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THE THEORY OF CHARACTERS OF COMMUTATIVE HAUSDORFF
BICOMPACT SEMIGROUPS

STEFAN SCHWARZ, Bratislava.
(Received July 23, 1955.)

Let S be a Hausdorff bicompact commutative semigroup. By a char-
acter we mean a complex- valued continuous function y(z) defined on
S and satisfying y(a) x(b) = yx(ab) for every couple a, b € S. In contrary
to the paper [5] the absolute value |x(x)| need not be 1. The set of all
characters of S forms a new semigroup which will be denoted by S*.
The purpose of the paper is to find the structure of S*. A series of gene-
ral theorems concerning this problem is given. Under some additional
suppositions about S the structure of S* is fully described.

Let S be a commutative Hausdorff bicompact semigroup. By a character
of S we mean a continuous complex — valued function y(z) defined on S satis-
fying the relation y(a) x{b) = yx(ab) for all a, b € S.

Every semigroup has two trivial characters: the zero character y, and the
unit character y,. By the zero character we mean the function identically zero
on S. By the unit character we mean the function y,(z) identically 1 on S.

In the paper [5] the set of all characters assuming only values of absolute
value unity was studied. We shall show that these are exactly all characters
vanishing nowhere on 8. The set of these characters forms in an obvious
manner a group. The structure of this group and its relation to S has been
described in the paper [5].

In this paper we shall use the term character in the wider sense defined above.
This is in accordance with the terminology used in the papers [7], [8], [9],
where — of course — only finite semigroups were treated.

Instead of the term character it would be perhaps more convenient to
use the term ‘“‘multiplicative functional”. I do not use this notion to avoid
eventual confusion with the notion of the “linear multiplicative functional”
which is commonly used in the theory of Banach spaces. (See f. i. HiLLE [3],
126—128 or Kanroposuu-Bynux-Inuckep [4], 262—270.1)

1) Hewttt and Zuckerman [1], [2] use the term ‘‘semicharacter’”’ and exclude the zero
character from their considerations.
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Suppose that y,, 7, are two characters of S. With the usual definition of mul-
tiplication the product y,. z, is clearly again a character of S. The set of all
characters of § forms a semigroup S*. The purpose of this paper is to prove
a number of theorems concerning the structure of S*. For finite semigroups
this problem can be regarded — to a great extent — as solved by the results
of the papers [7], [8], [9]. With respect to the far more general suppositions
the results of the present paper are, of course, of another kind. Nevertheless
much of the important features can be transfered from the finite to the bicom-
pact case.

Remark to the notations. In all the paper the symbol 4 ¢ B (in distinct-
ion to 4 C B) denotes that 4 is a proper subset of B.

1

In this section we quote briefly some results concerning the structure of
bicompact semigroups which are used in the following. The detailed proofs can
be found in the paper [6].

Throughout the paper S denotes a commutative Hausdorff bicompact semi-
group. Such a semigroup contains always at least one idempotent. The symbol
{e, | x € A} denotes the set of all idempotents e S. Let be a € S, 4 = {a, a?, a*, ...}.
The closure A contains one and only one idempotent e,. We shall say that a
belongs to the idempotent c,. If a belongs to e,, b belongs to ey, then ab belongs to
e.e5. The set of all elements ¢ S belonging to e, forms a semigroup which will
be denoted by P,. We shall call this semigroup “mazimal semigroup belonging
to the idempotent e,”’.2) The semigroup S can be written as a sum of disjoint
maximal semigroups: § = > P,.

xed

To every idempotent e, there exists further a unique “maximal group” G,
containing e, as unit element. It is clearly G, C P,. The group G, is closed
in S and it holds P, . e, = G,.

The element a € P, is called regular if ae, = a. It follows from the formu-
lae just written that those and only those elements e P, are regular which are
contained in G,. :

The maximal semigroups P, are, in general, neither closed nor open in S.

Let us remark further: Let be a ¢ P,. Write again 4 = {a, a? a%, ...} and
let e, be the idempotent ¢ A. Then the greatest group contained in 4 (and ha-
ving e, as unit element) is Ae,. Therefore de, C 4 n G.,.

2

An ideal J of S is a set J satisfying the relation aJ C J for every a e S. An
ideal is called a prime ideal if S — J is a semigroup. It is useful to call also the

2) For brevity we shall omit the words ‘‘belonging to the idempotent e,”. The idempo-
tent to which the elements ¢ P, belong will be always stated in the index.
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empty set @ and the whole semigroup § prime ideals of S. (These trivial prime
ideals are both open and closed.)

The purpose of this section is to find the structure of open prime ideals of
a semigroup S.

Lemma 2,1. Every open prime ideal J == & of S is a class sum of (disjoint)
maximal semigroups: J = > P,.

Proof. It is sufficient tz) prove: if an open prime ideal J has a non-empty
intersection with the maximal semigroup P,, then P, is contained in J.

Suppose b € P, n J == . Let e, be the idempotent e P,. Since b € J, we have
bS £ J, especially be, € J. The element be, is a regular element ¢ S, therefore
be, € G,. The relation be, e J implies Sbe, C J, i. e., {G, + ...} be, & J. Hence
G, S J and e, € J.

According to the supposition 8 — J is a closed semigroup. Suppose that there
exists an element ce P,, but cnoneJ, i. e., ce S — J. Then it holds also
{c,c?¢c? ...} ¢ 8 —J and {E,Ac?c?‘} €8 — J. Therefore the idempotent
to which ¢ belongs, i. e. ,e,, is contained in § — J. This is a contradiction to
e, ¢ J and Lemma 2,1 is proved.

Remark. Every prime ideal is not necessarily a sum of maximal semigroups.
Further the converse of Lemma 2,1 is, in general, not true: a prime ideal which
is a sum of maximal semigroups need not be open.

An example to the first assertion is furnished by the multiplicative semigroup
of all complex numbers |z| < 1 the topology being the usual topology in the
plane. Here two idempotents exist: z = 0 and z = 1. The maximal semigroups
are Py = {z]||¢] < 1} and P, = {z]||z] = 1}. The one-element set {0} is clearly
a prime ideal of S, but it is not a sum of maximal semigroups.

An example to the second assertion is furnished by the set of all real numbers
of a closed interval (a, b) with the ordinary topology on the real line and the
multiplication @ ® b = Min (a, b). Each element forms a maximal semigroup.
Choose a ¢ with a << ¢ << b. The set {a, ¢) is a prime ideal that is a sum of maxi-
mal semigroups. It is clearly not open.

In the following we.need some facts about the set Z of all idempotents of
a commutative semigroup S. In E we can define a partial ordering by the
statement: e, < e; whenever e,e; = ¢,. To every couple e,, e; ¢ £ we can con-
struct the lattice-theoretical intersection by putting e, A e; = e,es. Hence the
idempotents form a so called semi-lattice. If £ contains only a finite number of
idempotents it is clear that there exists a unique least idempotent in £ (namely
the product of all idempotents e S). It is essential for our purposes that it can
be proved (see [5]) that in a commutative Hausdorff bicompact semigroup
there exists always a unique least idempotent. In the following this theorem
will be used several times.
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Let J = S be an arbitrary open prime ideal of S. According to Lemma 2,1
the semigroup § — J is a sum of maximal semigroups § — J = > P;. Since

8 — J is closed, and therefore bicompact, there exists in § — J a le;st idempo-
tent e,. For any idempotent e; ¢ § — J we have e;e, = e,. For any idempotent
e,eJ + & we have e.e, ee, J S J and therefore certainly e,e, = e,. Hence
the idempotents e J are precisely those for which e,e, = e, holds.

Now we prove conversely:

Lemma 2,2. Let e, be an arbitrary idempotent € S. Let {e.} be the totality of all
idempotents € S for which e,e; = e, holds. Construct the sum > P¢ and the sum
€

S — Z P, = Z P,, where e, runs through all idempotents for which e,e, + e,
§ 7
holds. Then
a) @ = > Pgis a closed semigroup ;
&

b) J = > P, is an open prime ideal of S .
7

Proof. 1) Let a ¢ @, b« Q. We then have a e P, be P, i. . a belongs to
some idempotent e, , b belongs to some idempotent e; . The element ab belongs
to the idempotent e; .e;. Denoting e; .e, =e; we have abe P;. Since
ege, = €,, e;e, = e,, we have also e;e; e, = e;e, = ¢, i. e., e; ¢, = ¢,. There-
fore P, C @, i. e. ab € . This proves that @ is a semigroup.

2) We prove that J is a prime ideal. If J = &, there is nothing to prove.
Suppose therefore J =+ . Let be a ¢ J, hence a ¢ P, and a belongs to the idem-
potent e,. Let s be an arbitrary element e § belonging to the idempotent e, ¢ S.
Then as belongs to the idempotent e,e,. This idempotent is contained in /.
For if it were e,e.e, = e,, it would be also e,(e,e.e,) = €,8,, i. €., €,6,6, = €,€,,
e,e, = ¢, and e, would be contained in ¢ which is a contradiction. We have
therefore as € J for every a ¢J, seS. This proves that J is an ideal of S. With
respect to the fact proved sub 1) we get that J is, moreover, a prime ideal.

3) It remains to show that @ is closed. Let us remark first: if @, is the maxi-
mal group belonging to the idempotent e,, then Qe, = @,. We have Qe, = (> P;)

g

e, = » Pge,. Every element ¢ P e, belongs to the idempotent e;e, = e,. Therefore

s
P, C P,. Further every element ¢ Pe, is regular since for every xe,, x ¢ P,
the relation (xe,) e, = we, holds. Hence it is even P, C G, for all P, C Q.
In the relation Qe, S @, the sign of equality must hold since we know that
for the maximal semigroup P, the relation P.e, = @G, is valid.

Now we prove that @ is closed. This follows indirectly. Suppose @ — @ + &,
hence @ n J % &. Let be v e Q n J. Let us consider the element v .e,. It is
contained in J (since we have even v . § € J). Since G, is closed, and therefore
S — @, open, there exists a neighbourhood U (ve,) such that U(ve,) n G, = &.
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Further there exist neighbourhoods U (v), Ul(e,) such that U(v) . U(e,) & U(ve,)
and therefore U(v) . U(e,) n G, = &. Since v ¢ @ there exists an x ¢ @ with
z e U(v). Hence for z ¢ @) we have ze, 0 ¢, = @. This is a contradiction
to Qe, = @,. This proves Lemma 2,2.

It follows from Lemma 2,1 and Lemma 2,2 the following

Theorem 2,1. Al open prime ideals J == 8, J = @ of a commutative Hausdorff
bicompact semigroup can be obtained in the following manner. Choose an idempo-
tent e, e 8. Find all idempotents e, (if such exist) with e,e, + e,. Construct
the corresponding maximal senugroups P, Then J = Z P, is an open prime
tdeal of S.

Remark. If we choose for e, the least idempotent € S, then the set of idem-
potents {e,} is vacuous. In this case we shall put formally J =

According to the Theorem 2,1 and the remark just made there corresponds
to every idempotent e, ¢ 8 an open prime ideal J,. Conversely, to every open
prime ideal J, == S there corresponds a unique idempotent e, (namely the least
idempotent of the bicompact semigroup § — J,). This one-to-one correspon-
dence between the idempotents and the open prime ideals == S will be denoted
by

gty (1)

It is easy to prove that the sum of two open prime ideals J,, J, is the open
prime ideal J, - J,. Further it holds:

Lemma 2,3, Let J,, J, be two open prime ideals of S. Then the intersection
J,n ]/, contains a unique open prime ideal J ., with the following properties®):

a)J,CJd, nd,,

b) there does not ex.st an open prime ideal X of S salisfying the relation J ., c
cXcd,nd,

Proof. The prime ideal @ satisfies the condition a). Hence the set of open
prime ideals satisfying a) is non-vacuous.

