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TWO REMARKS ON WEAK COMPACTNESS

VLASTIMIL PTAK, Praha.

(Received June 11, 1955.)

It is the purpose of the present paper to show that a method deve-
loped by the author in [6] may be applied without essential modific-
ations to obtain generalizations of theorem (2,1) of [6] and of a recent
result of E. E. FLoyp and V. L. KLEE.

According to a wellknown theorem [1], a closed convex subset B of a com-
plete convex topological linear space is weakly compact if and only if every
decreasing sequence of nonvoid closed convex subsets €, c B has a nonempty
intersection. In a recent paper [3], E. E. FLoyp and V. L. KLEE have establish-
ed a similar result with the weaker assumption that C, be closed linear mani-
folds. In a paper devoted to the investigation of the substance of theorems of
the Eberlein type, we have developed a method of proof which is particularly
well adapted to the discussion of questions concerning intersections of linear
manifolds. It is the purpose of the present paper to show that the method men-
tioned may be applied without essential modifications to obtain a still more
general result, which includes also that of [6]; the proof is considerably simpler.
The simplification of the proof is only a formal one, however.

The paper is divided into two sections. In the first part, we prove a theorem
analogous to that of [6] for sets which fulfil a certain condition (see condition (C')
below) concerning countable intersections of hypervarieties. This result is valid
even for nonconvex sets. In the second section we prove a similar theorem for
convex sets. The additional assumption of convexity enables us to replace
condition (C') by a still weaker one. The main idea of the proof rests the same,
a technical difficulty occuring here is overcome by a simple trick shaped after
the example of [3].

The notion of an almost continuous functional has been introduced in [5].
This paper and [6] should be consulted as far as terminology and notations
are concerned.
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§1.

If X is a linear space, we shall denote by F(X) the linear space of all linear
forms defined on X (the dual algébrique in the terminology of J. Dieudonné).
If f is a nonzero linear form defined on X and f a given real number, we shall
denote by H(f; f) the set of all z ¢ X for which f(x) = f. A set of this form will
be called a hypervariety, the term hyperplane being reserved for hypervarieties
of the form H(f; 0). We shall write frequently Z(f) for H(f; 0).

If X is a convex topological linear space, we shall denote by L(X) the space
of all linear functionals defined on X. If X is a given convex topological linear
space, we denote by R the space F(L(X)) equipped with the weak topology
corresponding to L(X). The space X (taken in its weak topology) may be con-
sidered as a subspace of R.

If B is an arbitrary bounded subset of X, it is easy to see that the closure of B
in R is compact. This fact will be frequently used and will not be repeated
hereafter.

Now let a convex topological linear space X be given. We shall be concerned
with subsets B ¢ X which fulfil one of the following two conditions.

(C) If r € R lies in the closure of B, and Yy, Y, ..., 18 an arbitrary sequence of
linear functionals on X, then there exists a point b e B such that by; = ry; for
every j.

(H) If H, is a sequence of closed hypervarieties in X such that B n H, n
N ... 0 H, is nonvoid for every natural n, then there exists a point b e B which
belongs to every H,.

First of all it is easy to see that both conditions (C) and (H) are consequences
of a condition analogous to (H) but with hypervarieties replaced by closed
halfspaces (i. e. sets of the form E[xy > p] with y ¢ L(X), y = 0 and f a recal

number). This condition is fulfilled e. g. in the case that B is weakly pseudo-
compact. The relation between properties (C) and (H) is more complicated.

(1,1) Let Bc X be a bounded set with property (C). Then B fulfills condi-
tion (H).

Proof. Let y, be a sequence of linear functionals on X and let f, be a se-
quence of real numbers such that, for every natural m, there exists a b,, ¢ B
such that b,y; = f; for j = 1, 2, ..., m. Let R be the space F(L(X)) equipped
with the weak topology corresponding to L(X). Since B is bounded, the closure
of B in R is compact. Let B,, be the closure (in R) of the set consisting of the
points b, 0,41, - ... There exists anr ¢ R whichliesinevery B,,. We have B,y =
= B,, 50 that ry,, = B,.. Since 7 lies in the closure of B, there exists a b ¢ B which
belongs to H(y,,; ry,) for every m. This completes the proof.

