oz}; (3,17)

§ 4. Discussion of a certain condition concerning g(q)-

In order to prove the Theorem I we wanted the following (partial)
condition:«

g(q) is defined for ¢ = w and continuous,

&g@ —~ 1 with ¢-» o0, () is an arbitrary function ful-
9.9
filling the inequality 1 < A(g) < g(q) + 2.

There is a question whether this condition does not restrict the set
of admissible functions too strongly. To this question we can give only
the answer contained in the theorems (4,03) and (4,04).

We shall say that
4,01. the function g(x) has the property A, if it is defined for
x> w, if it is positive, increasing and if there is an integer » in such
xl
a way that g(x) < lgrx and if g_(;%_) — 1 with 2 — 00 (w is an

arbitrary constant).
We shall say that
4,02. the function g(x) has the property B, if it is defined for

@ 2> w (w is an arbitrary constant), if it is continuous, positive, if the
function
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g'(x)
o) x . lglgx

T(x) =

is defined and continuous for x > w (with the possﬂole exception of

points not having any point of accumulation), if there is such an integer
n, that

Iglgz
() < m _l—g;
and if

7(x) = 0 with « — o0.

4,03. If the function g has the property 4, then g(@.h(z)) 1

with ¢ - 00, 1 < A(x) < g(x) + 2. e
"~ Proof: Let us put for x > e
Xy =2, Tp= T 1gx;,_, k=2,3,...,n+4 2
Then we have x,4, > 2 Ig*(x) + 2 for large  and
1 < 9@ M@) _ ge(lgte 4 2)

g(xn-(-l) s 1
= 9@ g(x) g(@) '

4,04. If the function g(z) has the property B, then 9(‘;-( ;‘)(x))
forz - 00,1 < h@) < g(@) + 2.

Proof: We can write
x

_ T(q)
g(x) = exp { f PRI dg + 01},

. h(z) z(C,.1g" 2 + 2)

T(g) (2) dg C,
‘f PREEAE lglg” f g =" )( lglgx)
z z

where ¢(x) = sup|z(g)], 2 S ¢ < = . (C,lgna -+ 2).
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4,05. Let us put lg,q=1lgg, lggpr=1glgwe, k=1,2,..,
glg) = lgziq . lg“;;q. .lg“’zq. Among the exponents «,...,%, let
( n,
o; be the first one different from zero and let us suppose that «; > 0;
then g(g) is an increasing function.

We choose the interval of definition (w, oo0) in such a way that
9(g - h(g))

(9) > 1000, lg¢yg > 1. Then
9(q) g 7@

— 1 for q¢—+ c0. Proof can
be made by means of 4,03.

(g.h(9)

It may be true that g — 1 with ¢— o0, even of the

9(9)
function g is not monotonous and the following conditions take place:
4,06. timsup 22 — ¢ with ¢ oo (4,66)
lg(q)

liminfg(¢q) = C with ¢ — oo, C > 1000.

Such a function can be found by means of (4,04).

We put
Iglgg
= —_ y < 2 q,
T(Q) 2 lgq fOI Q2n-1 = q ~ an
Igl
7(q) = — 2—g1g—gqg for ¢y, < ¢ < oty n=1,2,...
and
q
1 dx
Ig {59@)} =2. f alge T <9< Gons
ton_y *

1 dx
Ig {—(5 g(q)} = lglggen — 2. f wlge <0< Gontr-

Zon ’

The numbers ¢;. g, ... are defined recurrently in such a way that
¢(g) is a continuous function:
%on

x
= lglggsn,

- 9 -
71 = oxpe, z gz

consequently

Y9n-1

1ggy,
@on = (Qan—1) -1
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consequently

Ton+1

dx

lggsn — @ =

T9n

bl

Qon+1 = (%n)vlng"-

Apparently ¢, — o0 with # — c0 and the graph ot the function is
shown in the figure:

e / 9@

N

l

2

q.

9 % %

Let ¢,(g) and g,(g) be two functions increasing to infinity and let us
suppose that

g5(q)
91(9)

— c0 with ¢ — 0.