If the intersection J, n J4is a prime ideal, it is sufficient to put J,, = J, n J 4.
This is certainly the case if either J, C Jy or J5C J,. We show tha’c if none
of these relations holds, then the intersection J, n J, is not a prime ideal.
Indeed, under the suppositions just made there c¢xist two elements a, b such
that aedJ,, anonedy; and bed; bnoned, It holds anoned,nJy b
noned,nJy but abealdyC Jy abebs,SJ,. Thus abeJ, 0 J; and the-
refore J, n J, cannot be a prime ideal. The proof shows at the same time that
the element ab cannot be contained in any prime ideal which is itself entirely
contained in J, n Jy.

In the following suppose that J, 0 Jy is not a prime ideal. If J, n J4 con-
tains only the prime ideal @ there is nothing to prove. In the other case consi-
der an arbitrary collection {J,},., of open prime ideals contained in J, n Jy,

3) Since J _J 4 C J, N J 4 the intersection is always non-vacuous.
M A
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and simply ordered by set-inclusion. Each of the J, has the property that

it does not contain the element ab. The set UJ, = J' is clearly again an open
A Zed .
prime ideal?) of S not containing the element ab. Hence every by inclusion

simply ordered system of open prime ideals of S contained in J, n J4 has an
upper bound (i. e. such an open prime ideal which contains each prime ideal
of the system). It follows from Zorn’s lemma that there is at least one maximal
open prime ideal contained in J, n J; We prove that there exists exactly one
such primeideal. Suppose that J,, J; are two different maximal open primeideals.
The set J, - J, is again an open prime idcal of § contained in J, n J,. There
cannot be J, 4 Jy = J, 0 Jysince J, n J;is not a prime ideal. It would be
therefore J, 4- J5 ¢ J, 0 J4 The proper subideal J,, - J; contains J ., J; as
proper subsetz. This is a contradiction to the maximality of J, and J.
This proves Lemma 2,3.

Define in the system of all open prime ideals of § partially ordered by inclu-
sion the lattice-theoretical operations by the velations: J, v J,; = J, + Jzand
JoNJy=J,, where J, is the unique maximal open prime ideal contained in
Ju 0 Jp Then it holds clearly:

Lemma 2,4, With respect to the operations just introduced the set of all open
prime ideals of S forms a laitice.

We prove further:

FLemma 2,5. Let in the correspondence (1) be J, <~ ey, J s eg If J, C Jp their
e, < ey and conversely.

Proof. Suppose J, ¢ J,. According to Lemma 2.2 ¢, is the least idempotent
€S — J,, ¢, is the least idempotent € S — J,. Since S — J, 585 — J, it holds
clearly ¢; = e,. The equality e, = ¢, wonld imply J, = ./, Hence we have
€p > e,

Suppose on the other hand e, < e According to Lemma 2,1 the prime ideal J,
is the sum of maximal semigroups P, belonging to those idempotents e, for
which e,e, = e, holds. The prime ideal J; is the sum of maximal semigroups P,
belonging te those idempotents e, for which e.c; == ¢, holds. If for some e,
e, = ¢, holds, it holds also e,e; == ep. For if we had eyes = ¢4, it would
be also e,epe, = ege,, i. €. e,e, == e,, contrary to the assumption. This implies
J, S J; The element e, satisfics e, . e, = e, and e.e; + ¢,. Hence ¢, e .J; but
e, non e J,. Thus J, c J,. This proves Lemma 2,5.

It follows from the results obtained immediately:

Theorem 2,2. The semi-latitice of all open prime ideals == S and the semi-
lattice of idempotents e S are isomorplic.

Remark. By the semi-lattice operation in the system of all open prime
ideals = S we mean here the operation J, A J; introduced above. Evidently:
the relations J, < e,, Jg«— ey imply J, A Jg——e, . €4

4) For if ¢, dnon eJ’, we have ¢.dnon eJ, for all 2 and therefore ¢ . d non ¢ J".

335



3

In this section we prove some theorems concerning the properties of a fixed
chosen character.

Let y(x) be a character of S. Then the functions y(x)* (» > 1 an integer),
2(x), |x(x)| are also characters of S. If x is any complex number, R(~) > 0,
the function |y(xz)|* = €*'***@| is again a character of S. (By the logarithm
we mean here the real logarithm.)

If ¢ is an idempotent, then e = e implies y(e)2 = y(e). Hence it holds either
z(e) = 0 or y(e) = 1.

Lemma 3,1. For every b ¢ S and every y it holds always |y(b)] < 1.

Proof. Suppose |y(b)] = ¢ > 1. For every integer n > 1 we have b" ¢ S and
2(b") = [%(b)]*. Hence |x(b*)| = ¢* > ¢ > 1. Since every continuous function
on a bicompact Hausdorff space is bounded in absolute value, the last relation
constitutes an obvious contradiction. This proves our lemma.

Lemma 3,2. Let y be a character of the semigroup S. Let p be the set of all ele-
ments a e S for which y(a) = 0 holds. Let p be non-vacuous. Then p is a closed
prime ideal of S.

Proof. 1) Let bea € p, s € S. Then the element as satisfies the relation y(as) =
= y(a) x(s) = 0.x(s) = 0, i. e, as € p. Hence p is an ideal.

2)LetbeaeS — p,beS — p,i.e. y(a) & 0, x(b) =% 0. Then it holds y(ab) =+
=+ 0, i. e. ab € 8 — p. This shows that S — p is a semigroup, i. e. p is a prime
ideal. '

3) The function yx being continuous, the set of all a e S for which y(a) =
= 0 is closed. Hence p is closed, which completes the proof.

Remark. The set p may be empty. Thisis the case, f. i., for the unit character
%1(%). But the Lemma holds formally even in this case since we consider @
to be a closed prime ideal.

Lemma 3,3. Let x be a character of S. Let Q be the set of all a €S for which
|x(a)] = 1 holds. Let  be non-vacuous. Then Q is a closed semigroup.

Proof. a) Let be a,be@Q, i. e., |y(a)| = |x(b)| = 1. Then |y(ad)| = |x(a)].
. |x(0)] = 1. Hence @ is a semigroup.

b) The function |y| being continuous, the set of all @ ¢ § with |y(a)| = 1 is
closed. Hence @ is closed, which completes the proof.

Remark. The set @ may be, of course, empty. Let, for instance, S be the
multiplicative semigroup of real numbers of the closed interval {0, 1> with the
ordinary topology on the real axis. Then the real character y(x) = x attains
on § its maximum %.

Lemma 3,4. The set Q from Lemma 3,3 is non vacuous if and only if there
exists at least one idempotent e for which y(e) = 1.
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Proof. a) If for some idempotent y(¢) = 1, then @ is non-vacuous since there
isee@.

b) Suppose that @ is non-vacuous, i. e. there exists an a e Q with [x(a)| = 1.
Let us put 4 = {a,a? a?, ...}. For every integer n > 1 we have clearly [x(am)] =
— 1. Let e be the idempotent e A. If we had y(e) = 0, there would exist
for every ¢ > 0 such a neighbourhood U (e) of e that for every x ¢ U,(e) |y(2)| <
< ¢ holds. Since e ¢ A there exists an integer m > 0 such that a™ e U (e) . For
am we have |y(a™)| = 1. This constitutes an obvious contradiction. Therefore
z(e) =1, q.e. d.

Lemma 3,5. Let y(x) be a character of S. Let J be the set of all a e S for which
|x(@)] < 1 holds. Then J is an open prime ideal of S.

Proof. If J = &, the Lemma is true. Let therefore J # @. If aeJ, se S,
we have |y(as)] = |x(a)] . [x(s)] <1.1=1, i. e, ase.J; thus J is an ideal.
According to Lemma 3,3 the set § — J, i. e., the set of all @ with |y(a)| = 1, is
a closed semigroup. Hence J is an open prime ideal, q. e. d.

Remark. J again can be empty. This is the case, for instance, if y is the
unit character y;.

According to Lemma 2,1 J and @ are class-sums of maximal semigroups of S.
For every idempotent e, ¢ J we have y(e,) = 0. For every idempotent e, ¢ ¢
we have y(e;) = 1.

Let for some element b ¢ S be [y(b)] = 1. If b belongs to the idempotent e,
it holds also |g(m)| = 1 for every m e P, since with b the whole set P,
is contained in Q.

Let for some ¢ e S be |x(c)] < 1. Suppose that ¢ belongs to the idempotent
e,. Then we have necessarily y(e,) = 0 and the whole set P, is contained in J.
In this case we can add a further conclusion. Let G, be the maximal group
belonging to the idempotent e,. Then for every d e, de, = d and y(d) =
= x(d) . x(e,) = x(d) . 0 = 0. Hence — if p retains the meaning from Lemma
3,2 — p contains not only every idempotent ¢ J but also every maximal group
contained in J.

Summarily we obtain the following result:

Theorem 3,1. Let y be a fived character of S. Let J be the set of all a € S with
lx(a)] < 1 and Q the set of all a e S with |y(a)] = 1. Then we can write the decom-
position of S into two disjoint summands S = J + @, where J is an open prime
tdeal and Q a closed semigroup. BothJ and @ are class-sums of maximal semigroups
of S . J is the class-sum of all maximal semigroups belonging to the idempotents
e, for which y(e,) =0 holds. Qs the class-sum of all maximal semigroups belong-
ing to the idempotents e, for which y(e;) = 1 holds. The set p of all a € S for which
z(a) = 0 holds s a closed prime ideal containing all maximal groups which are
contained in J.

Remark 1. The situation is schematically shown in the fig. 1.
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Remark 2. J is vacuous if and only if for every a ¢ S |y(a)| = 1. @ is vacuous
if and only if for every idempotent e, € S y(e,) = 0.

Remark 3. One shows on simple examples that there need not be P, C p;
this means p need not be a class-sum of maximal semigroups.

7 7 W//TW TR
pn P/)
A
LIS VIS SIS 7
Z 7
A Z
2 2
2 7
7
,4 / Z
2 G/3 ,/’
0 L L 7
A
7 7 7 2 2

Fig. 1.

Remark 4. The set J — p is clearly open in 8. Further it is a semigroup.
For if aeJ —p,bed —p i e, 0 < |y(a)] <1,0 < |g(b)] <1, we have also
0 < |y(ab)] < 1,i.e.,abeJ — p. Hence J — p is an open sub-semigroup of S
without idempotents.

4

The question arises how far a character is determined by the sets p, J, @.
It is clear that if p is given J, @ are uniquely determined. On the other hand
one shows on examples that if J is given p is — in general — not uniquely
determined.

Problem A. Let p & @ be a closed prime ideal of the semigroup S. Does there
exist a character y of S which vanishes just on p? '

The answer to this question is, in general, negative. We show this on the follo-
wing simple example. Let S be the semigroup of real numbers of the interval
<0, 1) with the ordinary topology on the realline. Let the composition be defined
by @ © b = Min (a, b). Then the one-element set {0} is a closed prime ideal
of 8.5) Since every element @ € S is idempotent, we have for every a ¢ S either
x(a) =1 or y(a) = 0. It follows from the continuity of y that the only cha-
racters are: the unit- character y; and the zero character y,. But none of them
vanishes just on {0}.