The following example shows that the assumption that B be bounded is
essential in the preceding lemma.
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Let X be the space of all sequences « of real numbers such that lim z, = 0.
In X, we introduce the norm |#| = max |z,| so that X becomes a complete
normed linear space.

For every natural » we define the unit vector e, as follows

pn=1, e, =0 for k +n.
Further, let f, e L(X) be defined By the relation e,f, = d;,. For every natural n,
let b, = X' te,. The set consisting of all b, will be denoted by B. Let R be the

j=1
space F(L(X)) equipped with the weak topology corresponding to L(X).

We are going to show that B is closed in R. To see that, take an r ¢ R which
belongs to the closure. of B. For every b ¢ B, we have bf, = 1. It follows that
rf, = 1. For every k > 1, the set Bf, consists of exactly two points 0 and k.
It follows that, for every k > 1, we have either 7f, = 0 or rf, = k.

Letz e L(X)be defined as the sum 2 Elg fr-Since b,z = 2 75’ the set Bz has no
k=1 =1

limit point. It follows that there exists a natural » such that rz = b,z. Let
k > mn. There exists a point b ¢ B such that

- <y O =nfl < for 1<j<n, |0 Nkl <}

+ 2(n + 1)’
From the first of these relations, we obtain that b = b,. Since b,f, = 0 for
k > n, we obtain that rf, = 0, and, at the same time, that rf, = j for 1 < § <
< n. We have thus shown that rf; = b, for every k. Now let y be an arbitrary
member of L(X). We are going to show that ry = b,y. Let «; = e;y and let us
define y, by the relation

y=ofr + oo+ afn 4+ Yo

Since b,y, = 0, it follows that ry = b,y + ry,. Suppose that ry, + 0. Then
there exists a point b ¢ B such that

](b — 1) ?/0] < %17?0] s 1(b —7) fn+1| <%
Since 7f,,.,; = 0, it follows from the second relation that bf,,, = 0 so that b is
one of the elements by, b,, ..., b,. Every one of these points fulfills, however, the
relation b, = 0, which is a contradiction with the first inequality. Hence
71, = 0 which concludes the proof.
Since B is closed in R, condition (C)is fulfilled trivially for B. On the other

hand, we have
byeBn H(f;;1) 0 ... 0 H(f,; m)

for every natural n and, at the same time, the intersection of the sequence
H(f,; n) is empty.
Now we are able to give the proof of the main result of this section. We shall
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begin with some simple remarks. They will be given without proof here since,
besides being trivial, they have been discussed in detail in [6].

Let r ¢ R be such an element that, for every sequence ¥, ¥s, ... of linear
functionals on X, there exists an « ¢ X which fulfills xy; = ry, foreverynaturaly.
It is easy to see that » behaves as a continuous function as far as those properties
are concerned which involve countable sets of arguments only. Especially it
follows that r is bounded and attains its maximum value on every weakly com-
pact subset of L(X).

The proof of the following theorem is based on the same idea as that used
in [6].

(1,2) Theorem. Let B c X be a bounded set with property (O). Let re R
belong to the closure of B. Then r is an almost continuous functional on L(X).

Proof. Let U be an arbitrary neighbourhood of zero in X. We are going
to show that there exists a sequence b, ¢ B with the following property. If
y e U* and b,y = 0 for every n, then ry = 0. The construction of the sequence
b, will proceed by a simple induction.

The set U* being weakly compact, there exists a point y, e U* such that

ry, =maxry, yeU*.
Since B has property (C), a point b; e B may be found such that b,y, = ry;.
The set U* n Z(b,) being weakly compact, there exists a point y, e U* n
0 Z(b,) such that
ry, =maxry, yeU*n Zb,).
Since B has property (C), a point b, ¢ B may be found such that b,y, = ry, and
byyy = 1Y,
Suppose now that the elements b; e B and y; e U* have been already defined
for 1 < 4, § < n so that the following relations are fulfilled
by;=ry; for j < i, by, =0 forj>i,
ry; =maxry, yeU* n Z(b) n...0 Z(b;_,).
We choose first a point y,,, ¢ U* n Z(b;) n ... 0 Z(b,) such that
Yy =maxry, yeU* 0 Zb) n...0Zb,)

and take a b, ¢ B which fulfills the relations b,,,,5; = ry; for 1 <j < n + L
This completes the induction.

