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AND CONTINUOUS DEPENDENCE ON A PARAMETER

JAROSLAV KURZWEIL, Praha.

(Received November 11, 1956.)

0. Introduction

The starting point of this investigation is the following theorem:

Let the functions f.(z,t), k= 0,1,2,... be defined and continuous for
(x, ) e @ X <0,T»,0e G CE,, Gopen, f.(z, ) € £,.!) Let us denote by x,(¢) the
solution of

dx

q = @), 2(0)=0 (0,01)

and let us suppose that there is a unique solution z,(f) and this solution is
defined for 0 < ¢t < T'.

Theorem 0,1. Let the following conditions be fulfilled:
t t
Fk(x) t) = ffk(x7 T) dT - ffo(xy T) dT = 1?0(%7 t) (0702)
0 0

uniformly with k — oo,
fr(®, t) are equicontinuous functions of x for fixzed k and ¢ . (0,03)
Then x,(t) are defined on <0, Ty for k great enough and x,(t) — z,(t) uniformly
with k — o0.
Theorem 0,1 is contained in the paper [2] of the author and Z. VOorEL in
a little more general form.2) An analogous theorem was formerly proved in [1]

by KrasnoseLsk1S and KREJN under the additional assumption that f,(x, t)
are uniformly bounded.

1) By <0, T'> we denote the closed interval from 0 to 7'. £, denotes the n-dimensional

Euclidian space.
2) See [2], Theorem 1.
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Let us apply this theorem to an elementary example

((11—9; = wkl~* cos kt + k'-Fsin kt = fi(z,t), x(0)=0,k=1,2,3,...,
%“f =0 = fy(2,t), 2(0)=0. (0,04)

The question arises for which « < 1 and g < 1, z,(¢) — 0 almost uniformly
with & — oo. According to Theorem 0,1 x;(f) — 0 almost uniformly for 0 <
< B =1, «a =1 (according to the theorem of Krasnoselskij and Krejn for
« = 1 = fB). By direct computation we obtain

t
() = exp {k~*sin kt} [ exp {— k—=sinkt} k' Fsinkvdr, k=1,2,3,....
0

As

t
[ exp {— k= sin kt} k'~/ sin kr dv =
1]
t
= k=#(1 — cos kt) — k'~=~# [ sin® kr dv 4 O(k*~22-#) ,
0

it follows that x;(t) — 0 almost uniformly withk —~ 0if 0 <o < 1,0 < f < 1,
a+B>L Ho<a=s1l,0<pf=1 o+ f=1then x(f) > — 4t almost
uniformly). This fact seems to be significant and our purpose is to discover
theoretic reasons of such convergence effects.

Let us emphasize another fact in connection with Theorem 0,1. It follows
from the proof of Theorem 0,1, that {,(f)} is a sequence of equicontinuous

¢
functions, if (0,03) holds, if ffk(x, 7) dr = Fy(x, t) — Fy(x, t) uniformly while
]

i
Fy(x, t) need not admit the representation Fy(x,t) = [fy(x, v) dv with f,(«, t)
0

continuous. Is it possible to associate with Fy(x,f) a generalized differential
equation

%{; = DFy(x, t) (0,05)
in such a way that x,(¢) is a solution of (0,05) if there exists such a subsequence
{k;} that () — x,(t) with j — 00? In such case the fact that () — o(t)
means nothing else than that the solution x,(¢) depends continuously on the pa-
rameter k. This question may be answered affirmatively by means of methods
which are analogous to those used in this paper. However, our object is to in-
clude in the theory of generalised differential equations the convergence effect
of equations (0,04). Let us fix the numbers «,f8,0 <o <1, 0 <p <1,
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o + B < 1. In this case condition (0,03) is not fulfilled. On the other hand the
functions

t
Fi(z, t) = [fulz, 7) dv = ak—=sin kt + k=A(1 — cos ki)
0

fulfil the condition
|Fr(z, ty) — Fi(z, t;)] < Klt, — t,]7, y = min(«, f),
if ]| < 1 and K does not depend on k.

In order to be able to formulate the chief results, we shall describe the way,
in which we associate the generalized equation

dz
with F(z, t).

If U(z,t) is a real-valued function defined for 7, <7 <%, v, <t < v* we
define the set of major functions and the set of minor functions and in a way
known from the theory of the Perron integral we define the integral of DU

from 7, to 7, and denote it by [ bU . It turns out, that if U(z, t) = f(z) . ¢(t)

1

and if ¢(¢) is a function of bounded variation, then f zDU exists if and only if

1

f }(r) dg(v) exists in the sense of Perron and that [ DU = [ }‘(r) de(z). In section

71 73 Ty

1 we give two equivalent definitions of [ DU and prove some fundamental
theorems about this concept of integral. l

In section 2 we define the generalised differential equations. Let F(x, t)
be defined for x e Gc E,,te<0,T), F(x,t) e E,. We say that the function
x(7) defined for 7 € (z;, 7, c <0, T) is a solution of (0,06), if

2(ry) = a(ry) + [DF@@). 1), 7374 € (ry 1> (0,07)

(F(x(7), t) is a vector function with components F,, ..., F, and [DF is a vector

or

ct

with components [DF,, ..., [DF,). If

T3

= f(x,t) is continuous and if y(7)
is continuous, théil
IDF(y(x), t) = [f(y(v), 1) dv

and every solution of (0,06) is at the same time a solution of %%3 = f(z, T)

and conversely.
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In section 3 we find some sufficient conditions for the existénce of f DU.

In section 4 we develop the theory of generalized differential equations.

By F = F(@ x <0, T, Ky, K™, o), &1, By, 0, K, K, > 0, we denote the
set of functions F(z,t) which are defined for (z,t) e G X <0, T), F(z,t) e E,
and fulfil the conditions

|F(x,t,) — Flx, t,)|| < K,lt, — ., if €@, t,t,e<0,T>, [t, — t,]| = o,

[P (x5, ty) — F(2g, t) — F(2y, t) + Flg, 1) = oy — 2, Kift, — 4]™,
if m,2,e@, t,t,e0, T, [lx, — 2| < 2K,0™, |t, — ¢,| < 0. Let us suppose
that F(x, t) € F and that «; - , > 1. «(7) is said to be a regular solution of
(0,06) on <1y, 7,> C <0, T, if (0,07) holds for 74, 7, € {7;, 7,y and if there exists
such a function o,(7y) > 0, 7, € {7, 7,» that

lle(zy) — ()l = 2K |T4 - Talﬂ' > T3, Ty € {to — 04(T0), To + 02(T1)> 0 <71, Ty) -

We prove: 1. If zy ¢ G, 7€ <0, T, then (O, 06) has a solution z(7) regular in
a neighbourhood of 7,, z(t,) = #,.

2. If Fy(xz,t)eF, k=01, 2, .. F,, — F, uniformly with k¥ — oo and if
there is a unique solution xy(z) of '

g% = DF(z,t), z(0)=12y¢CG, ‘ (0,07)
which is regular on (0, 7", then for % great enough solutions z,(z) of
gf — DF,(x,t), 2(0)=a¢G, (0,08)

exist which are regular on (0, 7. These solutions need not be unique but
x,(t) = %y(r) uniformly in any case.

If we wish to apply these results to equations (0,04), we put &, = «, f; =
= min(w, ), and obtain that x,(f) — x,(t) almost uniformly if 0 << &; =< 1,
O<p=Lx;+p>Lieif0<a=s1,0<p=La+p3>1 a>4%
Naturally every solution of (0,04) has a continuous derivative and is therefore
regular.?) However, our theory does not explain the convergence of solutions
of (0,04) fully, as we obtain the additional condition o > }

In section 5 we give applications of this theory to linear equations and to
a convergence result in the classical theory of differential equations.