Remark. If a character y vanishes just on p, so does yx. Hence there exists
also a real character vanishing just on p. If @ =+ @, this real character is iden-

%) Indeed, we get 0 ® s = Min (0,s) = 0 for every se S anda ® b = Min (a, b) & 0
for a 40, b=0.
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1
= 1,

tically 1 on the whole semigroup @. (For we have 7 > 0 and on @ |xx
whence gy = 1 on Q.)

The example just discussed leads to the following definition:

Definition 4,1. 4 prime ideal p of the semigroup S is called a generating prime
1deal if

a) p s closed in S,

b) there exists at least one character of S which vanishes just on p.

Remark. The prime ideal @ is always a generating prime ideal since the
unit character vanishes nowhere. Similarly, the prime ideal § is a generating
prime ideal since the zero character is the (unique) character which vanishes
on S.

Problem B. Let p be a generating prime ideal of the semigroup S. Let &, be the
set of all characters of S which vanish just on p. What can be said about the struc-
ture of the set &,*

The set &, is a semigroup. Indeed, if 7, and y, vanish just on p, so does y,.
The set of real characters which vanish just on p form a sub-semigroup of &,

It can be shown on simple examples that the semigroup &, need not haveidem-
potents. One shows also on examples that the structure of &, may be very
various. At first sight there is little hope to find a detailed description of the
structure of &, at least in the general case (i. e. without any supplementary
suppositions concerning S).

The following theorem shows that a character ¢ &, will be known as soon
as we shall know its values on an arbitrary “small” ideal of S which is not
entirely contained in p.

Theorem 4,1. Let p be a generating prime ideal of S. Let q be any ideal of S such
that p c q, p = q. Then two characters e &, which assume the same values on q are
ideniical, 1. e. assume the same values on the whole semigroup S.

Proof. Let u be an arbitrary element ¢ ¢ — p, @ any element ¢ S. Let y,,
be two characters ¢ &, which assume the same values in every element e q.

According to the supposition we have

Za®) = y5(w) 0. (*)

Further we have a.u e Sq S q and therefore (again according to the supposition)
za(au) = yg(au). The relation

Xa(a’) . Xa(u) = Xﬂ(a) . Zﬂ(u)

implies (with respect to (*)) y.(a) = y4(a) for every ae S, q. e. d.

Remark. Theorem 4,1 holds also under the more general assumption that
q is any ideal which is not entirely lying in p, i. e. such that ¢ — (q 0 p) = &.
In the proof of Theorem 4,1 it is sufficient to choose u e ¢ — (q n p). This justi-
fies the remark before the statement of Theorem 4,1.
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It holds also conversely:

Theorem 4,2. Let q be any ideal of S. Let p be a character of the semigroup g
not vanishing everywhere on q. Then there exists one and only one complex-valued
function y(z) defined on S such that

@) y 18 a character of the semigroup S,

b) forx e q y(x) = p(x) holds.

Proof 1) Let w ¢ q be an element with y(u) # 0. We show that there exists
at most one character of S satisfying the assertions of Theorem 4,2. Suppose
there exist two such characters y, and yz. Let a be any element € S. Then
a.ueaq S q. Hence wy(au) = y.(au) = yglan), x.(a) z(u) = yxga) . xa(u),
To(@) p(u) = yp(a) p(u), i. e., (@) = g4(a) for every a € S, q. e. d.

2) For every a € S define y(a) by the relation

y(au)
a) = L, 2
%(a@) o) (2)
Since au € aq S g, w(au) is defined and the right hand side has a meaning. For
a € q we have clearly y(a) = y(a). The function y(a) has the following property

) " w) T p@) . p@)  p) . pw)
_ ylabw) . y(w) _ ylabu) _
p(u) - p(w) py X

The function y(x) is obviously continuous at = a € S, which completes the
proof.

2(@) 7 b) = @0 pbw) _ ylabe?) plabu . w)

Remark 1. The proof shows that for the validity of this theorem the assump-
tion of bicompactness is not necessary.

Remark 2. One can also show immediately that the value of y(a) does not
depend on the choice of the element «. If v is an other element e q with y(v) =+
#+ 0, we have

p(au) . p(v) = plaww) = p(av . u) = p(av) . p(u) ,
whence

ylau) _ y(av)
=12 q.e.d.
_ p(w) O
In the following we need a fact that is based on the results of the paper
[5] and which need not be proved therefore in extenso here.

Let p be a generating prime ideal of S. Suppose @ = @. We know that Q
is closed and therefore a bicompact semigroup in the relative topology. Let
€, be the least idempotent € @ and G, the maximal group belonging to the idem-
potent e,. Every character y(x) of the semigroup @ with values of absolute
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value unity can be obtained in the following manner. We take a suitable non-
zero character ¢(z) of the group G, and we put

p(a) = @(ae,) forevery ae@ .5) (3)
The function () is the continuation of the character ¢(x) to the whole semi-
group Q. The set of all characters of the semigroup ¢ with values of absolute
value unity is algebraicaly isomorphic?) to the group of non-zero characters
of the group G,.

This has the following consequence:

Every character y ¢ &, induces on ¢ a character y of the semigroup @. The
function y(z) assumes only values of absolute value unity. One can find these
characters v only among the characters y defined by (3).

The following question arises:

Problem C. Let p be a generating prime ideal of the semigroup S. Suppose
Q + @. Let y(x) be any character of Q with [y(x)] = 1 on the whole Q. Does there
exist a character y e &, which satisfies the relation y(x) = y(x) on @

A simple example shows that there can exist also an infinity of such charac-
ters. Let S be the multiplicative semigroup of real numbers of the interval
<0, 1> with the ordinary topology on the real line. Let be p = {0}. Then @ =
= {1}. Let the character of @ be defined by w(1) = 1. Then every character
of the form z* = y(z), « > 0 real, assumes on  the value 1.

At this writing I cannot decide whether really to every y(x) there corresponds
at least one such y(z). Almost trivial is only that such a character exists always
to the unit character u, of Q. For if y is any character ¢ &, then yy induces
on @ the unit character of . It is also evident that the set of all characters
¢ &, which induce on @ the unit character y, forms a sub-semigroup (&)™,
(S, C ,.

Theorem 4,1 has the following consequence which we formulate explicitly
as a theorem.

Theorem 4,3. Suppose that J == p. Then two characters € &, which equal on J
equal on the whole semigroup S.

Remark 1. Theorem 4,3 does not hold if J = p (i. e. if J is closed). In this
case we have § = p + Q. If () is an arbitrary character of @ with |yp| =1
on @, then all functions of the form

) = 0 for zeyp ,

@) = y(x) for xe @,

are equal on p but different as characters of S. (The functions are really charac-
ters of S since S is then a non-connected semigroup and the continuity is
guaranteed by the continuity of y on @.)

6) It is easy to prove that ae, is really contained in the group G,.
7) Note that we have not introduced a topology into the set of characters of S.
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Remark 2. If J is not closed, we can prove directly that a character y ¢ &,
is already determined by its values on J by means of the following Lemma which
itself is sometimes useful.

Lemma 4,1, Suppose that J is not closed. Then the maximal group G belonging
to the least idempotent e, e S — J salisfies the relation Gy S J n Q.

Proof. Since J is not closed, we have & — J == . Further J n Q is non-vacuous.
The intersection J n @ is closed, hence it is a bicompact semigroup. It has at
least one idempotent e. This idempotent e is contained in . At the same time e
is contained in the ideal J. If ¢ belongs to an ideal so do also all idempotents
< e.(See [7], p. 233.) But ¢, is the least idempotent ¢ @, hence ¢, e.J . If any ele-
ment of a group is contained in an ideal, then the maximal group containing
this element is contained in the same ideal. Hence G, C J. This proves Lemma
4,1,

Proof of the remark 2. With respect to the continuity of the characters
the values of y on J are determined by the values of 5 on J. In particular, the
values of ¥ on the group G, are already determined by the values of y on J.
But as soon as we know the values of y on G, we know (according to the remarks
after Theorem 4,2 above) the values of y on the whole semigroup 8. This proves
our assertion.

5

In this section we shall study some examples. First we prove a general theo-
rem in which it is not necessary to suppose that S is bicompact.

Theorem b,1. Suppose Ty, T'y are two commutative semigroups with unit ele-
ments ey, €y Let T = T, x T, be their direct product. Suppose that T, Ty are
the semigroups of characters of Ty and T, respectively. Denote by N the set of
couples {[13, %ol [x1> 221}, where 11, x5 are the zero characters of Ty and Ty and y,
runs through all characters € Ty, 3 through all characters e Ty .8) Then the semi-
group of characters of T is isomorphic to the difference semigroup®) Ty x T5|N.
In formulae

’ T# ~ Ty x T¥|N .

Proof. The elements of 7'; x T, are all couples & = [y, ,], , € Ty, 5 € T',.
Elements of T'F x T¥ are the couples y = [)1, %2, 71 € T%» %2 € Ts . Since the
set of couples N is an ideal of 7'y X Ty the difference semigroup is defined.

Let us remark in advance: for a non-zero character y, of the semigroup 7',
we have y;(e;) = 1. For suppose y;(e;) = 0. The relation x = e x (valid for all

8) In this Theorem (and its proof) x; does exceptionally not mean the unit character,
?) The difference semigroup 7'/N is a semigroup which is formed in essential so that
we identify the elements of an ideal N with a new zero element while the other elements
retain (up to an isomorphism) their original meaning. (The concept was introduced by
D. REEes. See also [9], p. 308.)
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x e T) implies y,(x) = x,(e;) 71(x) = 0. Hence y; would be the zero character,
contrary to the supposition. Similarly, for a non-zero character y, of the semi-
group 7', we have y,(e,) = 1.

a) Let us assign to every element y = [y, x»] ¢ 7y X 75 the following fune-
tion defined on 7'

£@) = [y @) = 22(w) - 7a(as)
The function ;Ac is clearly a character of the semigroup 7'.

The function ;’2 is the zero character of 7' if and only if [y, xs] € N. For if
;2 is the zero character the relation ;Ag(x) = y1(;) . %a(xy) = 0 must hold for
every x = [2,, %] € T'. Substituting z,= e;, ¥, = e, we get x,(e;) . ya(e;) = 0.
This implies that either y, is the zero character of 7';, or y, is the zero character
of T, or both take place. Hence [y, x»] € V.

We shall show that (in the above correspondence) to two different elements
5 =y of the set Ty x Ty — N there correspond two different (non-zero)
characters of the semigroup 7'. Let be y = [11, 12, ' = [x1, 72] and A A
If we had 3(z) = 5'(®), 7(x1) . za(®s) = 71(%1) - za(x) would hold for every
= [&, x,] €T

In particular, for the couple [e;, z,] We have y(e;) . xa(®s) = x1(e1) - 22(2s).
Since yi(e;) = yi(e)) = 1, we get yo(¥,) = 12(®,), i. e., the characters y,, y5 of
the semigroup 7', are identical. One proves similarly that y, and y; are two
identical characters of the semigroup 7';. Hence we have y = y’, contrary
to the supposition.

Evidently, to the product of two elements y = [x1, 72l, ¥ = [x1, 2] there
corresponds the character ;? . ;?’ of the semigroup 7' and the product ;A( . %’ is
the zero character of 7' if and only if at least one of the characters is contained
in N.19)

b) It remains to prove that every non-zero character ;? of the semigroup 7'
can be obtained by the above method.