Let us show now that lim ry, = 0. Let y, be a weak limit point of the se-
quence ¥,,. If 7 is a fixed natural number, we have by, = 0 for j > 4. It follows
that by, = 0 for every 3. Let Hy = H(y,; 0) and for every natural j, let H; =
= H(y;,; ry;). For every natural m, the point b,, belongs to the intersection

BnHynH;n...0nH,.
Now B is bounded and fulfills condition (C). It follows from the preceding lem-
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ma that B has property (H). Hence there exists a point b e B n H, which be-
longs to every H;. Since y, is a weak limit point of y,, the value by, is a limit
point of the sequence by,,. Since by, = ry, and ry, is a nonincreasing sequence
of nonnegative numbers, we have
0 = by, = limry, .

Now we are going to show that 7 is continuous on U*. Let ¢ be an arbitrary
positive number. Let us choose n so that ry, < }e. There are two cases possible.

1° We have ry,, = 0. In this case » may be expressed as a linear combination
of by, ..., b, and the proof is complete.

2° We have ry, > 0. Let y e U*. Let

[ |
z=2 — by — b;y) y; -

i=17Y;
(For the sake of convenience, we put b, = 0.) Clearly, we have b,z = b,y for
t=1,2,...,n and, at the same time, rz = b,y.

2
Let o = max |b,y|. Asimple estimation of the coefficients shows that z e "o U*,

1=i<n "Yn

so that y — ze(l + %S) U*. We have ry = rz + r(y — 2) = b,y + r(y — 2).
Since b,(y —2) =0 for i =1,2,...,n, we have |r(y —2)| < (1 + %ZE) TY -
We obtain thus the following estimate ’

lry] < o + 1y, + 2n0 < }e + 3no .
We have thus proved the following proposition: if y e U* and |by| < % ¢ for
t=1,2,...,n, then |ry| < &. This completes the proof.

We have thus shown that, in a complete space X, the closure of a bounded set
with property (C) is weakly compact. It is natural to ask whether, perhaps,
boundedness and property (C) are not sufficient for the set B to be closed, at
least in the case of a normed space.

The following example shows that this question has to be answered in the
negative.

(1,3) Let us denote by P the set of all real numbers 0 < ¢ < 1. Let us denote
by X the linear space of all real functions  defined on P and such that, for
every ¢ > 0, the set E[te P, |x(t)] = €] is finite. It follows that every z ¢ X is

t

bounded so that it is possible to introduce a norm in X in the following manner
|| = max |z(t)] .

It is easy to see that the space X is complete in this norm.
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To every x ¢ X there exists a countable S(z) c P such that x(¢) = 0 for every ¢
which does not belong to S(z).

To every p ¢ P we introduce a point e, ¢ X, the unit vector corresponding to p,
as follows

ep(p) =1, e,,(t) =0

for every te P, ¢t = p.

The set of all unit vectors will be denoted by M.

Let y be a linear functional on X. For every ¢ e P, let us put y(f) = e, . y. Let
ty, ..., t, be arbitrary points of P distinct from each other. Let &, = sign y(¢,).
Let = Xee,, so that |z| < 1. We have then

Zlyt)| = Ze,y(t,) = (Zee) y = vy < ly| .

0<t=1
y(¢) = 0 for every ¢ which does not belong to this sequence. We are going to
show that, for every x ¢ X, we have

wy = T at) y(t) .

0<t<1

For every natural m, let «,, = 2 x(t;) ¢,. Let ¢ > 0. Let us choose m such that,
i<m
x(t;)| < &, and at the same time that X' |y(¢;)| < e.
i>m

for ¢+ > m we should have

We have then |z — x,,| < ¢ so that
x?/ == xmy + (z h Z,,,) ?/ == Zx(tz) y(tt) + @ S‘y! =
i=m

= 2 a(t)y(t) + O ela| + O ely|

0=1=1
which proves our assertion.

Let e, be an arbitrary sequence of unit vectors. If there does not exists a unit
vector e such that e, = e for infinitely many n, a subsequence ¢, may be found
such that the corresponding points ¢, are all distinet from each other. Let y be
an arbitrary linear functional on X. We are going to show that e,y — 0. This,
however, is clear since e,y = y(t,) and the series Z'|y(¢,)| converges. It follows
that the set M v (0) is countably compact in the weak topology. According
to a general theorem, the closed convex envelope B of M u (0) is weakly
compact.