Finally let us note, that the results of section 4 admit an interpretation in
terms of the theory of distributions. If F(x,t) e F, 5, + f; > 1, let us put

~

7 e e .
flx, t) = (Ft , where the derivative is taken in the sense of the theory of
7/

3) If g, = 1. it may prove necessary to enlarge K,. '
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distributions, that means f(,t) is a (special) distribution for fixed z. If y(z) ¢ G
for 7 € {7, 7,y and if

”y(‘tcl) - y(fzs)” = KIT4 - 1’3[7 , K >0, y > 1— Xy, Ty Ty {Ty, Ty, (0;09)

¢
then g¢(¢) = f DF(y(z), t) exists for 7,, { € {(z{, T,> and is continuous (see Theo-

rems 3,1 and 1,3,6) and we may define

o, o = S o).

y(¢) is said to be a solution of
d

if (0,09) holds and if the distributions on both sides of (0,10) are equal. It can
be shown, that y(f) is a solution of (0,10) if and only if y(v) is a regular solu-
tion of (0,06).

1. The Generalized Perron Integral

1,1. Definition of the integral. Let 7, << v*. Let us denote by S = S{zy, t*)
the system of sets S c E, having the following property: for every 7,7, <
< 7 < 7%, there exists such a 6 == §(zr) > 0 that (r,f) e S if 1 —0(zr) £t <
<1+ 6(1), 14 =t < v*. Let the function U(z,t) be defined on some S¢S,
real-valued, finite.

Definition 1,1,1. 4 real-valued finite function M(7), v* <1 < v* is a major
function of U, if there exists such a set S; C S, 8, € S that

(T — )M (v) — M(zy)) = (v — 1)(U(7, 7) — U(Tm o)) (1,1,1)

for (to, T) € 8;. The set of major functions of U is denoted by M(U). A function
m(t), 7o =T = T* is called a minor function of U, if — m(z) e M(— U). The
set of minor functions of U is denoted by m(U).

Definition 1,1,2. Let M(U) + 0 + m(U). The lower bound of numbers
M(t*) — M(zy) where M(t) e M(U), s called the upper Perron integral of DU

from T, to v and denoted by ~ [ DU. Similarly the wpper bound of numbers
m(r*) — m(ty) where m(z) e m(L;) 18 called the lower Perron integral of DU and

denoted by _ [ DU.

Tx

Obviously =~ [ DU = — _[ D(— U).

Tx
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Note 1,1,1. Naturally the symbol DU alone has no meaning, only the upper
(lower) integral of DU is defined.

Our next task is to justify the terms upper and lower integral. In order t0
prove that — [ = _ [ let us introduce the following concept:

Definition 1,1,3. Let us denote by A a finite sequence of numbers (g, T1s ¥17
Tos Koy vevy Tiy Og)s T = g << oy << e << 0, =T%, g STy S0 ST, K= .-
e =1 £ oy A is called a subdivision of {t,, t*) subordinate to S €S if (v;, ) € N
for o, St <o 7=1,2,..., k. The set of all subdivisions A of {v,,T*> sub-
ordinate to S is denoted by A(S).

Lemma 1,1,1. A(S) + 0.

Proof: Let 6(r) be such a positive function that (z,t) ¢ S for 7, <7 < 7%
T — 0(r) £t =< v + 6(r). From the system of intervals (v — d(r), v + 6(z)) we
can extract a finite minimal system of intervals J; = (r; — d(t;), ; + 9(z;))s
j=1,2,...,r, which covers (r,,7*)> (i. e.. if we remove any arbitrary of
the intervals .J;, then the new system does not cover {(z,,7*)). As the numbers
7; are different, let 7, <71, < ... <7, It follows that J;,n J;;; + 0
for j=12,..,r—1, J;nd;=0 for [i —j|>1, ¢ j=12..r,
JisJ;ndFJforj=1,2..,r—1,7, eJ,, t* € J,. Hence we find that
there exist such numbers 7, = oy < ; < ... < &, = 7* that a;eJ; 0 J, 4,
T, S =140, ] = 1,2, ..., r — 1. The sequence (xg, 74, &y, ---, T, &,) belongs
to A(S) as (tjpf)eSforo; <t <o, 0 ST Sk =1,2, .57 — 1,

We now pass to the following

Lemma 1,1,2. If M(U) + ¢ + m(U), then _[DU < - [DU.

Proof. Let us choose M(r) e M(U), m(z) e m(U). Assuming that (1,1,1) holds
for (7o, 7) € S; and that analogously
(T — 7o) (m(r) — m(70)) = (v — 7)(Ul(7, 7) — Ulzo, 7)) (1,1,2)
holds for (zy, 7) € §,, let us choose a subdivision 4 € A(S; n S,).
As (15, t) e S; n S, for «;_y =t < «;, we get, according to (1,1,1)
M(x;) — M(7;) = Uz, o) — Ulzy, 15) s
M(t;) — M(x;4) = Uy, 75) — Ul o54)
and
M(x;) — M(x;q) = Uz, ) — Ul o5) -
Analogously
m(x;) — m(x;_1) = Ulry, ;) — Ulzs, &54)
and consequently
M(o;) — M(x;y) = m(x;) — mla;_4) -
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Adding for j = 1,2,...,r we get

M(z*) — M(ry) = m(v*) — m(ry) and ~[DU = _[DU .
The proof of lemma (1,1,2) is complete.

Definition 1,1,4. If M(U) + 0 + m(U), [ DU = _[ DU, the generalized Perron

integral [DU of DU from =, to v* is defined by means of the equation

T

f DU = _ f DU. In this case the function U is called integrable (in the sense of

Perron) on {(ty, t*) and the set of integrable functions is denoted by P, V{ty, v*)
respectively.
Note 1,1,2. Let f(r) be a real-valued finite function and let us put

Ur, t) = f(r) b, 74 =7 = 7%, — 00 <t < 0. It follows that the integral [ DU

Tx
T*

exists if and only if the Perron integral [f(r) dv exists (in the usual sense) and
that in this case both integrals are equaly.*
It is well known that the Perron integral [f(r) dv is defined in a very similar

Tx
T*

manner to f DU. A finite function M(t),7, =7 < t* iscalled amajor function

of f, if DM (-;) = f(z) for 7, < v =< ¥, where DM (7) is the lower derivative of
M(z). By H(f) is denoted the set of major functions of f. It is almost obvious
that

1. M(U) c H(f), 2.if M(z) e H(f), then M(z) + et ¢ M(U) for every ¢ > 0.

An analogous situation holds for the minor functions, whence the assertion
follows immediately. '

The same assertion holds also for the Perron integral [f(r)dgp(r) where
¢(z) is of bounded variation (we put U(z, £) = f(z) . @(t)).
Note 1,1,3. If 7, = 7* we put [DU = 0. If 7, > 7*, then we put [DU =

— — [DU.

T*

1,2. An equivalent definition of [ DU. Let the function U, t) be defined

for (z,t) € S; € S. To every subdivision 4 A(S,) there corresponds the number

3
B(4) = Z [U(z;, o;) — Uz, o54)] -
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Definition 1,2.1. The function U(z,t) belongs to the set B if to every ¢ >> 0
there exists such a set SeS, S cS,, that |B(4;) — B(4,)| < ¢ if 4, A,eA(S).
The following lemma is obvious

Lemma 1,2,1. If U ¢ B, then there exists a unique number, which will be
denoted by (b) [ DU, with the following property: to every e > 0 there exists such

Tx

a8 S that |(b) [DU — B(A)| < & for A < A(S).

We show, that Definition 1,2,1 and Lemma 1,2,1 give an equivalent defi-
nition of [DU.

Tx
T* T*

Theorem 1,2,1. &) P = B. B) If U € P, then (b) [ DU = [ DU.

Proof. Let U e, ¢ > 0. Let us choose M(z) e M(U), m(r) e m(U) in such
a way that

M(*) — M(r,) — 3¢ < [DU < m(z*) — m(ry) + e (1,2,1)
that (1,1,1) holds for (7, 7) € S; and that (1,1,2) holds for (zy, 7) € S,. Let us
choose a subdivision 4 € A(S; n S,). Similarly as in the proof of Lemma 1,1,2

we get
M(a;) — M(x;—y) = Uz, o5) — Ul o) = m(og) — m(xs_y) -
Hence M(t*) — M(r*)lg B(A) = m(z*) — m(zy). According to (1,2,1) we have

T* *

[DU + 3¢ > B(4) > [DU — }¢ for AecA@S; nS,).