Let us remark first: every element z = [z;, x,] € 7' can be written in the form
of the product x = [x,, e,] . [e;, ,]. Further the set of all elements [z, e,],
x, € T, is a sub-semigroup of the semigroup 7'; X 7', and it is isomorphic to
the semigroup 7.

Let now ;/2 be an arbitrary non-zero character of the semigroup 7' = T'; X T',.
The character ;Ag induces on the sub-semigroup {[z;, e,] lxl e T} a character

A . A
y, and on the sub-semigroup {[e,, #,] | ¥, € T'y} a character y,. As already re-
marked we have

{[y, €5] l X € T} =T, {[e1, 5] ! el =1T,,
_7;; For if %’ is the zero character of 7', we have in particular %Q’([ev e,]) = O,

hence y([ey, e5]) - %' ([exs €5]) = Os i € 21(e1) . 2a(es) - 71(e1) - x5(es) = 0. If now, f. i,
x1(e;) = 0, we have y; = x2, hence [%15 X2] € N. Similarly the other possibilitics.
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and these isomorphisms are realised by the orderings

[z, 0] €Ty X Ty, €Ty, leg, 2] €Ty X Ty ayeT,.
Put

A A
21(21) = pa([2y, €5]) 12(%3) = pal[er; 2,])
We have thus defined a character y; of the semigroup 7'; and a character y,
of the semigroup 7',. For the given character %(x) we can write now

2(@) = 2@ 25)) = 2([@0 0] - [en, @,]) = 2([@s, €a) - 7([en, ) =
= '?01([961, e]) . %\”2([61’ %)) = xa(x1) - xo(T2) »

%([xh %)) = xa(2q) - x2(2) -

Hence every non-zero character 5 of the semigroup 7', X T', can be obtained
by the construction described sub a). This proves our Theorem .

Remark. In the proof we did not use explicitly the continuity of the charac-
ters. Indeed, the theorem holds also if 7* (T, T%) denotes the set of all com-
plex-valued functions defined on 7' (T}, T',) and satisfying y(ab) = x(a) . x(0)
foralla, b e T (T,, T,). If of course y;, y, are supposed to be continuous, so is 95
and conversely, and the modifications needed are obvious.

Example 5,1. Let S be the multiplicative semigroup of real numbers of the
closed interval (0, 1> with the ordinary topology on the real axis. We wish
to find the set S*.

We wish to find the set of all continuous complex-valued functions satisfying
in <0, 1> the functional equation

f(xy) - f(z2) = f(2,2,) (4)

Consider first the open interval (0, 1). Put = e~*. Then ¢ runs through the
open interval (0, c0). The equation (4) takes the form

fle) - flem) = fe ), 0 <ty ty < oo

Put f(e~t) = ¢(t). We have g(t; + t,) = g(¢;) . 9(t,). It is known'?) that if ¢(t)
is supposed to be continuous (or even only measurable), then we have either
a) g(f) = 0 in (0, o) or b) g(t) = ert, where y is any complex number.

The relation g(t) = 0 leads to f(z) = 0 in (0,1).

The relation g(¢) = et gives f(e7!) = et, i. e., f(x) = ¢ , where 6 = — y
is any complex number. Write 6 = « + if (x, § real). Then it is clear that

dlogz

f(-’l') — e(m+i6)logx — xa+iﬁ

is a continuous solution of (4) in the open interval (0, 1).

11) See f.i. HILLE [3], p. 162—167, where analogous much deeper problems are treated
or Maaxk [12], p. 69—71, where a detailed discussion of our functional equation is given.
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If x < 0lim ze+i# does not exist. If x = 0 lim «# does not exist unless § = 0.
z=0+ =0+
Then f(x) = 1in (0, 1) and lim f(z) = 1. This gives f(z) = 1in {0, 1>. If « > 0
=0+
lim 2**# = 0 and f(z) is continuous in <0, 1) if we define f(0) = 0.
x=0+

Hence all characters of the semigroup S are:
a) x(x) = 0 forall zeS;
b) y(x) =1 forall zeS;

xetib o > Ofor x =0,
©) zlw) = 0 for x = 0.

Our semigroup contains only three closed prime ideals: @, S and {0}. Each
of them is a generating prime ideal. & and &, contain only one element (char-
acter). The semigroup &, contains exactly all functions defined sub c¢).

Hence 8* = &, + &, + &,. The semigroup &, is isomorphic to the additive
semigroup of vectors of the open right half-plane.

Remark: Our semigroup contains a further prime ideal <0, 1). But this is
not closed.

Let us remark further: since <0, ¢), ¢ > 0 is an ideal of S containing {0}, it
is sufficient (according to Theorem 4,1) to consider in solving (4) only the inter-
val (0, ¢). This is really used in the calculations concerning the form of g(¢)
not explicitly stated here.

Example 5,2. We have to find the characters of the multiplicative semigroup
S of complex numbers |z| < 1, the topology being the ordinary topology on the
plane.

Consider first the semigroup S, of complex numbers 0 < Izi < 1. Every z ¢
€ S, can be written uniquely in the form z = 2] . eir, 0 < ¢ < 2. Hence we
can write S, ~ L X K, where L is the semigroup of real numbers of the interval
(0,1> and K the group of complex numbers with [z| = 1. It follows from
the example 5,1 that L* contains the function identically zero on L and all func-
tions f = vt with an arbitrary complex number y + if. It is well-known
that the characters of K are the functions f,(ei?) = ei"e, n % 0 an integer and,
of course, the function identically zero on K.'?) According to Theorem 5,1 the
set of non-zero characters of the semigroup S, is given by the set of functions

) =l oo = s 2, =y,

where « + if is an arbitrary complex number and » an integer.

To find S* it is sufficient to take those of them that can be continuously
extended to z = 0.

If x + n > 0 let us put

2|+ zn forz = 0,
2 =

forz =0.
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These are clearly characters of S.

If x 4 n < 0 f(z) cannot be continuously extended toz = 0.
If x +n =0 we have for z & 0 f(z) = [2|#? . e?v». For % 0 lim |2|?7 . givn
|z]=0

does not exist. If = 0 then f(z) = 2 Ifn #+ 0 lim =

e S

does not exist. For
n = 0 we get f(z) = 1.
As the result we obtained: all characters of the semigroup S are

a) y(z) = OforallzeS;
b) x(z) = 1forallze S ;
s 0forz=0,

e) x(z) = A
“[z|[#*i8 . zn for z + 0 (n an integer, n 4 & > 0, f real).

Example 5,3. Let S be the set of couples of real numbers [a, b], 0 < a < 1,
0 < b < 1. Let the multiplication be defined by [a, by,] . [@s, by] = [a a4, b,b,].
We may regard S as a subset of the plane. Let the topology be the ordinary topo-
logy in the plane. § is then a Hausdorff bicompact semigroup. We wish to
find S*. )

There exist four idempotents: e, = [0,0], e, = [1, 0], e; = [0, 1], ¢, = [1, 1].
The maximal semigroups are:

Pi={lzyl0<z<1,0<Sy <1} P,={[Lyl0<y<1}
 Pa={z 0o <1}, Py={[1,1]}.

The maximal groups shrink into the idempotents: G; = {¢;}, ¢ =1, ..., 4.

There exist five closed prime ideals!3):

plz{[x>0]’0§«x§1}7 p2={[0’y]l0§:y;§1} p3:p1+p27 pgzg,
p. = 8.

Each of them is a generating prime ideal.

12) See, f.i., [Toarpsaruu [11], p. 252. If y is a non-zero character of K, a any element
e K, we have necessarily [x(a)| = 1. Hence our definition of characters coincides with that
used in the theory of groups. Proof. Suppose that for a non-zero character an dan ele-
ment a e K |y(@)] = ¢ < 1. This would imply [y(a?)| = ¢" < 1. The set {a, a?, a?, ...}
contains a unique idempotent. This is necessarily the element z = 1. With respect to the
continuity of y there cannot hold yx(1) = 1, hence x(1) = 0. But then the relationb = b . 1
(valid for every b e K) implies yx(b) = x(b) . 2(1) = 0, i. e. x is the zero character of
K, contrary to the supposition.

13) There exist also other prime ideals in S. For instance the sets

vyl |02 <1, 0Zy<1), {[xyl|0=x=s1, 05y <1y, {[x,y][wy:f: 1}

But these prime ideals are not closed and cannot be therefore a priori generating prime
ideals.
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Put '
Lyt fory £ 0, yxetifore 40,

(Pab’(xr y) = %/3(95’ y) = \0

“0fory —0. forz=0.

Y watif  yy+id forzy 0,
Hapys (@ Y) = < 0 forxy = 0.
Then the semigroups &, are given by the following sets:
&, = (pupl@,y) | x> 0, freal}, &, = (pasl®> y) | ¥ > 0, freal ),
@pa = {Xaﬂya(x’ y) I x>0, Y > 0, ﬂ’ 0 real} s
&, = {the function = 1 on S}, &, = {the function = 0 on S}.
It is therefore
S*=8,+ 8, +8,+ Y, + .

Example 5,4. Let @ be the Hilbert cube, i. e. the set of all points x =
= [, y, @3, ...] of the Hilbert space for which 0 < x, < 2-7, The topology
is given by means of the distance function o(w, y) of the Hilbert space. Let
the product of two points @ = [x,, @y, X3, ...] and ¥ = [y, ¥,, ¥, ...] be defined
by 0y = [%1Y1, Ta¥s ¥3Ys, -..]. One proves easily that @ is a bicompact
semigroup.?)

Denote by p, (¢ = 1, 2, ...) the set of all points € @ of the form [z, x,, ...

v @i, 0,240, ...], 0 Z @, < 277 for mo == 14 (the sides of the Hilbert cube).
Every p, is a closed prime ideal of ¢. For the product of two points is contained
in p; if and only if at least one of them has its i-th coordinate equal to zero.

14) Since @ is a bicompact space (see Alexandrov [13], p. 300) we have only to show
that the multiplication is continuous. To this end it is sufficient to prove that for every
& > 0 there exist neighbourhoods U(x), U(y) such that for every x e U(z), y e U(y),
ox ® y, z ® y) < e. We shall show that it is sufficient to choose for U(z), U(y) the set

_ H _ £
of all points contained in @ and satisfying o(z, z) < 5 and o(y,y) < 3 respectively.

Let us choose , ¥ in the described manner. Then wa have

e}

@0y, z0Y) = [2 (v_c,-yi—ﬂviz/,-ﬁ]é < [Z (@ — ). 2 y?]'2 = o(@, @) -V.‘Zly‘:? .
1 ) i=

i= i—=1 =1

o0
Similarly we have o(xQy, z0Y¥) < oy, ) - V ¥ 7,2 . Since for every point x ¢ @
i-1 :

@0 0
Tal<Tom =,
1 1

we get

0

w0y 707 < oF07 Foy) + 2E0y, 2oy < oY) - V?’E%

_ ® e 1 e 1 d
s T 2y ——,:‘-]———?<£’q'e‘ :
+ el )Vly,,< AERERE
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Our semigroup has only one idempotent (namely [0, 0, 0, ...]) but it contains
an snfinity of closed prime ideals p;. A sum of a finite number of them P; ; ...,; =
= p; + p;, + ... + p;, is again a closed prime ideal.