We intend to show now that the closed convex envelope of M coincides with
B. To see that, it is sufiicient to show that the point 0 belongs to the weak clo-
sure of M. Let y,, ..., 4, be arbitrary linear functionals on X, let ¢ be an
arbitrary positive number. We are going to show that there exists a point
e, € M such that |e,y;| < e for every © = 1, 2, ..., n. Clearly it is sufficient to
take p outside the set S(y;) U ... U S(y,) and we have e,y; = 0.
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We are going to show now that the set B coincides with the set B of all
x ¢ X which fulfil the following two conditions:
1° z(t) > 0 for every te P,
20 X x(t) < 1.
0=t=1
The set B is clearly convex. Let us show that B is closed. Suppose that x, does

not belong to B. There are two cases possible. (1) There exists a point £ ¢ Psuch
that z,(t) << 0. If 4 is the linear functional on X defined by y(¢) = 1, y(s) =0

for s + ¢, we have then By > 0 and x5 < 0, so that z, cannot belong to the
closure of B. (2) We have z,(t) > 0 for every £ but Zx(f) > 1 (this, of course, is
meant to include the case when the series Xx(f) is divergent). We arrange the
points ¢ where z(f) & 9 in a sequence ¢,. There exists a.natural m such that
o = 2 x4(t;) > 1. Let f;, be unit functionals corresponding to the points #,. Let «

i=m

fulfil the inequalities |(x — %) fi| < g 2_;” ! for k=1,2,...,m. We have then
—1 c—1 l1+o
z z —m? -0 — -
k;mx(tlc) zﬁémxo(tk) mm o 5 5 > 1

s0 that # cannot belong to B. The set B is therefore closed.
It follows that B c B. Suppose there exists a point , ¢ B and a linear functio-
nal ¥ on X such that
sup My < zyy
It follows that max Y(8)<< xyy. Since zy(t)= 0, we have xy(f) y(t) < x4(2) .
<t<1

. max y(t), so that
0si=1
sup y(t) < 2xo(t) y(t) < sup y(t) 2y(t) < sup y(?)
which.is a contradiction which proves that B = B.
Let us denote by B; the set of all ¢ B which fulfil the relation X x(f) = 1.

0=t<1
Let b e B and let y,, 7/,, ... be an arbitrary sequence of linear functionals on X.

Let t* € P be chosen so that ¢* does not belong to the set u S(y;) u S(b). Let
7

b, e X be defined by the relations b,(¢) = b(¢) for every ¢ = t* and b,(t*) =
=1 — X b(¢). Clearly b, € B, and b,y; = by, for every natural j.

0=<t=<1

Clearly the set B, is convex. Let r be a linear form defined on L(X) which lies
in the weak closure of B;. The weak closure of B, coincides, however, with B.

To see that, we note that M c B, c B and B is the closed convex envelope
of M.

It follows that r € B so that, for every sequence y,, ¥,, ..., there exists a point
b, e B, which fulfills

rY; = byy;
for every j so that B, fulfills condition (C).
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We conclude with a remark concerning pseudocompact sets. If B c X is
pseudocompact in the weak topology, it is easy to see that B is bounded and
possesses property (C). We see thus that the theorem (2,1) of [6] is contained
in the present result. ‘

§ 2.

Let us examine now more closely what conclusions may be drawn from the
formally (and, as may be easily seen, essentially) weaker assumption (H). Let B
be a set of property (H) and r € R belong to the weak closure of B. Let 44, ¥,, ...
be a sequence of linear functionals on X. It is easy to see that only two cases
are possible:

1° There exists a b ¢ B which belongs to every H(y;; ry;),

2° There exists a natural » such that B n H(y; ry,) 0 ... 0 H(y,; ry,) = 0.
Unfortunately enough, this second disagreable eventuality may occur even
with the most innocent sets; this is a source of additional complications which
are, however, of a purely formal character.

In the present section we intend to show that a result analogous to theorem
(1,2) may be proved even under the weaker assumptions of boundedness and
property (H). We must limit ourselves, however, to the case of a convex set B.