It follows that 9 c B and that f) holds. It remains to prove that B C 9.
Let U € ®B. Let us choose such a S ¢ § that
|B(4,) — B(4,)| < 4¢ for A,, A,<A(S). (1,2,2)

For 7, <t < v* let 4, denote a subdivision of <z, t) subordinate to S. The
set of subdivisions of (z,,7) subordinate to S, is denoted by A(S){ty,t)>. Let
us put
M(T) = sup B(AT) 5
Ay where 4, € A(S){(ty, 70, T < T < 7%,
m(r) = inf B(4,),

Az

M(zy) = O = m(ty) .

As (1,2,2) holds and as according to Lemma 1,1,1 a subdivision
A e A(S) (z,7*) exists for v < 7*, it follows that M(z), m(r) are finite
and that |M(z*) — m(z*)] < Le.
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Let us choose a 7o, T4 = 7, = 7* and let d(7)) > 0 be such a number that
(T, 7) € S for 7 € {7y — (1), To + (7)) N (T4, 7). According to the definition
of M(r) we have

M) = M(zy) + Urg, 1) — Ulzg, 70)  for 79 =7 <79 + (1) ,
M(z) = M(zy) — [U(z, 1) — Ulmo, 7)] for 79 — (1) =7 = 7 .
This signifies M(z) e M(U). Analogously m(r) e m(U). Theorem 1,2,1 is proved.

Note 1,2,1. Let $* be the system of sets Su, o > 0, where (7, t) belongs to
S* if the following inequalities are fulfilled: 7, =7 < t*, 1 -0 Zt <7 + o0,

« =t = 7*. Let us replace the system § in Definition 1,4,1 by the system S*.
Again a Lemma analogous to Lemma 1,2,1 holds and the number which in
this way corresponds to some functions U(z, t) may be called the generalized
Rlemann integral. In fact if U(z,t) = f(r) ¢, we get the usual Riemann in-

tegral f f(z) dz. It follows from Theorem 1,2,1 that the Perron integral exists

if the Rlemann integral exists and that both integrals are equal. This assertion
holds in the usual form and in the generalized form as well.

1,3. Fundamental theorems. The following theorems will be deduced from
Theorem 1,2,1. It is easy to prove these theorems directly from Definition
1,1,4 as well.

Theorem 1,3,1. If U ¢, f < By, then [ DBU = p [ DU.
Theorem 1,3,2. If Uy, Uy e M, then U, + U, ¢ P and

[DU, + U,) fDU1+fDU

Theorem 1,3,3. If 7, <7, <71, <7% Ue 5})(1*, >, then U € Wz, To).

Theorems 1,3,1 and 1,3,2 are obvious. Theorem 1,3,3 is proved by means of
Lemma 1,1,1. '

Theorem 1,3, 4 Ifty < T < 1%, U e Py, v, U e V<1, 7%, then U € Plzy, T*)
andeU+fDU fDU (1,3,1)

Proof. Let ¢ > 0. Let us find such a set S, € S that |B(4,) — B(4,)| < %
for A,, A, e A(S))<t*, 7> and such a set S,eS that |B(4™M) — B(A(T>)[ <3 ¢
for A™M, A e A(S,)<t, 7*)>. Let @, be a closed square the vertices of which are
(Ter Tx), (7, T4)s (7, 7); (T4 7) and let Q, be a closed square with the vertices
(T, 7), (%, 7), (v, 7%), (T, 7*). We put 8 = (S; U Q,) U (S, 0 Q).

Let A4 ¢ A(S), 4 = (o, 7y, &y, ..., 71, &;). There exists necessarily such an
index r that either o, =7 orv, =7. lf «; + 7, = 1,2, ..., k, then 7, = 7 and
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oy < T, < o, Let us divide the interval {x,_;, «,> into the intervals {«,_,,
«,> and {n,, x,>, where &, = 7, and let us consider the subdivision 4 = (x,,
Ty Kgs onv Opis Trs Cons Tys Ops v Tpy &) IN any case to each A4 e A(S) there exist
A, e A(S,) (14, ) and AM e A(S,)<{z, T*) in such a way that B(4) = B(4,) +
+ B(A™M). If we take another subdivision Ae A(S), then there exist fi,, Ao
in such a way that B(4) = B(Jl,) -+ B(A~<T)). Consequently |B(4) — B(fi)] <
< |B(4,) — B(4,] + |B(A®) — BA®M)| <& and U e Pty 7*; (1,3,1) is
obvious.

The following theorem may be proved by means of the same method in
a little more elaborate way.

Theorem 1,3,5. Let the function U(z,t) be defined on a set S €S, let
U e P {ry, vy for v, <t < 1% and let there exist the finite limit

lim [ [DU — Ufe*, 1) + UG, )] = L.

=¥ - T,

*

Then U e Vzy, t*) and fDU = L.
Theorem 1,3,6. Let U € Wz, t*), 79 € {Ty, T*>. Then

lim [[DU — Uz, 7) + Uz 70)] = [ DU .
rekary b

Specially [ DU depends continuously on T at v = 7, tf and only if U(z,, t) depends
continuous'ly on t at t,.

Proof. Let ¢ > 0 and let us choose a set S € § according to Definition 1,2,1.
Let (t9,7) e S for e {7y — 0,79 + 0> 0 (T4, 7*>. Then

|[DU — [U(te,7) — Uy, 1)l = & if 7€ {19 — 6,79 + 6) n (74, 7*). Hence
the proof follows immediately.

Theorem 1,3,7. Let the function U(z, t) be defined on S € S and let

lim 222 e = 0 for every Ty e (T4, T*) .

Then U € P and [ DU = 0.

Tx

U(tﬂ: T) _ U(TO’ TO) i <
T —T, |

< nif7 % 7, (79, 7) € Sy. It follows that [B(4)| <7 . (z* —7y) for 4 € A(S). Hence

the result follows immediately.

Proof. Let # > 0. Let us find such a set S, ¢ § that
|
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Let us introduce the following very simple concept: Functions U,(, t),
U,(t, t) are called almost identical, if there exists such aset S € S that U, (z,, 7) —
— U,(7g, 7o) = Usy(tg, T) — Uy(ty, Tp) fOr (79, 7) € S. In this case we write U, ==
= U,. The following lemma is obvious:

Lemma 13,1. If U, =U, and if U, e, then U, e and [DU, = [DU,.

1,4. The vector function U. Let us finally assume, that the values of U be-
long to E,. We may write U = (U,, ..., U,) where U; are real-valued.

Definition 1,4,1. The function U = (U, ..., U,) s called integrable if U,,
1 =1, 2, ..., n are integrable. In this case we write U ¢ Y and put

™* ™* T*

[DU = ([DU,, [DU,, ... [DU,).

Analogously as in the scalar case we may introduce the sum B(4) and prove
the following assertion: U ¢ ¥ if and only if to every & > 0 there is such a
S € S that |[B(4,) — B(4,)| < & for 4,, 4, ¢ A(S). Naturally Theorems 1,3,1 to
1,3,7 hold for vector functions U also.

2. Generalized Ordinary Differential Equations

2,1. Definition. Let the functions Fj(z,, ..., %, 7,t) j=1,2,...n be de-
fined for (xy, ..., %, 7, t) € R, ., ¢ B,., where R, ,, has the following property:
to every point (x,, ..., Z,, 7, 7) € R, there exists ruch a 6 > 0 that
(1 oes Xy, T, 8) € Ry for ft — 7 < 6.

Definition 2,1,1. The system of functions (1), ..., 2,(7), T3 < T < T, 1S said
to fulfil the system of differential equations
. e
-&_‘[Z = DFj(xla e Xy Ty t) ’ . (2>1’1)

of (@y(7), ..., (1), 7, 7) € Roys for 1, < v < 7, and if

x5(75) = (1) + fDU]- Ty < Ty < Ty < Ty (2,1,2)

Ty

where Uj(z, t) = Fi((x(7), ..., 2,(7), 7, 1), 1 = 1,2, ..., n.