Every prime ideal p, and every prime ideal of the form P, ; ... ; is a generating
prime ideal. For instance the function f(z) = f([%y, z,, @3, ...]) = Ty Xy e Ty
is a character of @ vanishing just on P;

DALV

The set &, is the totality of all functions y,4:4(%) of the following form

0 fora, =0,

Havip(@) = <
a+iff N xz4—,ﬂ for 2, ‘4: 0,

where « 4 if8 is a complex number with « > 0.

The set Sp, , .., Z_kis the totality of all functions of the form

. () — . fmi z;, ..xu vz, =0,
aoby el ap T gt e ap Peforw, L a, ow, 0,
where «; + if8; are complex numbers with o; > 0 (j = 1,2, ..., k).

The set P = Z p, is clearly a prime ideal of Q. We show that P is dense in Q.

It is suiflclent to prove that in every neighbourhood of the point z =
= [y, Ty, X, ...] € @ there exists at least one point ¥y = [y, ¥s, ¥, ...] € p; for
a suitable 1. Let U(x) be a neighbourhood of z consisting of all z € @ with o(x, z) <
< e < }. If at least one of the coordinates of z is zero, then « ¢ P and there
is nothing to prove. Suppose therefore that z; &0 for every 7 =1, 2, ....
Find an n such that }, < ¢ and consider the point y = [, ..., %, _1, 0, Z,4q, ...] ==
+ 2. It isyePand p(z,y) = |22 < /272" < &, which proves our assertion.

Since P = @ and we have clearly P = @, the prime ideal P is not closed
and therefore it cannot be a generating prime ideal.

Remark: One proves similarly that an arbitrary sum of an infinite number
of the prime ideals P’ = > p;, is dense in @ and P’ cannot be therefore a gene-
E1

rating prime ideal.14*)

142) T am indebted to prof. E. Hewitt for the following remark to this example. The
following general theorem holds. Let S be a bicompact Hausdorff semigroup. Let 4 be
a collection (of continuous) characters of S, that contains with every pair of characters
their product, contains the conjugate of a character along with a character, and also
contains the function identically 1. Then, suppose further that if there exists a character
on S that assumes distincet values at # and y in S, then there is a character y in 4 such that
2(x) = x(y). Then A consists of all characters of S. This theorem can be applied to the semi-
group @ of our Example 5,4. Every non-zero character <y, of Sis a finite product of charac-
ters of the form y(x) = z, where y is a complex number with positive real part.
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6

Let P be the set of all generating prime ideals of the semigroup S. P is not
vacuous since @ and S are contained in it. Introduce in ) a partial ordering
with respect to the inclusion.

The set P has the property that with every two elements p; and p, also their
sum p; + p, belongs to P.1%)

If in every intersection p; N p, there existed a unique maximal closed (and
generating) prime ideal (eventually equal to @), then the set P would form a
lattice with the obvious operations A, v. This is the case if the number of
generating prime ideals is finite.16) In general it holds only:

Lemma 6,1. Withrespect to the inclusion the partially ordered set ) of generating
prime ideals forms a semi-latiice with the greatest element S. The lattice operation
18 here the sum of sets.

If ps C po, then G, . Gy € Sp,.17) For every character ye Sp, . Sy va-
nishes clearly just on p,. Conversely, if &y, . Sv; C &p,, every character y =
= Xu - %p (Ao € Ory, x5 € Ovp) vanishes just on p, %), hence we have necessarily
P E P

Let us introduce in the system of sets & = {&p,}!%) a binary relation <
by means of the following definition:

let be Sp, < Sy, whenever Sy, . Sy, S Sp, holds. (5)

We have introduced thus a partial ordering. For

a) @pa @p,x E 6;3“,}161106 @na é @pa.

b) Let be Sp, < &py, Sy < Sp,. Then Sy, . Sy < Sy, 1. €., p, 2 1y
and Sy, . Sy, S Sy, i. €., py2p,. We have therefore p, 2 p,, hence Sy,
. @py _E_ @p“, 1. e., @p‘x _<__ @vy.

) Sp, < Gpg, Spy < S, imply p,2ps, Pp2P,, hence p, =p, and
Sp, =Sy .

15) The set p; + P, is clearly a closed prime ideal. Further, if y;, vanishes just on p,
and y, vanishes just on p,, then y,, vanishes just on p; + p,. Hence p; + p, is a genera-
ting prime ideal. We have seen in the Example 5,4 that this theorem need not hold for
an infinite number of summands.

16) By means of Zorn’s Lemma one proves easily the existence of a unique maximal
prime ideal contained in p; N p,. But it is not possible (without further assumptions)
to prove that this prime ideal is closed and generating.

17) The multiplication of complexes means here multiplication of sets of characters
(elements of S*).

18) Otherwise there would Lold namely p; + p, 2 p, and the characters ¢ &, . &, would
vanish just on p, + pg == p,-

19) We write & instead of S* to make clear that the elements of & are semigroups
of characters. In the set-theoretical sense we have, of course, S* = X Sy,

x
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Since p, C py <> Spy < S, we get with respect to the one-to-one correspon-
dence p, < &y the following result:

Theorem 6,1. The semi-laitice of generating prime ideals partially ordered
by inclusion and the system of sets {Sp .} partially ordered by (5) are anti-iso-
morphic.

Remark 1. In this anti-isomorphism there corresponds to the prime ideal
@ the group & (having the unit character y; of S as the unit element). To the
prime ideal S there corresponds the group &, = {y,} (containing only one
element, namely the zero character y, of S). The element & is the greatest
and the element &, the least element of the partially ordered system &.

Remark 2. If @pﬂ . @vy :C_ @pa, then @pa é @;sﬁ and @vx é @py. For the
last relation implies p, + p, = p,, hence p, C p,, therefore Sy, . Sp; C Sy,
i. e, G, < Sy, Analogously for the second “inequality”.

We resume the obtained results concerning the structure of the semigroup S*.
We know that S* = z &»p,, where the summands are disjoint, i. e., for p, == p,

we have Sy, 0 Spy = &. Two of the summands (&, and &,) are always groups.

Each of the semigroups &y, has a further property: in &y, the cancellation
law holds. Let 74, 7% 1 be three elements € Sy,. Suppose that y,y. = z.. i- .
for every aeS 7.,(a). x.(a) = z(a) . 7u(a). For aeS — p, z.(a) =0, hence
ya(@) = y(a). For aep, y.(a) = y.(a) = 0. Hence for every aeS holds
(@) = 72(@), i e, g = L

Remark. The semigroup S* has the property that it can be written as
a sum of disjoint sub-semigroups and in each of them the cancellation law
holds. Semigroups having these properties form a very special type of semi-
groups. A finite semigroup having these properties is a sum of disjoint (maximal)
groups. This follows from the fact that a finite semigroup in which the can-
cellation law holds is a group. Hence in the finite case S* is a sum of disjoint
groups (see [7]). '

If S is connected we get further information about the sets €y, by means
of the following lemma:

Lemma 6,2. Let S be connected. Then there exist two and only two idempotent
characters: the unit character y, and the zero character y,.

Proof. Let y be an idempotent character. It is sufficient to show that in the
decomposition S = J + @ formed by x (in the sense of Theorem 3,1) either
J= o or Q= z.Forif J = @ wehave S = @ and y(z) = 7,(2); if @ = @
S = J, hence y(x) = xo(x).

Suppose y =+ xo, x F 31, S=J + @, J &= . Since § is connected and J
open, it follows from the supposition @ =+ & necessarily J n @ = @. Let be
a e¢J 0 @ and U(a) any neighbourhood of a. There holds %(a) = 1 but for some
beU(a)nJ 4 @ %(b) = 0. (An idempotent character can assume only two
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values: 0 and 1.) This gives a contradiction with the continuity of the function y.
Hence @ = @. This proves our lemma.

If § is connected none of the semigroups &»,, p, &= &, p, =S, can be
a group since according to Lemma 6,2 &, does not contain an idempotent.
At the same time it follows that &y, cannot be finite since — according
to the remark above — it would then be a group, which is impossible.2?)

We have proved the following theorem:

Theorem 6,2. The semigroup S* can be written as a class-sum of disjoint
semigroups S* = > @p,. In each of the semigroups Sy, the cancellation law holds.

3

Two of the semigroups Sp,, namely &, and S, are always groups. If S is con-
nected each of the remaining semigroups has an infinity of elements and none
of them is a group.

Consider the product &y, . Sp,;. We know that Sy, . Sy, & Sp,+v,. Suppose
that there exist two generating prime ideals p,, p; such that p, + p, = S.
Then Sy, . Spy C &, = {1}, 1. e. §* contains zero divisors.Conversely, suppose
that there exist zero divisors in S* and let be ;. y, = 0. Put p, = {x |2 € S,
Za(®) = 0}, ys={x|xed, y,(x) = 0}. Then p; + p, is the set of all ze S
for which y,ys(x) is zero. According to the supposition this set is the whole S.
Hence p, 4+ ps; = 8. We have the following result: The semigroup S* has zero
divisors if and only if S contains fwo different generating prime ideals p,, ps
such that p, + p; = 8.

A maximal generating prime ideal is a prime ideal q == 8 having the follow-
ing properties: a) q is a generating prime ideal, b) there does not exist a gene-
rating prime ideal p with q c p c S.

If p,, ps are two different maximal generating prime ideals, then we have
necessarily p, + py = S. Hence if S contains two different maximal generating
prime ideals, then S* has divisors of zero. If S has only a finite number of
generating prime ideals there exists always at least one maximal generating
prime ideal and every generating prime ideal can be embedded in a maximal
generating prime ideal. This implies: Suppose that S has only a finite number
of generating prime ideals. Then S* has not zero divisors if and only if S contains
a unique maximal generating prime ideal.

In general we can say only: if § has a unique maximal generating prime ideal
in which every other generating prime ideal is contained, then S* has not.
zero divisors.

Remark. In general it is not true that every generating prime ideal can be
embedded in a maximal generating prime ideal. We shall show this on Exam-

20) If S is connected none of the semigroups Sy, (+ S, + &) can be bicompact in
any topology. For it can be proved (see [10]) that a bicompact (commutative) semigroup-
in which the cancellation law holds is a group.
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ple 5,4. The proof follows indirectly. We use the notations introduced in this
example. Suppose that the semigroup ¢ = S has a maximal generating prime
ideal ¢. The prime ideal q cannot contain all prime ideals p, (: =1, 2, 3, ...).
For otherwise we have P S qc S and since P = S we have qa=2.,1 e,
q = q and q would not be closed. Without loss of generality suppose p,
non € q. Since q and p; are generating prime ideals q -+ p; would be also
a generating prime ideal. With respect to the maximality of q there must
hold q + p, = 8. Hence &, . S, = {7,}. Take the following character ¢ &, :
1(x) = x([2y, g, @3, ...]) = x;. Then there must exist a character ¢p(z) ¢ S,
such that for every point @ = [x,, &, @3, ...] € @ @(z) .z, = 0. Consider the
set R of all points z e S for which z, & 0, i. e., the set « = [%;, @5, 23, ...],
0 <2 <}, 0< 2, < 27" for n 2> 2. On R we have necessarily ¢(x) == 0. But £
is dense in S. With respect to the continuity we have ¢(x) = 0 on the whole S.
Hence there would hold q = §. This is a contradiction. Our semigroup has not
a maximal generating prime ideal.

-9

Let p be a generating prime ideal. Let us put the question: under what con-
ditions is the semigroup &, a group?