Now we seek conditions under which a function f can be found in such
a way that it distinguishes the sets @, and @, according to these
respective relations:

Hmf(Qg,) = 0 and Hmf(€,,) = co.

This question is answered by

Theorem IV. Let g,(q) > 103 and g,(g9) > 103 be two functions ful-
filling the assumptions (1,10); further let both functions g, and g, have the
property A or B and let us suppose that

If we put

then
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g2(q)

— 00 with ¢ —
71(9) 1

1

Va
) — exp{ f . L—}
z. Vgl(w) " g2()

“w

Hmf(Qg,' = 0 and Hmf(Qg,) = o0.



Proof: If g, and g, have the property A(B), then Vﬁg, has the
property A(B) too and for ¢ large enough we have

q ¢ q
» da - * da - 2 f da
Ve~ ) iV 3w
w w w

and the proof can be finished by means of (4,03), (4,04), Theorem I and
(1,05).

§ 5. The dimension of some sets.

Theorem V. Let us put g(q) = lg*g, 0 < o < 1;

1
f(d) = oxp ——, — 1 <5< 0.
1gs T
Then
dim@, =~ — 1.

More generally, let us consider the following function

(»2 o d,"_
g(q) = 1g"1q . lg(zz)q ..... 1gm)q

w
o0

where g(q) satisfies the following conditions: f diverges and

dx
z_g(@)
g(q) - o0 as g — oo.

The above conditions are satisfied if and only if the following
conditions are fulfilled:

1. There is a § such that «; & 0, if j is the least index with this
property, theno; > 0.

2. For the least k with «; + 1 we have «;, << 1.

(We may and we shall suppose that there is an oy, % 1; if not, we
replace n by n 4+ 1 and we put «,4+; = 0.)

The functions f,(d) which will be considered in connection with the
function ¢(q) are all functions of the form

1
]‘s(d)zexpl —f, 5= (81,85 .., &)
]"11 ]szl lsr}_
fad Bad T Bmd

for which f,(d) - o0, df,(d) -0 as d — 0. It is clear, that these con-
ditions are satisfied if and only if

1. There is a j such that s; & 0; if j is the least index with this
property, then s; < 0.
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2. For the least k& with s;, = — 1 we have s;, > — 1. (If all s;, are
— 1, we replace by » 4+ 1 and put s,4; = 0.)
This set of indices is ordered by the relation: we put s” > s'if and

t
only if ;"”(Z)) — 0 for d — 0. Then we can state the
Y
TheoremVI. dim@, = s*=(0,0,...,0, &, — 1, &Xppq,...,%,) of
M=Gy=...=0p_, =1, &, <<1l. (If x; <1, then s*=(x;—1,

Olgy veeyBKy.)
Proof: According to (4,05) we may use the Theorem I and according
to this theorem and (1,04) all we have to prove is

q

xg(x)

w

1
.3
f dz

xg(x)

1
. ()

— 00 for ¢ — o0 if s > s* and

— 0 for ¢ > o0 if s < s*

As it is
1
G,
0 < ¢(8) < ———==- < 2 for glarge enough, it will be sufficient to prove
lgfs (;2
q
f da
xg ()
5,1. w——l——> o for ¢ > o0 if s > s* (5,1)
lgfs ('é)
and’
1
lgfs (&)
5,2. ——— > ® for ¢g— o0 if s <s*. (5,2)
f dz
xg(x)
w
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Now we calculate the relations:

d 1 1
53. —lgfsl-]= — where lim: =1—«,,¢— 0. (5,3
3 s (q) wg"@ ¥1(@) »q (5.3)

5,4. If s < s*, then diqlgf“( ) wo(q) where (5,4)

1) 1

9 99(9)
limy,(g) = o0, ¢-— c0.

5,5. If s > s*, then y,(q) d lgf (1)— 1 where (5,5)

" | a3 ¥ \e) T e ’
limy,(g) = o0, g -+ co.

According to (5,3) and (3,04) the functions f, fulfil the conditions
(1,02).