Note 2,1,1: According to Theorem 1,3,4 the sense of Definition 2,1,1 does
not alter if we require that (2,1,2) hold for every 7, e (7, 7,) if 7, € (13, 7,) is
kept fixed.

Note 2,1,2: For systems (2,1,1), (2,1,2) we shall use the vector notations

dz
. i 2,1,3
d‘[ DF(]?, T, t) N ( P )
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x(15) = (1) fDU (2,1,4)

= (T -0, Zy) F:(FI,...,F,,), U=U,..,U,).
Note 2,1,3: We do not define DF, only the solutions of equation (2,1,3)
are defined.

Note 2,1,4: In the introduction we considered the equation

dzx —
4. = DF(, 1), (0,06)

where F(z, t) was defined on G x <0, T, G c E,, G open. Let us put

F(x,7,t) = F(x,t) for (x,7,t)eG X B, x <0, T,

F(x,t,t) = F(x,0) for (x,7,t)e@ X E, X (— 1,0),

F(x,7,t) = F(x,T) for (z,7,t)eG X B, x (T, T +1).
In this sense the notation of the introduction is in accordance with the no-
tation introduced in this section.

2,2. Comparison with the classical definition of differential equations. Let the
function f(x, ) be defined and continuous on an open set G,., c E,,,. Let
us consider the differential equation

?1: f(x 7) ) (2,2,1)

in the usual sense. By a solution of (2,2,1) we mean such a function z(r) with
a continuous derivative z(z) that (2,2,1) holds.

In connection with (2,2,1) let us consider the equations

& Dlj, o, (22,2
%‘f = DF(x,1,t) (2,2,3)

in the generalized sense, where F(z,t,t) = [ f(x, o) do, for such (x,7,f) that

the integral is defined. The function F(x, 7, t) is obviously defined on a set

R, .5, which fulfils the assumptions of section 2,1. If for example G,,,, =
= @G, X (15, 7,), G, c E,, let us consider the equatxon
dx
I = Ph@. b, (2,2,4)

t . .
where F\(z,t) = [f(x, 0) do, 7, € (7y, 7,). Every solution z(7) of (2,2,3) is at the

same time a solution of (2,2,4) and conversely, as F(xz(7), 7, t) = F,(z(z), t).
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The following theorem makes clear the relation of the classical notion of a
differential equation to the generalized one.

Theorem 2,2,1. Let f(x, 7) be continuous on an open set G,y C B, ;. If x(z)
18 a solution of (2,2,1), then x(t) is a solution of (2,2,2) and (2,2,3). Conversely if
x(7) 18 a solution of either (2,2,2) or (2,2,3), then x(7) is a solution of (2,2,1).

Proof. Let a(r) = (,(t), ..., z,(r)) be a solution of (2,2,1). We find that
for every ¢ > 0

x;(t) + et € M(f;(x4(T), ..., 2,(T), 7) . 1),
x2;(t) — er e m(f;(x,(x), ..., X (), T) . 1),
z2;(t) + er € M(Fj(x(7), .., 2, (1), 7, 1),
z;(t) — et e m(F(x,(7), ..., 2,(7), T, 1)),

and the first part of Theorem 2,2,1 is proved.
Let x(7) be a solution of (2,2,2). We have

x(7,) = 2(t;) + [Df(x(r), 1)t . ' (2,2,5)
As f(z(r), 7) t depends continuously on ¢ for fixed 7, from (2,2,5) and from
Theorem (1,3,6) if follows, that x(r)is continuous and according to Note (1,1,2)
fo(x(r), )t = fnf(x(r), 7) dr. Consequently é(r) is a solution of (2,2,1):
" Finally let x(7) be a solution of (2,2,3). As for fixed
i 160, D — Flafe), 7, 1) — f(@(),7) 7 + Pla(e), 7,7) _

t—>7 t—7

0,

according to Theoréms 1,3,7 and 1,3,2 we get szf(x(t), )t = faDF(x(r), T, t).

It follows that x(r) is a solution of (2,2,2) and (2,2,1). Theorem (2,3,1) is
proved.

2,3. Dynamic systems. We shall use the following special definition of a
dynamic system.

Definition 2,3,1. Let Q c E,. Let a homeomorphic mapping T, = T ,(x) of
@Q onto itself correspond to each real number t in such a way that

LT, 7T, =T, where (I'.T,)(@) = T, (T (x)) for xeQ.

2. T (x) depends continuously on (t, x).

The system of transformations T, is called a dynamic system on Q.

Let G be an open subset of £, and let f(x) be defined and continuous on G,
f(x) € E,. Let the differential equation

& | (2,3,1)
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satisfy the following condition: to every point z, ¢ ' there exists only one
solution (v, z,) fulfilling the condition z(0, z,) = x, and this solution is defined
for — o0 << 7 << 0. Let us define the transformation 7', of G:l

T (%) = (L, x,) .

The system of transformations 7', forms a dynamic system, as may be shown
readily. We do not take into consideration that the dynamic system 7', is
defined on an open set. but we emphasize the following special property:
T (z,) has a derivative with respect to ¢ for fixed x,, which depends continuously
on (t, x,).

Definition 2,1,1 enables us to lessen the difference between the notion of
a dynamic system defined by means of a differential equation and that of
a dynamic system in the sense of Definition 2,3,1.

Let T, be a group of transformations of @ onto itself satisfying 1) without
any continuity condition. Specially 7'; may be a dynamic system on @ in the
sense of Definition 2,3,1 and let us consider the differential equation

iide = DT!—-‘!(x) ’ (x7 T, t) € Q X El X El . (2)3a2)

Let us put y(r) = T ,(x,), 2, €« @ and let 4 be a subdivision of {(z;, 7,> (subordi-
nate to 8§ = E,). It is easy to verify that B(4) = y(r,) — y(r;) and con-
sequently y(z) is a solution of (2,3,2).

2,4. Linear differential equations. If A(z) is a continuous function, then all

solutions of the equation

dx
e () (2,4,1)

are expressed by the formula
z(t) = Kexp H(r), Kek,, (2,4,2)

where H(7) is an arbitrary primitive function of k(7). According to section 2,2
let us consider the equation
dx

5 = DeH() . (2,4,3)

It follows from Theorem 2,2,1 that all solutions of (2,4,3) are given by the for-
mula (2,4,2).

Let now the function H(z) fulfil the condition [H(z,) — H(z,)| = w(|t, — 7)),
where 7w (n) — 0 with  — 0 . As

exp{H(zy)} — exp{H(z,)} = exp{H(z,)}[exp{H(r;) — H(r,)} — 1] =
= exp{H(z,)} . (H(zy) — H(z)) + O((H(z;) — H())?),

it follows from simple considerations that a(r) = K exp H(z) is a solution
of (2,4,3).
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3. Existence of [ DU

Let the real-valued function U (7, t) be defined and continuous for 7, < v <

<t¥, 1 —0<t<71+ 0,1, <t =<7% where ¢ > 0. This set will be denoted
by 8. Let the function y(n) be defined and continuous for 0 < 1 < o, 5 y(n)

non-decreasing, () > 0 for > 0 and let > 2y (2%) < 0. Let us put
. n=1

2 2n ) .
=2y (57771) — for 0 < = 0, ¥(0) = 0. It is evident that the series
n=1 < n

converges for 0 <7 = o, that ¥(») is continuous, non-decreasing and that
Y(n) > 0forn > 0.
Note 3,1. We may put for example y(n) = n'*e, 5 [logn|-1-5, ..., e > 0.
The aim of this section is to prove the following
Theorem 3,1. Let the function U fulfil the inequality
U+, t+n) — Ul + 5, t) — Uz, t + n).4 U, t)| = y(n)

if 0 <n <o and.if the points (v + n,t + n), (t + 7, 1), (T, t + 5), (1, 1) belong
to S.