If &, is a group, then there must exist a continuous function y which vanish-
es just on p and is equal to 1 on § — p. (Since an idempotent character assu-
mes only the values 0 and 1.) In our usual notations there must hold therefore
S —p=2_8—J, hence p = J. But J is open. Therefore p must be open.

Conversely, let p be an arbitrary prime ideal which is both open and closed
in 8. The semigroup @ = § — p is closed and bicompact. We know (see the
remarks in section 4 above, or [5]) that the set of characters of @ with values
of absolute value unity forms a group. Let us denote this group by [@*];.%)
This group is non-vacuous since it contains at least the unit character of @,
i. e., the function y,(x) =1 on @.

Construct now a function y(x) defined on § in the following manner. Choose
a character y(z) e [@*], and put

0 forzeyp,
@) = <1p(x) forze@. (6)

‘This function is a character of S. (It is continuous since v is continuous on @.)
p is therefore a generating prime ideal of S. In this manner we obtain all
characters ¢ &,. Further it is clear that &, ~ [@*],, and since [@*], is a group,
&, is also a group.

Thus we have proved

Theorem 7,1. The semigroup &, is a group if and only if p is both open and

21) We cannot write @* since @ itself has — in general — also other characters then
those which vanish nowhere on Q.
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closed. To every prime ideal p of S which is both open and closed there exists
a group of characters vanishing just on p. Every character € S, is of the form (6).

The theorem just proved implies:

Theorem 7,2. The semigroup S* is a class-sum of disjoint groups if and only
if every gemerating prime ideal of S is both open and closed.

In particular:

Corollary 7,2. Let S be finite. Then S* is a sum of disjoint groups.

We know that in the decomposition §* = > &, two summands &, and &,

are always groups. With respect to Theorem 6,2 we get:

Theorem 7,3. Let S be connected. Then S* is a sum of groups if and only if S
has only the two trivial generating prime tdeals & and S.

An important type of semigroups to which we have just been led and
that is often treated in the literature are semigroups that can be written as
a sum of groups. They are also called ‘“semigroups admitting relative inverses”.
In such a semigroup every maximal semigroup P, is identical with the maximal
group @,. In such a semigroup every ideal is a sum of groups. Hence every clo-
sed prime ideal has the form p = Z P,.If pis a generating prime ideal, we have

therefore p = J. A generating prime ideal is therefore open. Hence @ is
a group. If S is connected, there exist, of course, only two (trivial) generatmg
prime ideals. We have proved:

Theorem 7,4. Let S be a (commutative bicompact) semigroup admitting relative
inverses. Then S* is always a sum of disjoint groups. If S is connected then there
exist only two group-components and S* = &, + &, holds.

Remark. It follows also from our previous results that if § is the sum
of groups and y ¢ §*, then fx(x)f =O0orlforallzes.

If S is such that every generating prime ideal is both open and closed then
the structure of §* can be fully described. This will be the content of Theorems
7,56 and 7,6.

Definition 7,1. Suppose that S is such that every generating prime ideal is
both open and closed. An idempotent e, will be called a generating idempotent
if the ideal J, belonging to e, in the correspondence (1)J, < e, of section 2 is clo-
sed.

Let us assign to every generating idempotent e, an idempotent character
£, by the following definition:

(2) = 0 forzeld,,
Eal N1 forzeS —J,.

It is clear that we obtain in this manner all non-zero idempotent characters
€ 8*. The set of generating idempotents can again be partially ordered by the
statement e, < e; <> e,e5 = ¢,. Analogously, the set of all idempotent charac-

ters can be partially ordered by the implication ¢,e5 = &, <> &, < ¢4
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If e, < e4, then Theorem 2,2 implies J, c J;. The equations

_ /0 forx edJ,, 0 forzedy,
=<1 forxes—d, DT foraes—J,

imply e,e5 = &, i. €., g5 < &,. Hence the two partially ordered sets of idempo-
tents are anti- isomorphic.?¢)

Fig. 2.

Let e, be a generating idempotent, ¢, the corresponding maximal group.
The set of all characters vanishing just on J, forms a group. This group is
isomorphic to the group [G**] of non-zero characters of the group G,. Hence
S, = [G¥]. But Sy, is exactly the group-component contained in S* whose
unit element is the idempotent character ¢,. Hence:

Theorem 7,5. Let S be such a semigroup that every of its generating prime ideals
18 both open and closed. Then the partially ordered set of generating idempotents
e S and the partially ordered set of mon-zero idempotent characters e S* are anti-
-isomorphic. If in this anti-isomorphisme, ¢ S« e¢, e S*, then Sp, ~ [GF],
where [G¥] is the set of all non-zero characters of the mazimal group Q..

21¢) It should be noted that if e, ¢ are generating idempotents, e ez need not be a gene-
rating idempotent. If in our anti-isomorphisme, «—¢,, €5 <« egand e,ep =+ xo, thene g5
y» Where ¢, is the idempotent that in the correspondence (1) of section 2 corresponds to
the ideal J), = J, +Jg+5.J, is a generating prime ideal which is both open and closed,
hence e, is a generating idempotent. (e., is clearly the least idempotent contained in S —
— (J, + Jp).) I ee5 = 7, then J, + Jg =S and there exists no idempotent ¢S to
which e,e5 correspond.

«——>€,
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Remark. The situation is schematically described (in a case with a finite
number of idempotents) in fig. 2. Here e, denotes the least idempotent e 8.

In the special case treated here Theorem 7,5 gives a full information concern-
ing the “gross structure” of S*. We shall obtain also further information con-
cerning the “fine structure” of §*. This means: we shall show how to obtain
the product &y, . Sv; by means of characters of some subgroups € 8. In the
proofs of the corresponding theorems we shall use analogous methods as in
section VI of the paper [7], p. 241 —244. Of course, we must take into conside-
ration the topological suppositions.

Let Sp,, Sy be two groups of S* with ¢,, ¢4 as unit elements. Let e,e5 =
= ¢, = 20.2*") Then

Sy, - @nﬂ = (Sp,e,) - (Srp . £p) = (6;:“67) . (@pﬁey) .

Since ¢, < ¢,, &, < &5, we have e, < e,, ¢; < e,, hence p, S p,, p; S p,.
Every character y €« Sp, . ¢, is a character of S just vanishing on p,, hence
Sp, . &, C Sp,. In particular we have ¢, ¢ Sp, . ¢,. Further &y, . ¢, is a group.??)

Hence &y, . &, and Sy, . ¢, are subgroups of Sp,,.

i i
Cy.ea G;y 8,

Fig. 3.

The product Sy, . Sy, will be known as soon as we shall know the structure
of the groups Sy, . &,, &pj . ¢,. This question is solved by the following theo-
rem.

#1v) Without loss of generality we may suppose &, = xo (hence p, + S) since otherwise
we have &p, . @py = {X,} and there is nothing more to investigate.

22) To prove that @vaay is a group it is sufficient to show that for every x'ey € @mey
(1" € Svx) the equation &. x'e, = ¢, has a solution £e Gyae,y. Find a 3" ¢ &v, such that
x'%" = e, and put & = y"e,. Then it holds indeed (x"¢y)(x¢,) = LA ey = 48y = &0
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Theorem 7,6. Suppose that in the anti-isomorphism of Theorem 7,5 the cor-

respondences &,~—e., g5 ez hold. Suppose ey < e, (hence e > ¢,). Then there
holds

Org . &, =2 [(Grep)*] .

Proof. We have proved above
S . e, E Gp, =~ [G:] .

Since ey < e,, we have p; c p,. Every character ¢ Sp,z, induces on @, a cha-

racter @(z) of the group @,. Of course, we obtain thus only some of the
characters of G,.%%)

Consider the homomorphic mapping of the group @, into the group @, e:24)9)
X E G,y*%xeﬂG G},eﬂgaﬂ. (7)
Since G,e; is a continuous image of G,, Ge; is a bicompact semigroup.
Hence (7) is an open homomorphic mapping of &, into G,ez*). The kernel
of this homomorphism is the set C' of those z ¢ G, that are mapped into the
element ¢, i. e., the set of those x for which xze; = e;z. The set C' is a closed
subgroup of &, and the topological?¢') group G',e4 is isomorphic to the topolo-
gical group G, | C*"). Therefore
Ges~G,[C,
where the isomorphism denotes an isomorphism of topological groups .
Write the decomposition of &, mod C in the form G, = 3 ¢,C, where one

of the elements ¢, is e,. Then (c¢,C) e; = ¢,(Cey) = c,e5. Denoting c,e; = b,
we get clearly G,e; = Z (c.ep) = Z b,, where one of the elements b, is e,.

We w'sh to show now that the set Spye, is formed by those and only those
of the characters y € Sy, for which x(C) = 1 holds.

2"’) Each of these characters @(x) has the special property that it can be extended to
a character of S just vanishing on pg,.

1) The set G ey is a group (subgroup of Gp). For, it has a unit element e ¢ Gyep and
if cege Gyeﬂ, Cce G’y is any element e Gyeﬂ, the equation &. ceg = eg has a solution & ¢
e Gep.

%) The mapping is a homomorphism since if x — xes, y — yey, then 2y - ayes =
= xeﬂ . yeﬂ.

26) We use the theorem: a homomorphic mapping of a bicompact group into an other
bicompact group is an open mapping. (See ITourpsrun [11], p. 123.)

26%) T, must be remarked that we can use the notion ‘‘topological group” since the fol-
lowing theorem is known: If G is a group and a bicompact Hausdorff space and if multipli-
cation is continuous in both variables, then G is a topological group, that is 2~ is a con-
tinuous function of x. (This fact has independently been proved recently several times.
See f. i. [14].) .

%7) See, f. i. [Tourparun [11], p. 121, Theorem 11.
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a) Let y,e Gp,. Since Cey = ey and yy(e5) = 1, we get yx,(Cey) = xa(ep),
%2(C) - 22(eg) = 22(ep); 22 (C) = 1. Every character ¢ &p.e, is of the form
728y X2 € vy Therefore yye,(C) = x5(C) . £,(C) = 1.1 = 1. This shows that
every character ¢ @pﬂ&y has the value 1 on the whole set C.

b) Suppose, conversely, that y, is any
character e @y, satisfying »,(C) = 1.
We shall show that y, € Sp e,

The character y, induces on G, a cha- G,
racter p(z) of the group @,. For z ¢ @,
we have ¢(x) = y;(x). Further

¢(c,0) = ¢(c,) . 9(C) = ¢(c,) .
Hence ¢(c,) is (in the usual sense) a
character of the factor group G, | C)%.
Define a character y(x) of the group G e,
in the following manner: if b, = c,e4
let be y(b,) = ¢(c,). Since in the map-
ping b,«<—c, the topological groups
G, |C and G.e; are isomorphic, y(x)
can be considered as a character of the ] 1
group G.e; C Gy %

If Gle; = Gy, y(x) is a character of |
the whole group G4. If Ge; C Gy, it is
known??) that there exists a continua- Fig. 4.
tion of the character y(x) to the whole
group Gy. This extended character will be denoted by ’(x). (If the continuation
is not necessary let '(z) mean y(x).)

Construct a character y, e @pp that for ze Gy satisfies y,(z) = '(z). This
is possible since e, is the least idempotent of the bicompact semigroup S — pj.
(See [5].) In particular for x e G ep y'(x) = p(x) = x,(%), hence y(b,) = 14(b,).