As a matter of fact, the main idea of the proof resting the same as in theorem
(1,2), we must — for purely technical reasons — follow the example of Floyd and
Klee in introducing a kind of a ,,nonsupport point”’. The construction of a such
a point necessitates the introduction of the additional assumption of con-
vexity. ‘

We begin with the construction of a point which is — in a certain sense — an
inner point of B with respect to every linear combination of linear functionals
belonging to a given countable set.

(2,1) Let B be a bounded convex subset of X which possesses property (H). Let
Y1s Y, - -- De @ sequence of points of Y. Then there exists a point by e B with the
following property: if y is a functional of the form y = wy, + ... + 0.y, and
boy lies on the boundary of By, then By is a one point set.

Proof. We begin with a remark concerning notation. If K is a (nonvoid)
bounded convex subset of the real line, then there exist two numbers x»; < zx,
so that the closure of K coincides with the set of all numbers »;, < & < %,. We
shall denote by m(K) the number }(x; + x,).

For the proof of our lemma, we may clearly assume that all y, + 0. Let
B, = B. .

Let H, = H(y,;; m(Byy,)) and B, = B, n H, so that B, % 0. Suppose now
that we have already defined hypervarieties H, ..., H, such that the set
B,=B,nH,n...n H, is nonvoid. To obtain the next step, we take
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H,oy = H(ypyy; m(BuYnyr)) and put B,,, = B, n H, ;. The set B, being
convex, we have B,.; *+ 0. Since B has property (H), we conclude that there
exists a point b, ¢ B which belongs to every H,. We are going to show that b,
has the desired property.

First of all, we are going to prove the following proposition.

Let n be a natural number such that the set B,_,y, contains exactly one
point § which lies on the boundary of By,,. Then By, is a one-point set.

The proof goes by induction. For » = 1 there is nothing to prove. Now let
7 > 1 and suppose the proposition proved for less than n functionals. Let § be
a real number such that B, _,y, = f and such that § lies on the boundary of
By.,,. In the first part of the proof, we are going to show that, in this case, the set
B, _y, is a one-point set as well and B,_,y, = f. To see that, take an arbi-
trary point b € B,,_,. We are to show that by, = f. This is obviousifb e B,_, so
that it is sufficient to consider the case be B, _,, bnone B, _;. Since

Bn—l = Bn‘2 N H(yn—-l; m(Brz--—2y71~1))

it follows that by,—, + m(B,—s¥.—1); We may clearly suppose that by, , >
> m(B,—sYn—1). Then there exists a point b e B,_, such that by, , <
< m(B,—3Yn_1). A number 0 < 2 < 1 can be found such that the point b =
= b + (1L — 2) b’ fulfills the relation by,_, = m(B,-¥,_,). The set B,_, being
convex we have b € B,_,. According to the above relation we have b e B,_,. It
follows that by, = . We have now

Both by, and by, belong to the set By, and the point £ lies on the boundary of
By,. Clearly this equation is impossible unless by, = b'y, = f. Since b was an
arbitrary point of B,_, we have B, _,y, = .

In the second part of the proof, we are going to use the induction hypothesis.
Clearly our proposition may now be applied to the set B and the sequence of
functionals y,, ..., ¥n_s, ¥»- We obtain at once that By, is a one-point set so
that our proposition is completely proved.

Now we are able to complete the proof of our lemma. Let v be a linear com-
bination ¥ = wyy; + ... + o,¥, and suppose that byy lies on the boundary of
By. We are going to show that, in this case, the set By is a one-point set.

For the purpose of an induction proof we shall introduce the following classi-
fication of functionals. The point y is said to be of height n if it may be expressed
as a linear combination of ¥, ..., ¥, but not of ¥y, ..., y,_;. For functionals of
height 1 the lemma is trivial. Now let » > 1 and suppose the lemma proved for
all functionals of height less than n. Let y be of height n and let byy be a boundary
point of By. Since B,,_;, ¢ B, by is a boundary point of B, _,y as well. Note that,
for every § << m, we have B, _yy; = byy;. If y* = w1 + ... + 0y 1Yny, We
have B,_,y* = bey*. It follows immediately that the point w,byy, lies on the
boundary of w,B,_1¥,. Since y is of height »n, we have w, + 0 so that by, is
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a boundary point of B,_,¥,- Since b, ¢ B, we have by, = m(B,_,y,). It follows
that B,_1Y, is a one-point set, so that B, ¥, = boy.- Each of the sets B, _y*
and B,_Y. contains exactly one point. It follows that

Bn—ly = Bn—l(y* -+ wnyn) = boy .
To sum up, we have the following result. The set B,_,y contains exactly one
point byy which lies on the boundary of By. Now the proposition proved above .

may be applied to the sequence of functionals ¥, ..., ¥,-;, y. It follows that By
is a one-point set which concludes the proof.