Then U e W1y, ) and

UDU — Uz, 75) + Ulzy, Tz)l = (rp — 1) Yo, — ;) (3,01)
foroy =mi <t =71+ 0, T, =T N

Proof. Let us fix the numbers 7,, 7, 7, =7, <7, =71 + 0, 7, < 7%, let us
put p(d) =7, + A(z, — 7;) and define the sequence {@,(z)} in such a way

that ¢,(z) is defined for v = p (2kn), k=0,1,...,2", n=0,1,2, ..,
@o(p(0) = 0, qo(p(1)) = U(p(0), p(1)) — U(p(0), p(0)),

= U(p(0), p})) — U(p(0), p(0)) ,

— Ulp3), (})) + ¢:(p(2))

R L ;—E)’ p (gz)) -

o ] : B " —
Our aim is to prove that 71;1330 @a(t) = @(r) exists for T = p (51_”), that p(7) may

be éxtended to a continuous function on {(z;,7,> and that ?(7) = fTDU' The
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main difficulty is in establishing inequality (3,05). If v = p ( ! ) we have
2k — 1 2k . 2k — 1 2k — 1
Tont |0 Plonra AP gnin P\ gnn

9 1(t) — @a(r)] = 721
k—1 2k 1 2k — 1\\| o 1
B U( ( ) ( f)) ( ( ) P(”E;m— )‘ <2p|2 1), nzm
S Ty — Ty 2 on+ T, — 1
|99n+k(’6) (Pn('[ § g 1+J"P( 2n+a - 9 Z T;‘_‘fr; p onii | =
o Ei‘Zirl = ;'Tl) , m>m. (3,02)

It follows that lim ¢,(r) = @(r) exists for 7 = p

Nn—>o0
m=0,1,2, ...
S s 1 S 1
Letf:s:]?(@)»74227(?27,+§),0§l§(],0§8<2q, ;_)—,I—Fgél,
l, s, q integers. We shall prove that
T Tapy, . (3,03)

9(r) — #(rs) — Ulrs, 70) + Ulrgy 7)< 755 Wlay — 1)

For this purpose let us define the sequence of such functions {@,(z)} that ¢,(z)

L), f=0,1,2,..,2n, n=0,12, ...

is defined for 7 = p (é‘% + 5
el ool 5]l o) o
L

27
o K k S E—1 s k
Pn (p(§1+«)t+n)—‘ U(p('271+-2_lJr7 , D ZI— Stin
S k—1 s E—1
Ol of )



It is easy to verify that §,(1) = @i4n(v) — @1,a(vs) for v = p(-; + ZJ—,,,)

7=1,2,...,2" n=m, n =q — [. Hence
¢(v) = lim ¢, (7) = () — @(z,) - (3,04)

As the sequence {¢,(7)} is defined in the same way as the sequence {¢,(z)}, the
inequality ‘

-1 s ]
[Pn11() — @ul0)| = Ts ‘P( B 3) T = p( -+ 2-17;”) ,m=m,
analogous to (3,02) holds. We put here v = 7,, n = 0, use the definition of

®o(4), Pass to the limit for k£ — oo and using (3,04) we finish the proof of (3,03).
By means of (3,03) we shall estimate that

|‘P(T4) — @(73) — Ulxs, 7,) + Uz, 74 I = 3(1y — 75) P(2 (vy — 73))  (3,05)

for 7, = p(%),u =0p (fn), k' > k. Let us put

r3=p(2—’i),r4:p(; PRR ety e
where 0 <k<2",l+1<n,0,.,=106=0 or 1 for j=101+2,..,n,
e R
Let us put 7, = ™ =P (Qk—n), 3= p(ékz +(;’l—:}), Ty = (zﬁn —|—g%i —}—g—g—:), e

N k| 0y 2
Tn—l:T4: p(:?:; —’—QTIIE} ~1— cee + ‘:)‘7“1) .

According to (3,03)
9(5) — ¢(Eim) — UlEiyy 1) + UGy, 5yo)| < 20 W (F — F,n) <

Further we have

U(%H _ = DE—n) %j) U (;]._1 _ =D —7) ;j_l) _

QU+7 PASR]
Ulz i(r,— 1) - LUuls Uy — 1) - <20
- Ti1 ™ " oiy; 2 i) Tj1 — B i Tl =Y Ql+i ’

QU+

i=1,2...7,i=12 ..,n—1.

Hence

|U(T] -1 T ) - ( i—1 Tj— 1) - U(Tm T; ) + L(Tm Tj- 1){ =2 W( ”27_;']*) (3308)
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j=1,2,...,n — 1. From (3,07) and (3,08) we get

. n-{
!()9(74) — @(73) — Ulty, 74) + Ulzs, Ta)l é}g:l{!‘p(%j) —@(Tim) — U@, %) +
+ U(%i~1’ %J'—l)l + \U(%j—n %') - U(%a’~1’ %i—l) —_ (To’ TJ) + U(Tm i — ) }

n-1
Ty — Ty — —T
= Z { Ql+i+1 YI( QU+i ) + 2"/’( 9147 1’)} .

MIA

i=

As 7, — 14 > 2’ —+ it follows that

23 2i—-1

n |
I‘P(H) — @(r3) — Ul(ry, 74) + Ulzs, Ta)l = Z {14\_ Ts v (T4 _—TE) —+

+ 2iy ( 5 )}§(r4~—13)$”(r4~13) 2ty — T5) Z 4_{5.
2ty — T
Y ( ( 42]'—‘3‘)‘) = (T4 - 13) !{1(74 - 73) + 2(1’4 — T3) T(2(T4 — 13)) <
. = 3(ry — 13) P(2(ry — 73))
and (3,05) holds if 7,,7; are defined by means of (3,06). As the functions

U, ¥ are continuous, ¢ may be extended in a unique way to a continuous
function on {7y, 7,> and (3,05) holds for all 7,, 7, € (z,, 7,).

From the assumptions concerning U and from (3,05) it follows that
]<P(T4) — @(t3) — Ulrs, 74) + Ulxs, Ta)l = 3"54 - 773[ 'IU(?'!T‘; - 'fsl) +
+ y(lrs — 7)) (3,09)
for 7, <7y <1y = 1,. As () = 0, n7'y(n) — 0 with  — 0 + and as (3,05)
and (3,09) hold, it follows that
o) + ete M(U), @(tr) — etre m(U) for every e > 0.

Consequently U e ¥<z;,7,> and [DU = ¢(7). (3,01) is an obvious conse-
quence of (3,03) for 7y, = 7, 74, = 7,. The proof of Theorem 3,1 is complete.
Let us turn to a theorem on the contmuous dependence of [DU on a para-

meter.
Theorem 3,2. Let the functions U,(z,t), k = 0,1, 2, ... be defined and conts-
nuous on S and let the following inequality
IUk(TﬂLﬂ,t‘[‘??)—Uk(T""’?’ t) — Uz, t+n)+UIT t|<w

hold if 0 <n <o and if (x+n, t+1n), (r,t+n), (T +n,1),(z, ) eS8 (p(n)
and S are defined at the beginning of this section). Further let U,(z, t) — Uy(z, 1)
uniformly for k — oo, (z, ) € S. '

Then

fDU, — fDU with -k — oo, uniformly for v, =7, <71, < 7% (3,10)

1
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Proof. U,e®Y according to Theorem 3,2. Let us fix 7,,7,e (ty,1%),
0 <1, — 1, < 0. Let the sequence {¢,,(r)r_,} correspond to the function U (z, ¢)
k=0,1,2,... in the same way as the sequence {(,(z)}, was constructed to
the function U(r, t) at the beginning of the proof of Theorem 3,1. According
to Theorem 3,1 we have

o(2)
| (2 - 7 — 1 Ty — Ty 4y [T2 — T1
Jn i)
I g i
P {72_1)

fork=0,1,2,..,n=0,1,2, ..., 7=1,2, ..., 2% Consequently

Ty — T
= (Tz — Tl) "}’( = 2;,,1,) .

lfDUL- - ¢kn(72) + @ra(Ty)

Hence

'ngUk — = 2(1, — 1) SU( Z"AH) + |‘Pkn Ty) — ‘POn(Tz)l (3,11}

as @u,(1) =0, k=0,1,2,...,n=0,1,2,.... Let us put ;, = max|U(z, t) —

(1,t)es

— Uy, t)], k= 1,2,3, ... As |, u(75) — @ou(2)| = 2771, from (3,11) we get
U DU, — _{DU | < 2(v, —1y) '}'( ,,AN) 4 on1g, (3,12)
To every integer n there obviously exists such a number K(n) that
2r 10 < 21, — 1) ‘P( — T‘) for k= K(n)
It follows from (3,12) that
5 > To— T .
|/ DU, — [DU,| < 4(r, — 1) ¥ “gn | for k= K(n)

and the proof of Theorem 3,2 is finished.