With respect to the definition of the function (), ¢(c,) = w(b,) and there-
fore p(c,) = x4(b,). For the set ¢,C (i. e. every element € ¢,C) we have

22(6,0) = 2(¢,0) . galeg) = 23(0,) x2(Cep) = %a(C)) - x2(€p) = 22(0rep) = x2(bs) =
= g(c,) = ¢(c.0) -
Hence the character y, assumes on @, the same values as the character ¢(z),
i. e., the same values as the character y;.
The character y,e, € Spge, C Sy, vanishes just on p, and on the group G,
(the maximal group belonging to the least idempotent ¢ S — p,) has the same

28) See ITonrparuH [11], p. 248, Theorem 37.
29) See [Tourparud [11], p. 258, Theorém 42.
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values as the character y; e Sp,. Hence (according to the paper [5]) we have
X1 = Xa - &y, hence y, € S, . &,. This proves our assertion.

We now complete easily the proof of Theorem 7,6.

Let ¢(x) be any character of the group &, which is equal 1 on C (i. e., any
eharacter of the factor group &, ’ (). Then the function

/0 forzeyp,,
hx) = Ng(xe,) forzeS —yp, ,

is a character ¢ Sp,, which is 1 on C. Every character with this property can
be obtained in this manner by taking a suitable function ¢. (See [5].). For two
different characters ¢, p, we get two different characters %, h,. This means:
the set of all such characters, i. e., @y . €., is isomorphic®) to the group of non
zero characters of &, | . But G, ' C = (e hence Spge, = [(Gep)*]. This
proves Theorem 7,6.

8

The purpose of this section is to establish conditions that a given closed prime
ideal be generating. It should be remarked in advance that the necessary and
sufficient condition stated below is of a very general nature and does not much
help in concrete (“practical”’) examples.

Let y = y, be a character satisfying.for at least one a ¢S the condition
Ix(a)' = 1. Then there exists necessarily an element b ¢ S such that |y(b)| = 0.
Such an element is, for instance, the idempotent e, to which a belongs.

Sinee S is bicompact the continuous function !x(:c)l assumes on S its maximum
M. There exists therefore an element ce S such that fx(c)! = M. Clearly
0 < M < 1. This maximum can be of course < 1. This is the case if and
only if @ = &.

Lemma 8,1. Let max |y(z)| = M > 0 and for at least one ze S [y(2)] + 1.

zeS
Let m be a real number such that 0 < m < M and J,, the set of all elements
e S for which |y(x)] < m. Then J,, is an open ideal in S.

Proof.a) Letac J,, i. c., [g(a) < m. Let s ¢ S. Then |y(as)| = |y(a)

< 1.m, hence as ¢ J,,. The set J,, is an ideal.

2(8)] <

b) The function |y(x)| being continuous, the set of all a e S with |y(a)] < m
is open. Hence J,, is open, which completes the proof.

Lemma 8,2. Under the same suppositions as in Lemma 8,1 let H,, denote the
set of all x € S satisfying |y(x)| < m. Then H,, is a closed ideal of S.

Proof. a) Similarly as in Lemma 8,1 it follows that H,, is an ideal of S.

30) Here, of course, we mean an isomorphism of algebraic groups since we have not
introduced a topology into S*.
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b) The function |y(x)| is continuous. Therefore the set of all ae S with
[x(@)] < m is closed. Hence H,, is closed, which completes the proof.

Remark 1. The Lemma, remains valid also for m = 0 if we write (in our
usual notation) H, = p.

Remark 2. For m > 0 we have clearly J,, € H,,, hence I, Cc H,. In general
we cannot say that J,, = H,,. For let, e. g., S be finite. Then for every character
of the form treated in Lemma 8,1 we have M = 1. ForJ, (i. e., all z ¢ S satis-
fying |y(x)| < 1) we get J; = p + o, whereas H, = S. Since p ¢ §, we have
H, c J,. Of course, one can show on simple examples that .J,, = H,, is possible.

Lemma 8,3. Let the suppositions of Lemma 8,1 be satisfied. Let 0 << my; < my <
< M. Then J, CJ,,

Proof. Clearly H,, c.J,, (since H,, is the set of all @ ¢ S satisfying M(“ ]
< m, and J,, the seb of all a e S satmf} ing |y a)l < my,). With respect to the
Remark 2 above we have T, C T m, & Hup &I, q. €. d.

Remark 1. If § is connected, we have more precisely J,, C J,,. Proof:

Since |y is continuous, S connected and || assumes on, § the values 0 and M,

1+mo

there exists a ¢ e S with m, << [y(c)| = < my < M. Therefore c e J,,

but ¢ non Jm,. Hence J,,h C Jp,

Remark 2. The assumption of connectedness is, of course, essential. For
a finite semigroup we have always for 0 < m;, < my <1, J,, = Jp = J,..
Another instructive example is given by the multiplicative semigroup of the
following complex numbers with the ordinary topology in the plane: § =
={|l <1 +{z|$< <3+ {z]l2l=1}. S is a non-connected bi-
compact semigroup. Let y(z) = z; then for all m,, m, with } < m; < my, < }
S n, = I, holds.

Definition 8,1. We shall say tha the set of ideals R = {¥Y,, 0 <t < 6,0 > 0}
of S forms a y-chain of ideals if to every real number t of the interval {0, 8) there
corresponds an ideal Y, e R such that the set of these ideals has the following pro-
perties:

a) Y, is a closed prime ideal,

b) for 0 <t < 6 Y, is an open ideal,

) for0 <t <t,<6Y,CY, holds.

Remark: For ¢, 4 ¢, we do not require ¥, = ¥,.

Definition 8,2. Let R = {¥,, 0 < ¢ < 6,0 > 0} be a y-chain of ideals of S
Let aeYy. Let t, be the lower bound of real numbers v for which a €Y, holds-
The number t, will be called the index of the element a with respect to the y-chain R-
We shall write t, = indy a.

For a ¢ Y, we have indy a = 0.
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In the following theorem we give a necessary and sufficient condition that
a prime ideal p == @ be generating. We know that the prime ideal & is always
generating; therefore we restrict the considerations to the case p + &.

Theorem 8,1. T'he necessary and.sufficient condition that a prime ideal p = &
be generating is the fulfilment of the following condition. There exists a y-chain
of tdeals of SR = {Y,, 0 <t < 6,0 > 0} such that

a) Yo =9,

b) for all @, b € Y 5 holds indy @ . indy b = indyg (ab).

Proof. 1. We show that the condition is necessary. Let p &= @ be a generat-
ing prime ideal and y a character vanishing just on p. Let us put Jy = p
and for 0 < m < M = max [y(c)|, J,, = {a|ae S, |y(a)] < m}. Then Lemma

ceS

8,1 and 8,3 imply that R = {J,, 0 < m < M, M > 0} is a y-chain of ideals
of S.

We prove that indy a = [y(a)|. Let indy @ = 7 and |y(a)| = ¢. According
to the definition of the sets J,, and the index T we have a) for ¢’ << t anon e J,,
ie, |y@)| =1t,b)fort" >t aedy, i e, |y(a)| <t Suppose first that ¢ > 7.
Choose #” = £ T > 7. Then ¢ = |y(a)| < Q—_zﬂ < p, which is a contradic-

2
tion. Suppose on the other hand that ¢ < 7. Choose t' = g—glz < 7. Then

et
2
cessarily |y(a)] = ¢ = 7.

< |x(@)] = o,i.e., T < o, which is again a contradiction. Hence it is ne-

Let now a, b be two arbitrary elements e S. Then

indy @ . indy b = [y(a)| . [x(b)| = |z(ab)| = indy (ab),
q.e.d.

2. We shall show that the condition is sufficient. With respect to Theorem
4,1 and 4,2 it is sufficient to prove the existence of a character on an arbitrary
ideal containing p as a proper subset. We shall show its existence on the ideal ¥ ;.

Let R = {Y,,0< ¢ < 6,0 > 0} be a g-chain of ideals satisfying the condi-
tions of Theorem 8,1. If Yy =Y, for a ¢ with 0 < ¢ < §, then Y, is both
open and closed. According to Theorem 7,1 Y, is a generating prime ideal
and there is nothing more to prove. In the following we can therefore suppose
that Y, 2> Y, for every ¢t > 0, in particular Y; 2 Y.

Construct a real function y(x) defined on Y; in the following manner: if
a € Y5 belongs with respect to the y-chain R to the index 7, let us put y(a) = 7.
(In particular for be Y, let us put y(b) = 0.)

"We shall prove that this function y(x) is a character of the semigroup Y.
To this end it is sufficient to prove that y(a) . 2(b) = x(ab) and that y(z) is
continuous on Y. ‘
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Let be y(a) = 7, x(b) = o. According to the supposition ab belongs to the
index 7o, hence y(ab) = vo. This gives y(ab) = x(a) . x(b).

It remains to show the continuity of y. Let y(a) = 7. We must prove that
for every e > 0 there exists a neighbourhood U(a) such that for every
zeU(a) |y(x) — 7| <e Let be 0 <7 <. Consider the ideals Y, ., Y., .
Clearly aeY,,, and anone?, .. (According to the supposition we have
namely Y,_, cY -t and a is not contained in, Y,_% since otherwise its index

<t— %.) Thus aeY, .. ——T’,_e. Since this is an open set we can, construct

a neighbourhood U(a) such that U(a) c ¥,,, — Y,_.. For every xz ¢ U(a) the
number indy « satisfies clearly t — ¢ < indx « << v + ¢, hence |indg ¢ — 7| <,
and |y(x) — x(a)| <, q. e. d.

If © = 0 it is sufficient to consider a neighbourhood contained in ¥, ¢ > 0.
The modifications needed in the case v = d are obvious. This completes the
proof of Theorem 8,1.
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Pesome

TEOPHST XAPARTEPOB KOMMYTATUBHDLIX XAYCIAOP®OBLIX
BUROMHIARTHBLIX MOJYTPVYILII

HITEG®AH HIBAPIL (Stefan Schwarz), Bparucaasa.

(Iocrymmiao B pegarumio 23/VIT 1955 r.)

XaparrepoM HoJiyrpynnsr S Ha3bBaCM HCHPEPEIBHYI0 KOMIJICKCHYIO (YyHK-
mio x(x), ompejiesieniyio Ha S M YIOBIAETBOPAOIYIO COOTHOmEHMO y(ab) =
= y(a) . x(b) nmsa wampuoit mapel @, b e S. V3yuenuem xapakrepoB KOHEYHBIX
HOJYTPYIII 3aHuMaicsa aBrop B padorax [7], [8], [9]. Lleanio Hacrosimeir paGorst
siprasierca obobmenue paspaboTaHHOM TaM TeopuM lia cJydail XaycJopPoBbIx
OMKOMIAKTHLIX Hoayrpymin. B jansaeitmem S o3HavaeT BCIOLY HOJIYrpYyLILY
YKa3aHHOI'O THIA.

MHosKecTBO BeeX XapawkTepoB HOJMYrpynnsl S ofpasyer — mpu 00BIYHOM
ONPEeJIeJICHNN YMHOKCHIA XapaKTepoB — HoByio noayrpynny S*. IpoGiema
COCTOUT B MCCIICIOBAHUM CTPOCHUA IOJIYTpYHIBL S*.