(2,2) Let B be a bounded convex subset of X which possesses property (H). Let r
be contained in the weak closure of B. Let iy, vy, ... be a sequence of points of Y. Let
b, be the point constructed in the preceding lemma. Then there exists a point
b e B such that

by + 1) y; = by;
is fulfilled for every matural j.

Proof. Let » be an arbitrary natural number. We are going to show that
there is a point b e B such that }(b, + ) y; = by, for j = 1, 2, ..., n. This is
clearly sufficient to prove our lemma. We shall proceed by induction with
respect to n.

First of all, let n = 1. The point (b, + r) lies in the closure of B. If (b, 4
-+ 7) y, lies in the interior of By,, the existence of b is evident. Suppose now
that (b, 4 7) y, lies on the boundary of By,. It follows that for a suitable
&(e =+ 0) we shall have eBy, < ¢. (b, + 7) 9.

Let b be an arbitrary point of B. Since }(b + r) lies in the closure of B, we
shallhave also ¢ . (b + r) y; < ¢ . (b, + 7) y;. Since b was arbitrary we obtain
eBy, < ebyy,. According to lemma (2,1) it follows that By, is a one-point set so
that $(b, + r) y1 = boy;.

Now let n > 1 and suppose the lemma proved for less than » functionals. For
every x ¢ X, let p(x) = (2y;, ..., 2y,) € E,. The point ¢(}(b, + 7)) lies in the
closure of ¢(B). If it is contained in the interior of ¢(B), the existence of b is
evident. Suppose now that ¢(}(b, -+ r)) lies on the boundary of ¢(B). It follows
that that there exists a functional f on £, such that f(p(B)) < f(p(3(by + 7)).
Clearly there exist numbers w, ..., ®, such that we have By < }(b, + r) y if
Y=oy, + ... + 0y, By repeating the argument used in the case n =1
(with y instead of y,) we obtain that By = by = ry.

Now we shall distinguish two cases according to the height % of the func-
tional y.

If b < m, let us repeat the procedure described in the preceding lemma with
the sequence ¥y. ..., Yn_1, Yns1 Yn—sgs --- As result of this procedure, we obtain
a point b, with properties analogous as b, but with respect to the modified se-
quence of functionals. First of all, let us note that bgy; = byy,. In fact, we have
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boy = by. The functional y may be expressed as y = wy¥; + --- + Oy 1Yn_y +
+ wuy, with o, + 0. Since bgy, = by, for all j < h, we have clearly by, =
= bgy». According to the induction hypothesis, there exists a point b ¢ B such
that by; = 3(by + r) y; for every j + h, 1 < j < n. Since By is a one-point
set, we have also by = %(by + 7) y which, in its turn, implies that by, =
= 1(by + 7) ys. Tt follows that by, = (by + ) y;, for every 1 < j < n. Accord-
ing to what has been said above, by may be replaced here by b, so that the proof
is complete. If &~ = n, we may use the induction hypothesis to find a point
b ¢ B such that by; = (b, + 7) y, for every j <. h. The height of y being n, we
havey = w9y, + ... + 0 Yny + w0y, with , =+ 0. The set By being a one-
point set, we have by = (b, + r) y. A similar argument as that used above
yields by, = }(b, + 7).y, which completes the proof.

(2,3) Theorem. Let B be a bounded convex subset of X, which posseses pro-
perty (H). Let r be contained in the weak closure of B. Then ris almost continuous.

Proof. With view to the results of [6], it is sufficient to prove that, for every
neighbourhood of zero U in X, there exists a sequence x, ¢ X such that, if
y e U* and z,y = 0 for every n, we have ry = 0.

The set U* being weakly compact, a point y, e U* can be found such that
ry, =maxry, yeU*.

Let us put py; = m(By,), By = B n H(y; ). According to lemma (2,2), we
shall have then B, = B n H(y,; (41 + ry;)) += 0. Let us choose b, ¢ Bj,
by  By.