4. The Existenee of Solutions of ((11—916: = DF(x, t) and the Continnous Dependence

on a Parameter
4,1. The existence theorem. In section 2 we introduced the differential

equation g—: = DF(x,7,t). As we showed this equation has the same solu-

tions as the equation g—f = f(x,7) in the classical sense, if %Ft— = f(z, t) is
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continuous. The aim of this section is to prove the existence theorem under
more general conditions. It is useful to prove at first a theorem on the conti-
nuous dependence on a parameter.

Up to the end of this paper we shall assume that w,(7), w.(), 0 =< < 1 are
continuous, increasing, ®;(0) = w,(0) = 0, w,(n) = cn, wy(y) = ¢y, ¢ > 0 and
that the function y(n) = w,(n) wy(n) fulfils the conditions introduced at the
beginning of section 3. Let /' be an open subset of E, ;,0 << ¢ < 1. Let us
denote by F(G, w, m,, o) the set of functions F(z, {) which fulfil the following
conditions:

F(z,t) is defined and continuous for (x,!) e G, F(x,t) e E,,
|F(x, t,) — Fx, t))]| = o[ty — t,]) for (2, ), (x, t,) € G, t, — 4| =0, (4,1,01)

(g, ) — F(2y, 1) — F(y, t,) + F(xy, 8)]| = e, — 24| (Uz(ltz — tl)i (4,1,02)

fOI’ (xzy t2)7 (x2> tl)’ (Z’l, tz)) (xh tl) € G7 ”xz - x1” g 20)1(0)’ ‘t‘z - tll _ii o.

Note 4,1,1. If we put F(z, t) = > H;) ¢,), where the functions H(z)
i=1
are bounded, satisfy a Lipschitz condition |H;(x,) — H;(x,)| = K|z, — x4,
%y, Xy € B,, H;(x)e E, and the functions ¢,(t) satisfy the condition |p;(f,) —
— @i(t)| = oty — t]), i, ty e By, @i(t) € By, then F(z,t) e F(B,, ko, ko, 1) for
k great enough.
Let Fi(x,t) e (G, o, wy,0), k=0,1,2, ..., F,, > F, uniformly for &k — co.

Theorem 4,1,1. Let for k= 1,2,3, ... the functions x,(z) be defined for
T =T < 7%, fulfil the differential equation

W DR 1), () — )] < 2o(n - n), k=12,

‘71 - 72! =0, Ty, Ty € {Ty, TF)
and lim z,(t) = z,(t) € G uniformly for T e (T4, T*).
k—»c0

Then the function xy(z) is a solution of gi: = DFy(x, t) on {7y, T%).

Proof. Let us put Fi(z.(z), t) = Uy(z,t), k = 0, 1,2, ... Let K be a compact
subset of G containing all the points (z.(7),7), k =0,1,2,...,7e{ty, T*).
The functions U,(t, t) are defined and continuous on the set S: v, <7 X %,
[t — 7| < 0y, 74 <t < 7%, if o) is small enough and we have

1U(z, £) — Uy(z, 1)|| = [[Fr(2i(7), 1) — Fy(ao(2), B)I| =
= |Fu(@i(7), 1) — Fo(i(r), 1)l + [[Fo(ai(), £) — Fo(zo(r), t]]) =
= sup [|[Fi(w, t) — Fo(x, )| + [[Fo(xi(7), 1) — Fol2o(7), | -

(®,t)eG
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It follows that U,(z, t) — Uy(, ¢) uniformly with & — co as F, — F,, uniformly
on @, z,(vr) — w,(r) uniformly on <(z,,7*) and F, is continuous on K. Obviously
Uz + 7, t +n) = Uz + 7, 8) — Uiz, ¢ + ) + Uslr, )] =
= [|Fi(@i(r + ), t + 1) — Filan(r + 9), t) — Fr(xi(r), t 4+ 7n) + Fifzi(z), D)l -

If (z,8) e S, 0 < < oy, then
1Unx +m,t + 1) — Uit + 9, 8) — Ulr, £ + ) + Un(z, t)]| =
= 20,(n) - wy(n) = 2y(n) -
We apply Theorem 3,2 and get

t, t,
fDFk(xk(T)’ t) — fDFo(xo(T)» t), t,tye Ty, *)
t, t,

and consequently

ty
Zo(ty) = x(ty) + fDFo(xo(T), £) .
iy
do _
v dr
- Let us pass to the existence theorem

Theorem 4,1,2. Let F(x,t) e F(G, w,, w,, 6) and let K be a compact subset
‘of G. ,

There exists such a number ¢* > 0 that to every point (%y, t,) € K there exists
a solution x(t) of

x,(7) is a solution of DFy(x, t). Theorem 4,1,1 is proved.

dx ' : : .
5= DF@. 1), alt) = =, (4,1,03)

whach s defined on'ty — o* < v = t) + o*. This solution satisfies the condition
fle(zy) — 2(n))l| = 20,(|vy — 74]) for Ty, 7y € g — 04, ty + 0%).

Theorem 4,1,2 will be proved by means of two lemmas. Let K be a compact
subset of @ and let us choose such an open set G, that G, is compact and that
K c G,, G, c G. Let us denote by p the distance from K to the complement
of G,. As w,(n) = ¢y, P(y) = 0 for n — 0 4-, we have 2np¥(n) < w,(n) for

7 small enough. Obviously there exists such a number o* that 0 < o* < %,

o* + w(c*) < p and that 2ny¥(n) < w,(n) for 0 < 5 < 2%,

Lemma 4,1,1. Let the function ws(n) be continuous and increasing for 0 < n =
< 2¢* and let the function p,(n) = w,(n) wy(n). fulfil the condition .introduced
at the beginning of. section 3. Let F(z,t) e F(Gy, wy, w,, 20%) and let x(z) be a

solution of

. dx‘ o
dr = DFE(z,t) . (4,1,04)

on ty — hgs by + Ap>, Ay, Dy € <0, 0%, (w(lo), to) € K

le(rs) — a(w)| < wgllte — Tal) for T 7€ lly — Ay, fo + Ap)
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Then
le(Ts) — (7))l = 20’1("’:2 _,"71|) for v, Tye llop — Aty + Ay . (4:1705)
Proof. Let us choose a number §, 0 << 6 < 1, w3(5-(A; + 4)) < w,(c*). The
function F(x(z), t) is defined on the set S;: t, — 04, < v <, + I, 7 — o* <
<t<7+ o* and
1F(2(74), ta) — F(2(ty), ts) — F(2(73), ty) + F(2(ts), ty)]] =
= [lx(ry) — 2(73)|| w2(|t4 - ts!) = w3(|r4 - Ta|)- wz(]t4 — t3|)

for (4, ta), (T4, t3), (T3, L), (73, 13) € S1. As w4(n) wy(n) = s(n), we use (3,01) (for
every component of F(x(z), {) replacing (), ¥(n) by vs(n), ¥s(7)) and get