(5,1) and (5,2) can, be proved according to (5,4), (5,5) and according
to the following lemma:

5,6. Let h, and h, be positive integrable functions defined for
« 2> X. Let us suppose that

h
L(x—)-—> o0 with # — oo and that
fo()

q
Jhy(x) dz — oo with ¢ — 0.
z

Let C; and C, be given constants.
Then we have

q

Jhy(x) de + C,
“—-—-q — oo for ¢ —» oo.
Jho(x) dx 4 O,
z

§ 6. g is a constant.

In the preceding paragraph we investigated special functions g(g)
increasing towards infinity. In this paragraph we assume g to be a con-
stant. The greatest integer less or equal to g we denote again by g+.
Now we prove

Theorem VII. Let us put fy(d) = d*=1, 0 < s < 1. Then we have

1
H’m'fs,(Qa) < 0, & >1— 4—9: 9_2 10

0,99
Hinfo(Qg) >0, 5, <1— =, g > 1000.
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Proof: Even in this case we can use the Theorems IT and III and
in the same way like in the preceding text we find that the first part of
the Theorem VII will be proved, if we prove the following inequality

1
. 1 1 ad
o rile) 2
_L (8,1)

gt 1 ( 1 ) 49

5 .
o1 (k140 \gk+1) (k4141
By means of an easy arrangement we get

- €

exp{] g B0 (k14 t)}

4g 1+1¢
6,2. >
’ It 2, (k40 (k+ 1+ 1)

We use the inequality: expr <14+ 2(1+ ) if 0 <2 << 1 and con-
sequently we have

1

(6,2)

s

Lok +t)y(k+14¢
“XP{;‘glg( + )1(++t + >}<IJr
L (k4 (k+1+1) Iglg* 4 2)
t gl T {1 + }
Instead of (6,2) it is sufticient to prove
1 9 1
6,3. = 2
R N R s

(k+1) (k+1+1)

+ 18
1 lg(g + 2)) < 1+¢
4+ —1+ - )
49( _*, 2g9 )k§1 k+t)(k+1+10) (6,3)

The sums in (6,3) will be estimated in the same way like in (3,10)
and so it suffices to prove

1 1 lg(g + 2)| .
6,4. — > z (1 + —-2_g—) 2,7 ) (6,4)

© or whatis the same
2,7 2 Iglg + 2)
= —— g I S =AMt
'=y (1 * g) ( Ty
and this inequality is true for g > 10.
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The second part of the Theorem VII will be proved, if we prove the
inequality:
0,99
q

1 1
o e sl S
_9:”3? (6,5)

R -
= S kT Ok F L0 \@hE 0 kF 1)
It is sufficient to prove

Zexp{9§21g‘k*‘”(k4‘“*t)}

1 o — 11¢ »
R ETOETIFD (.5
or even
6,7. Loy 1 +
e P 5y )
(k1) (k+141) (6,7)
L 099 e g 1+ ¢

g w2 kFoEk+140

The sums in (6,7) will be estimated in the same way as in (3,12):

1 0,99 [lg(2 +#) + 1 1
8.8. g-—2§ g{ i+ T zvi
(6.8)
. 2 o 2 _21gg}
A+2@2+y 9g—3 g—2

1§0,99.(1—§)(1g3+1— 2 _2Igg)

2 g—3 g— 2
1<0,99. (1 2 (1,04 — 0,02
— Y . m B > )'

The result of the Theorem VII can be stated in the following way:

Theorem VI Let us put f(d) = ds=1, 0 < s < 1, g > 1.000. Then

we have
1— (ﬁ??g dim@, < 1 —-l.
g = = 49

177



LITERATURE.

{1] A. Khintchine: Zur metrischen Theorie der diophantischen Approximationen,
Mathematische Zeitschrift 24 (1926), 706—714.

{2] Vojtéch Jarnik: Diophantische Approximationen und Hausdorffsches Mass,
MaremaTuueckuit CoopHuK 36 (1929), 371—382.

{31 Vojtéch Jarnék: Uber die simultanen diophantischen Approximationen, Mathe-
matische Zeitschrift 33 (1931), 505—543.

{4] Vojtéch Jarnik: Zur metrischen Theorie der diophantischen Approximationen,
Prace matematyczno-fizyezne, 36 (1928-29), 91—106.

178



		webmaster@dml.cz
	2020-07-02T16:49:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