The set U* n Z(by) 0 Z(b;) being weakly compact, a point y, e U* n Z(b,) 0
n Z(by) can be found such that

ry, =maxry, yeU*n Z(b,) o Z(by).

Let us put pu, = m(Byy,), By = Bi 0 H(y,; u,). According to lemma (2,2) we
shall have then B, = B, n H(y,; %(us + ry,)) + 0. Let us choose b,e B,,
by € B.

Suppose now -that we have already defined the elements y;, b, b;, u; for
1 =1,2,...,n so that the following relations are fulfilled

1° by; = $u; + ry;) for j <4,

2° biy, = py for j < i,

3° byy; = by, = 0 for ¢ < j.
First of all, let us take a point y,,; of the set U* n Z(b;) 0 Z(by) 0 ... 0
n Z(b,) 0 Z(b,) which realizes the maximum of ry on this set. The set B, =
= B o Hy 1) O --- 0 H(Yy; y) is nonempty since b, e B,,. It follows that
B, ., = By, 0 H(Yus1 Pnys) *+ 0, Where u,,, = m(By,,,). The set

B, = B 0 H(y; 3(ux + ry1)) 0 ... 0 H(y,; 3pn + 9,))
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is nonvoid since b, e B,. It follows from lemma (2,2) that B,,, = B, n
O HYwi1; 3(fnsr + 7Wneq)) £ 0. It is sufficient now to take an arbitrary
b,y € B, 4y and an arbitrary b, ; € B, ;. The induction is thus complete.

The sequence ¥, has a limit point y, ¢ U*. According to 3°, we shall have
4° by, = by, = 0 for every natural i.
For every natural n, we have
be B o H(yy; 1) 0 oo 0 H(yys 1) 0 Z(y,) -
It follows that there exists a point b, ¢ B such that
boyfo =0, byy;=pu; for 7=1,2 ...
Let us write now H; = H(y;; 2(1; + ry;)). According to 1° and 4°, for every

natural n we have
b,eBnH n...0o H, o Zy,) .

It follows that there exists a point b € B such that
by0:07 b1i:%<b0yi+7‘y}') for 7:: 1>2"~--

Clearly ry; is a non-increasing sequence of nonnegative numbers. Let ¢ = inf ry;,
so that ¢ > 0. We are going to show that ¢ = 0.

Since by; = %(byy; + ry,) for every natural j, we obtain by, => 3byy,; + ie for
every natural j, so that

byo = 3beyo + 32 -

Since by, = by, = 0, it follows that ¢ = 0 which concludes the proof.

We shall need the following simple lemma.

(2,4) For a bounded convex set B condition (C)is equivalent to the following.
Let y; be a given sequence of linear- functionals on X and B; a sequence of real
numbers. Suppose that, for every natural m and every sequence 2y, ..., Ay of real
numbers, we have )

Z2B; < sup B(ZAy;) .
1 1

Then there exists a point b e B such that by; = B; for every j.

Proof. Suppose that the above condition is fulfilled and that r ¢ R belongs
to the weak closure of B. Let y; be a given sequence of functionals. Put §; =
= ry,;. If m is an arbitrary natural number and 2, ..., 4,, given real numbers,
we have

ZhB; = r(Zhy;) < sup B(Z4y,) .
1 1 1

It follows that there exists a point b ¢ B which fulfills by; = §, = ry; so that
condition (C) is fulfilled as well.
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On the other hand, suppose that B possesses property (C). Since B is bounded,
sup By is finite for every ye L(X). Clearly, the function p(y) = sup By is
subadditive and fulfills p(iy) = 2 p(y) for every y ¢ L(X) and every 4 > 0. Now
let y; and B; be two sequences which properties mentioned above. Let Y, be the
subspace of Y consisting of all linear combinations of the points ;. It is easy
to see that the linear form r defined on Y, by the postulates ry, = g; fulfills
the inequality

‘ ry < p(y)

for every y € Y. According to the Hahn-Banach theorem there exists an exten-
sion of 7 to the whole of Y such that the above estimate remains true. We are
going to show that r lies in the weak closure of B. In fact, if this were not true,
there would be a point y, e L(X) such that sup By, < ry,, which is a contra-
diction with the estimate ry, < p(y,). This completes the proof.