HfDF ), t) — F(x(ry), 1,) + F((ry), 7y)l| = nlrz — Tll ‘1(/3({72 - Tll)
for 7, 7, € {ty —04;, 1, 4+ 0A,>. Because x(7) is a solution of (4,1,03), according
to (4,1,01) we get
le(ry) — (7))l = w1(|‘[2 — Tll) + n|172 - Tl| 'Ps(|72 — '51[)
forzy, 75 € &y — 04y, ty + 025>
As Wy(n) — O0fornp — 0 +, w,(n) = cn, ¢ > 0, there exists such a ¥, O <?¢=
< 1 that
12(vy) — a(1y)l] < 204ty — 1,) for Ty, 1s€ g — Ay by + 9> . (4,1,06)
Let © be the upper bound of such numbers 9, 0 << ¢ < 1 that (4,1,06) holds
for 7y, 74 € {8y — 94y, ty + 94,>. We prove that @ = 1.
Let us suppose that @ << 1. We shall find such numbers 7, + 7, ¢
€ {ty— Oy, ty + O2,)> that
[2(75) — 2(7)]| = 2w([7, — 7) - (4,1,07)
In the same manner as above we find such a number y > 0 that
[l2(ry) — @(7y)]l = 204(|ty — 14]) for 7), 75 € o + Oy — 3, to + Oy + y>
In every interval {t, — O1,,t, + O, + &>, (¢ > 0) there exist necessarily
such ©/,7",7" < 7" that |z(t") — z(¥')|| > 2w,(z" — ©'). It follows that ¢, -+
L O <T St Ol tety— O ST St F 04 —yife <y ety <
< O(A; + 4,). Passing to the limit for ¢ — 0 + we obtain 7, * 7,.

Having proved the existence of 7,, 7,, let us define the set S, by meaans of
the inequalities t, — O, =<t <t, + O,, T — o* <t <7 + o*. As

(1P (2(4), ts) — F(2(Ty), t) — F(2(73), ta) + F(a(s), &) =

= [J@(ry) — (7))l wz(lt4 - tal) = 2w1(‘|74 - Ta') wz(lt4 - t3|)

for (4, ty), (Ta t3), (T3, ), (Tss t5) € Sy, we use (3,01) again and get similarly as
in the previous case :

IIbe(%(T), 1) — F(x(ty), 7a) + F(a(r5), 75)[| = 20|ty — 7 Y[z, — 7))
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and according to (4,1,01), we have
||£E(T4) - IE(T3)H g 0)1(|T4 - 73!) + 2n§r4 - TS' ':P(It/l - Tsl) H (47]708)
as x(z) is a solution of (4,1,03). If 7, = 7,, 7, = 7,, we get from (4,1,07) and
(4,1,08) that
wl(l%‘.’. - %11) = 27"1%2 - ';1| W(ﬁ'z - %xl) .

According to the choice of o* it follows that |7, — 7,| = 20*. At the same time
|7, — 7] =< O, + 4,) < 20* and this contradiction proves Lemma 4,1,1.

We shall prove Theorem (4,1,2) from the classical existence theorem passing
to a limit. For this purpose we shall need an approximation lemma.

Lemma 4,1,2. There exist functions F.(x,t) for (x,t)eG,, k= 1,2,3,...
having the following properties:

1. the functions Fy(z, t) have continuous partial derivatives with respect to
Lyy oeey Xy b,

2. Fy(z, t) — F(z, t) uniformly for (x,t) e G4,

3. Fi(z, t) e F((, oy, ms, 6y).

Lemma 4,1,2 is proved by means of standard methods and we shall indicate
the proof. Let us denote by ¢* the distance from @, to the complement of G.
Let o* > g, > g, > ,.. lim g, = 0 and let the functions ¢,(y,7), k = 1,2, 3, ...

k—0

be defined for (y,t)e E,., with continuous partial derivatives of the first
order, (u(y,7) =0 for |[yl2 + 12 = o}, &uly,7) =0 for (y,7) e E,,,,
[ [ily, ) dyy, ..., dy, dr = 1. Let us define

Ey i1

Fix,t)=[...[Fly,7) &z — y, t —7)dy, ... dy, dr
£yt

(we put F(y,7) = 0 if (y,7) € G). In a usual way we verify that F,(x, t) fulfil
all conditions of Lemma 4,1,2.

Let us proceed to the proof of Theorem 4,1,2. Let F,(x, t) be a fixed sequence

fulfilling the conditions of Lemma 4,1,2 and let us put f,(x, t) = -;t F(x, t). As

t
the functions [fi(2(z), &) dé and Fy(x(r),!) are almost identical for every

function (), (x(t), 7) € G4, it follows from Lemma 1,3,1 and from Theorem
2,2,1 that every solution of

dz
— = 4,1,08
dT flc(x’ T) ( sty )
is at the same time a solution of
dx
dr 4,1,09
I DF(x, t) ( )
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and conversely. Let us choose a point (2, 7,) € K. If 2,(7), 2(7y) = %, is a so-
lution of (4,1,08), we may assume that z,(r) is defined on the maximal interval
(&> Br)s o < Ty < Bi)- That means: if y() is a solution of (4,1,08) on («, ) and
if y(7) = x(7) for 7 € (x, B) 0 (o, fr) = 0, then («, p) c (x4, ). We shall prove
that '

xp <Tg— 0%, T+ o*<h, k=1,23,.... (4,1,10)

Let at least one of inequalities (4,1,10) be false for a fixed k. It is well known
that the distance of the point (#.(t),r) from the complement of G, tends to
zero for v — B, — (v — &, +) if f; () is finite. It follows that there exists
such a number 7 that

F= [ <ot m@) - a)| = 2m,6%),  (4L11)

[[2(7) — 2r(Te)ll < 20, (0*) for T e {rg — 4,7y + A>.

As f(z,(7), T) is continuous for 7 e (v — 4, 7, 4+ 1>, there exists such a num-
ber L, that

le(rs) — 21| = Lioy(l7e — 7)), 7 t0€ g — Ao + 4> . (4,1,12)
Using Lemma 4,1,1 with w,(n) = Lyw,(n) we get
le(zs) — 2zl < 204(jre — 7))y ThToe tp — A, 7 + 4> (4,1,13)
and in particular
le(7) — ()| = 20,(2) < 20,(0%) .

The contradiction with (4,1,11) proves (4,1,10).

As (4,1,12) holds for 7,, 7, € {ty — 0%, 7, + 0*) (with another constant L,
on the right side) using lemma 4,1,1 again we get that (4,1,13) holds for
Ty, Ty € {Tg — 0%, 7p + 0.

z,(r) are defined and equicontinuous on (7, — o*, 7, + %), X(7,) = ,.
We extract a subsequence uniformly converging to a(r). As (1,1,13) holds
from Theorem 4,1,1 we get that x(7) is the required solution of (4,1,03). Theorem
4,1,2 is proved.

4,2. Generalization of the theorem on the continuous dependence on a parameter.
In this section we shall prove the theorem on the continuous dependence
on a parameter under the assumption that the limit equation has a unique sol-
ution on {7y, t*). It is not necessary to assume that the solutions of all equa-
tions are defined on <z, 7*). The proof runs on similar lines as in the classical
case and Theorems 4,1,1, 4,1,2 and Lemma 4,1,1 are used. Let F(x, t) €

e F(G, w,, wy, ). Let us introduce the following definition :
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Definition 4,2,1. z(z), 7 € {1;, 7,) is a regular solution of

dz

on {1y, T, tf it is a solution of (4,2,1) according to Definition 2,2,1 and if to
every T e {11, Tyy there exists such a o, = 0,(t) > 0, 0, < 1o that
2(7s) — 2(Ta)l| = 200,(|7s — T5]) for 75, T4 € (T, 7o) 0 (T~ 05, T + 0.

Lemma 4,2,1. Let x(7) be a regular solution of (4,2,1) on <7y, 7). Let us choose
a 1y € {Ty, 7oy and let us find the number o* according to Theorem 4,1,2 for the
set K = ((2(r0), 7). Then ||z(v;) — x(7,)|| = 20,(|v; — 74]) for 75,74 € {73, 7> 0
N {1y — 0%, 1 + o*).