B maparpage 1 KopoTko HOBTOPEHBI HEKOTOPBIC PE3YJIBTATHL, Kacalolmecs
¢TpoCHUA NMONYrpynnsl S, KoTopsle ObLIN HOJPOOHO joKazaHsl B pabore [6].
[Tycrs @ — mpousBosbueli anement e S. Iloctpoum muosectso 4 = {a, a?,
a®, ...}. Bambikanne A CONEPIKUT OJMH M TOJHKO OJUIH HICMIIOTCHT €,. [oBopum,
YTO @ HPUHAJICKAT K UJEMIOTCHTY €,. MHOKCCTBO Beex @ € S, NPUHAJJICHKAIINX
K OIHOMY MJEMIOTEHTY e,, obpasyer noayrpyimy P, KoTropylo Ha3bBaeM
MaKCHMalLHOM TOJNYIpyNIol, IpuHajjeskauieil K wupemnorenry e,. llomy-
rpyniy S MORHO HHCATH B BUJe CYMMbI JM3LIOHKTHBIX claraeMsix S = > P,.

«

lanee, K KaJKAOMY HIEMIOTEHTY €, CYIICCTBYET OJIHA ¢/THCTBEHHAS MAKCUMAJlb-
nast rpynua G, c P,, epuHuieil Kotopoil siBIISICTCSI WAEMIIOTCHT €,.

MHoskecTBO BceX HIEMIOTEHTOB € 8 MOKHO YaCTHYHO YHOPSJIOUUTH, €CIIH
HOJIOIKUTE €, < ep <=>€, . €5 = €,. Torma »To MHOMecTBO Obpasyer T. Has.
HOJYCTPYKTYPY, B KOTOPOIl omepamnmsa /\ ompefiesisieTcs COOTHOIIEHUEM e, /\
ep=e,.ep Jlna mameii mesm cymecTBeHHO TO, YTO BeAKas Xaycjpopgosa On-
KOMIAKTHAS IOJYTPYIIa NMEeT Beera JIMIMb OfMH HAMMEHBIONH HMEeMIOTeHT.

Wpeamom monyrpynnst S HasbBaeM MHOKeCTBO I, yIOBIIETBOpAIONIEE YCJIO-
o SI € 1. WUpean I HasniBaeM IPOCTHIM MjeanioM, ecian S — I ecth nody-
rpynna. Beirogso cumrath HpOCTBRIMA HjeasiaMi B S M IyCTOE MHOKECTBO §),
n Beio noayrpynny S. B maparpade 2 ocBsinmeHo ¢rpoeHne OTKPHITHIX HPOCTHIX
ujeasoB nonyrpyunsi S. BosbMeM HpOH3BOJIBHEIL HAEMIOTEHT €, € S. Haiiem
BCe HIICMITOTEHTHI €,, JJIA KOTOPHIX e,e, = e,. IlocTpomm Bce coorBercTryIO-
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e MaKkcuMasbusie nosyrpymust P, Torpa I = z P, ecTb OTKPHITHIT 1poCTOi
7
upeast monyrpyunst 8. (Keiu e, — wanmenpmnii upemnorenr € S, to I = §.)

Taxum o6pasoMm MOMHO HOJIYyUMThL JMOGOH M3 OTKPBITBIX 1IPOCTHIX MJlCAJIOB
I == S nonyrpyuns: S.

Taxum oGpasom, KamloMy UAEMHIOTEHTY €, COOTBETCTBYET OJHO-OJHO3HAYHO
KaKOU-TO OTKPBITHIL Mpocroit ugean [,. OTHOCHTEIHHO BIRIIOYCHUS TACTHIHO
YHOPsAoYeHHAA 1OJYCTPYRTYpA OTKPBITHIX HPOCTBHIX WeailoB == S u 10Iy-
CTPYKTYpPa BceX MACMIOTCHTOB € S B3aUMHO M30MOPQHEL.

Ilycers y — xapawrrep mosyrpynnst S. s ranggoro @ e S u juist ®asaoro
Z @) = 1.

Mycrs 3 — QurcnpoBanubii xaparrep. MHOKECTBO @ e S Beex dICMCHTOB
€8, st Rotopeix [y(a)| < 1, ecTh OTKpPHITHIT HpocToil niean s S. MuoskeerBo
BCEX BJICMCHTOB @ € S, J7Is1 KOTOPHIX y(a) = 0, ecTh 3aMRIYTHIL 11POCTOI Mjeal
HOJyrpynust S.

[Tycrs, HAOOOpOT, P — 3aMKuYTHIT TpocToil ujean n3 S. Torpa, B 00uEeM, He
CYIIECTBYET XapaKrTepa MoJIyrpyIIb! S, KOTOPBIl paBHAJCA OBl HYJI0 TOUYHO Ha
p. [Moaromy BBOjUTCA chejrylornee olipesiesicHue: IpocToil Maeas p HOAYr PYIITBL
S HazbIBaEM TPOUBBOSIIMM, €cjin a) P ecTh BAMKHYTHIT ujtean s S, 0) cynecrryer
10 KpaifHell Mepe OJMH XapawrTep y HOJYIPYHNNBI S, PaBHBII HYJIO TOYHO HA
p. (ITpocreie umeanst @ u S ABIASIOTCA BCCr/la IPOUBBOJIAIINMIL)

Ecnn p o3navaer mpousBoAnmil mpoctoit ujgean, to cumsodom Sp obosua-
UIM HOJYTPYINY BeeX XapaKTepoB, KOTOPBIE paBHBI HYJIO TOYHO Ha p.

,I'pyboe’ crpoenne HoJyrpynnsl S* MOMKHO Tellepb ONNMCATH CJIELYIONINM
obpasom: momyrpyniy S* MoKHO BHIPa3uTh B BUJIE MHOJKECTBEHHOI CyMMBI
JMBIOHKTHBIX  nosyrpynn 8% = > @p,, rie p, npoberaet Bee IpoH3BOAAILIE

3

npocrsie mpeansl noayrpyunst S. B rammoit momyrpynne Sp, mMeer Mecto
npasuiio cokpamenns. [[Ba m3 cimaraempx, a umenno &, n &, cyrs Bcerya
rpynnst. I'pynna &, sBiaserca Kak pas TPYHIOR XapaKTepoB, KOTOpHe Ha
BeeM S yIOBIIETBOPAIOT cooTHomenuo |y(x)| = 1. (Crpoenue 9Toit rpynusl u ce
orTHomeHne K noiyrpynie S Obn ueciegoBansl B padore [5].) Ecmn S eBssno,
TO cpeju cnaraembix &p, He CYyHIECTBYeT YiKe HUKAKMX JAPYTUX IPYIII.

Bosnuraer sonpoc: xorma &p, 6ymer rpynnoii? Homyrpynna Sp, asisercs
TPYIION, ecal HPOCTOH MAeasl P, ABIAETCA OTKPHITO-3aMKHYTBIM MHOH{GCTBOM.
HaoGopor: BeAKuIl OTKPBITO-3aMKRIYTBIA HPOCTOIM MIeal P, SIBJIACTCS HPON3BO-
TaumM, 1 coorBerctBylomee &p, ecth rpynmua. B aroMm ciyuae MoykHO paTh
Gomee mojpoburie cBejgenusi o crpoeHun rpynnst Sp,. Ofoswaunm uepes e,
HaMEHBIINI NAECMIOTEHT 3aAMKHYTOI NOJyrpynusl S — p,, a uepes G, — MaKcu-
MaJIbHYIo TPYNIly, HPUHAJICIKAILYIO K WAeMIOTeHTY €,. Torma Sp, mzomopdua
rpyuie xapakrepoB rpynnst G, OTIMYHBIX OT HYJIs.
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IMomxyrpynna S* aBnaercsa cyMMOMI IPYII TOI/IA X TOJBKO TOTAA, €CITH KayKIbIA
HPOU3BONAIIKAI TPOCTOR mieas MoJyrpynnsl S ecth OTKPHITO-3aMKHYTO€ MHO-
jKECTBO. ITOT caydyall HacTynaeT Bceria, KOIJla HMeeM Jell0 ¢ KOHEeYHBIMU
nonyrpynnamu. [lanee, cioffa oTHOCHTCS Kaskiad LOJYTpYIIa, KoTopas cama
ABIIACTCA CYMMOH TPYIIL

WpemnorenT HOJIyrpynusl €, Ha30BeM HPOM3BONALIUM HAEMIOTEHTOM, €CIIH
COOTBETCTBYIOMMII €My OTKPBITHII HPOCTOM HJeaJl ABJIAETCS OIXHOBPEMEHHO
BAMKHYTBIM 1IPOCTHIM mjeasiom. CrpaBejmma clefyiomas teopema: Ilycrs
§ — mosyrpynina, Bce IPOU3BOJAINTE IPOCTHIE UEANBl KOTOPOI IPecTa BT
OTKPBITO-3aMKIYTHIe MHO;KecTBAa. Torxa YacTHyHO YHOPAXOYEHHOE MHOKECTBO
HPOU3BOJAANINX MAEMIOTEHTOB B S M 4acTHYHO YHOPANOYEHHOE MHOIKECTBO OT-
JITYHBIX OT HYJISA MIEMIIOTeHTHBIX XapaKTepoB I0Iyrpynnsl S* aHTHH30MOPHBL.
(IIpu arom wacTmuHOe ymopsAjgodeHHe B HTUX MHOJKECTBAX ollpejiesleHO aHaJo-
ruyHeM o0pasoM, Kak u Beime.) Ecin ske B sroM aHTHH30MOpdH3Me Oyner
ey € 8 <—— &, € 8%, 10 Sp, usomMopPHa rpyie HeHYICBEHX XapaKTePOB MaKCu-
MalpHOII rpynnsl (,, HpuHAIIeKAICH K MIEMIOTEHTY €,.

Muoxecrsa Sp,, Sp,; Bcerma ymoBiaerBopsioT cooTHomeHmo Sp, . Spg C
C @y, + pp Ecmm jxe Gynem paccmMarpuBaTh TOJIBKO UTO ONMCAHHEIL Clle-
IUaNBHEIH ¢Iydall (Korja KajKablil TPOUBBOMAMMI NPOCTON HMjieal — OTKPHITO-
3aMKHYTO€ MHOKECTBO), TO cTpoenne npoussesiennsa &p,. Spg MoskHO 0XapaKTe-
pU30BaTh HPH HOMOIIM XapaKTePOB ONpPEJeJIeHHBIX HOAIPYIH HOJIyrpyIusl S.
IT0 BO3MO’KHO, IIO-CYIIECTBY, HA OCHOBAHMU cJjejylomell Teopemsl: Ilycts
B TOJABKO 9TO YKA3aHHOM QHTHU3OMODP(UIME &, <——> €,, &5 <——> €5 U €5 < €,
torga Spge, ecTb rpynna, usoMopHas Tpynne Xapakrepos rpynust G eg.

B naparpade 5 paccmaTpmBaercss HeCKOJIBKO IIPUMEPOB € IeNbI0 IOKA3aTh
BCEBO3MOJKHbBIe PA3HOBHIHOCTH CTPOCHMA IIOIYrpynns S*.

B maparpade 8 maiijeHo HeoOXxomuMmoe M JIOCTATOYHOE YCIOBUE MU TOTO,
YTOOBI JAHHBI 3aMKHYTBIA HPOCTON HAeall OB IPON3BOAANIIM.

Hpome npuBe/ileHHBIX BBIIIE Pe3yJIbTaToOB JOKasbBaeTcs B pabore Hesbli pAJ,
0o0ImuX TeopeM, KacamoIUXcs CBOMCTB XapaKTepoB IHOJAYTPYnmsl S u nasee
TEOPEMBl, Kacaolluecs CTPOCHUs OJNYIpynnsl S* u ee ¢BA3U ¢ NONYrpynmnoi S.
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