We summarize the results obtained in the following

(2,5) Theorem. Let X be a complete convex topological linear space. Let B be
a bounded closed convex subset of X. Then the following conditions are equivalent

1° B is weakly compact,

2° B is weakly pseudocompact,

3° B fulfills condition (C),

4° B fulfills the condition of lemma (2,4),

5° B fulfills condition (H).

Applied to the unit sphere of a complete normed linear space, this yields
a simple characterization of reflexivity.
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Peswome

JBA BAME‘IAHI/IH K CJIABOII KOMIAKTHOCTU

BJIACTUMUJI IITAK (Vlastimil Ptak), ITpara.
(ITocrymmio B pegaxnumio 11/VI 1955 r.)

ITo usBecrnoit reopeme [1] 3aMKHYTOE BBHIIYKJIOE ITOJMHO¥KECTBO B 10JIHOrO
TOMOJIOIMYECKOr0 JWHETHOI0 TPOCTPAHCTBA ABIAETCA C€I1a00 KOMITAKTHBIM
TOIJIA U TOJLKO TOIJIA, eCJIN IepecedeHe KamK/oil yObIBaIONIeli mocae0BaTeh-
HOCTH HEITyCTHIX BaMKHYTHIX BBIIYKJBX mnoaMHoskectB (), ¢ B memycroe.
B nepasro seimesireit padore [3] E. E. ®uoiig n B. JI. Kun noayumim
oo 0HbI pesyabrar ¢ GoJee caabbiM IpeanosokenneM, uro €, — 3aMKHYTHIe
sumeiirsie Muoroo6pasus. B paboTe, MOCBANIEHHON WCCAEOBAHUIO CYIHOCTH
TeopeM 90epJIeliHOBCKOTO TUIA, aBTOPOM OBbLI pasBepHYT OJUH METOJ JAoKasa-
TeJIHCTBA, ABJIAIONMICA 0CO0CHHO BBITOIHBIM JIIA 00CYHICHUS BOIIPOCOB, Ka-
CAlONIUXCA ITepecedeHnii JINHeRHBIX MHOT00Gpasnii. Iless Hacrosmei cratey —
[10KAa3aTh, 9TO YHOMAHYTHI METOJ MOKHO MCIIOJb30BATH 03 CYI[eCTBEHHBIX
W3MeHeHUl [UIs oKasarelabecTBa elfe GoJsiee oOIIel TEOpeMBl, 3aKJIYaronieii
B ceGe m pesyuabrar paborsr [6]. [JokasaTeabcTBO 371eCh BHAYNTEILHO IPOIIE,
OJTHAKO YIpPOIMIeHNe HOoCUT 4ncTo QopMaThHBIL XapaKTep.

PaGora pasgenserca na gBe wactn. B mepBoii jokaswBaercsa Teopema, ama-
JIOTUYHas TeopeMe paboTH [6], 11 MHOMKECTB, KOTOPHIe YA0BIETBOPAIOT HEKO-
TOpOoMYy ycioBuio (eM. yeaosue (C) Boilie), KacaloNeMyCsl CYeTHIX TepecedeHui
IHUHep-MHOro00pasuii. IToT pesyJabTaT CHPaBe[IUB M IS HEBBHIIYKJIBIX MHO-
JKECTB.

Bo Bropoit gactn goraseiBaeTcsi MONOOHEIA 3Ke PesyIbTAT JJISL BRITYKJBIX
MHOKecTB. MBI cKasKeM, 4r0 HOAMHOMKecTBO B BhmMosHser ycaosue (H), ecau
s J1000i 110CJIe0BATEIBHOCTH 3aMKHYTHIX Iuiep-mMuorooGpasuit H, B X,
st woropoit B 0 H, n ... n H, #+ 0 nua ao6oro n, cymecrsyer Touka b e B,
Jeamas Bo Beex H,. Jlasee [j0KaspiBaeM CjelyIONIyIo TEOpEMY:

IIycmv B — oepanuuenoe iNYKA0E MHONCECIE0 ROAHO20 BBIRYKA020 TMOR0A0-
2uyecko20 aunelinozo npocmpancmsea X . Ilycmo B ydosaemeopsem yeaosuo (H).
Tozda sasvikarue mroxncecmsa B caabo komnarmuo.
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