Proof. We shall prove Lemma 4,2,1 by means of Lemmas 4,1,1 and 1,1,1.
Let us put (7,70 0 {1t — 0%, 7, + 0*) = {1g — 4y, T + 4,

S=E[relty— A, 7+ 4, |t — 7| = 04(r)]. According to Lemma 1,1,1
(7,1) . .

there exists a subdivision A = (xg, Ty, g, -+, T, &) Of (7o — A1, To + Ao

subordinate to S. Let ,_; <7, < «x,, &,_, =< 7, < «,. If r = s, then obviously

llz(z,) — 2(t3)]] = 2w1(|z:_1—73]), if » << s then

[2(za) — 2(z3)l| = ll2(za) — @(ovsy)l| + [ @(ovy—y) — @(ovsa)ll + -
e () — 2(T)l| = 2(s — 1+ 1) oy([Ta — 75)) -

In any case we have [x(r,) — @(t3)l| = kw,(|t, — 75/). Lemma 4,2,1 follows
from Lemma 4,1,1.

Let Fy(x, t) € F(G, w;, w,, 0). Let x,(t) be a regular solution of

dx
ar 2:
- DFO(Q:, t) ) (4! )2)

on {13, T,>. Let us suppose further that if z(r) is a solution of (4,2,2) regular on
{3, Ty € {71, 7o), 2(T1) = %(11) then z(7) = 2(7) for 7 € {1}, 77).

Theorem 4,2,1. To every number ¢ > 0 there exists such a 6 > 0 that the follow-
ing assertion is true:

If Fi(x,t) e F(G, 0, wy, 0), |[Fi(x, t) — Fo(z, )|l =< 0 for (z,t) e G and if y(r) s
a reqular solution of

dx
_— == by
I DF,(x,t) (4,2,3)

on (T, Ty C (T, Ty, Y1) — o(T))|| < O, then there exists such a regular
solution x,(t) of (4,2,3) on {7y, 7y that x,(r) = y(r) for 7 e (7,15,
fly (1) — 2o()| < & for T e {7y, To).

Proof. Let us choose an open set Gy, G, c G, G, compact, (2,(7), 7) € G, for
7 € {15, T,». Let us find a number o* to the set G, according to Theorem 4,1,2
and let ¢ be such a number that (y, 1) ¢ G, for 7 € {(1;, 7,), |y — %,(7)ll < &. Let
us further choose 7,, 7; < 7, < 7,. Let us replace the function z,(r). which is
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defined on (ty, 7,» by its partial function on (7, 7,>. If 7, = v, Theorem 4,21
obviously holds on the degenerate interval <(t;,7,>. Theorem 4,2,1 will be
proved fully if we prove the following lemma.

Lemma 4,2,2. If Theorem 4,2,1 kolds on {t,, t,), then it holds on (., 7T, + )
where 0 < 1 < min(t, — 14, 0*), 4w,(n) < e.
Proof. Let us assume that Lemma 4,2,2 is false. It follows that there exist
a number ¢ 0 < & < ¢ and sequences of functions F(z,t) e F(G, o, w,, o),
F, — F, uniformly on G and y,(7), k = 2, 3, 4, ..., in such a way that y,(z)
are regular solutions of
dx

dr = DF(x,t) ;  yu(t1) = %(7y) (4,2,4)

on {1, ;) T, = 7, =< 7, + 5 and that, for every £ = 2, it is impossible to find
a regular solution z,(7) of (4,2,4) in (t,, 7, +.), T(r) = y,(z) for v {7y, T,
i (r) — @(7)l] < & forre (g, 74 + ).

As Theorem 4,2,1 holds on {(z,, 7,> according to the assumptions of Lemma
4,2,2, we may suppose without a loss on generality that 7, =7, and that
Y(T) = %o(7) uniformly for k — oo on (zy, 7). As 7, — 7, = 7 we have (accord-
ing to Lemma 4,2,1)

() — (Tl = Hyk(%k) — YTl + ly(zs) — (7| +
+ llo(tg) — Zo(Ti)ll = 4w1(n) + llyx(rs) — o(Ta)ll

and (y,(7), 7)) € G; for k > K. According to Theorem 4,1,2 there exists such
a solution wu,(z) of (4,2,4) on (7, 7, + o*>, that [u,(ts) — wu(ts)] =
= 20, (Jrg — 75)) for 75, 74 € (T4, T + ¥

Let us put z,(r) = 9:(7) for 7e (z,, 7>, (1) = uu(z) for ve (T, 74 + D,
k> K. z,(7) is a solution of (4,2,4) regular on {(1,, 7, + n)>. (See Lemma 4,2,1.)
As (z(7), 1) € Gy for 7 € {7y, 74> according to Lemma 4,2,1 we have

ll2.(7s) — 2u(Ts)l| = 2wl(iTe — T5|) for ;75 € (1g — (’;k7 Ty + 0% 0
0Tty ), Toe (T, Ty (4,2,5)
and-as 7 < 0%, (4,2,5) holds for 7;, 75 € (v, 7, + ), |5 — 75| = 20*.
From the sequence {z,(7)} let us extract a uniformly converging subsequence,
{2 (1)}, lim 2 (7) = 2(7). According to Theorem (4,1,1) z(7) is a solution of
(4,2,2) and :

l[2(76) — 2(75)l| = 2,(|76 — 75)) for 74, 75 € (11, T4 + W), |16 — 75| = 20%

2(7) = xy(7) for 7 e (v, 79 as x,(7) = yi(r) = 2o(r) uniformly an <{z;, 7,>. Con-
sequently z(7) is a regular solution of (4,2,2) on (zy, 7, + 1) 2(t;) = %y(7,) and
according to the unicity assumption of Theorem 4,2,1, it follows that z(z) =
= x(7) for 7 € {7y, 7, + ). For j great enough we have ||z, (1) — 2,(7)|| < e for
T € {11, T4 + 1> and this contradiction proves Lemma 4,2,2. At the same time
the proof of Theorem 4,2,1 is finished.
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5. Applications

Ty B, b,
5,1. Linear equations. In this section z = ), B = ), b=1..]| de-
) B, by
note column vectors, 4 = (4,,), a = (a,;) denote square matrices. Let us
suppose that the functions 4(z), B(r) are defined for all v and that

[A(r;) — A(wy)| = Kylrg — 7yf* for |z, — 7] =1, (5,01)
[1B(z,) — B(ry)|| = Kszz — T1|ﬁ for 172 —1 =1, (5,02)

where « > 1, « 4 f# > 1. Let us consider the equation

dz = DIA(t) x 4- B(t)] - (5,03)
dr
Obviously A(t) x + B(t) e F(G, Kgnv, K\n*, 1), where y = min(x, ), G' is an
arbitrary open bounded subset of E, ,; and K is great enough. In the same
way as in Lemma 4,1,2 we find that there exist sequences{A4(7)}, {B.(z)} satis-

fying the following conditions

Au(r) = A7)

By(z) — B(r) } uniformly for £ — oo on every bounded interval,

there exist continuous derivatives % A,(7) = au(7), (% Bi(r) = bi(z), A7)

fulfil (5,01), By(v) fulfil (5,02).

It follows from Theorem 2,2,1 that every solution of

d ~
© = Dl4(t) & + B,0)], (5,04)
is at the same time a solution of the classical equation
g—f = a(t) x + by(7) : (5,05)

and conversely. Let us look for a solution x(z) of (5,03), #(0) = %,. The only
solution of (5,05) x,(t), ,(0) = «, is given by the formula

(7)) = @ exp{Au(t,) — Au(0)} - exp{Ay(t,)} Ofnexp{—— A1)} dBy(v)
and. according to Note 1,1,2 we may write
2,(1,) = % exp{A;(1,) — A,(0)} + exp{A,(r,)} 0f’D exp{— A7)} Bi(t) . (5,06)
Theorem 3,2 implies that

D exp{— Au(x)} Bult) > [ D exp{— A(x)} BO) (5,07)
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As z,(7) is the only solution of (5,04) with z,(0) = z,, according to Theorem
4,1,2 it follows that

[2x(72) — 2u()l| = 2K5l0, — 7|7 for [z, — 7| = o*. (5,08)
Hence, from (5,06), (5,07) and (5,08) it follows that x,(z,) tend almost uniformly
to

x(ty) = @ exp{A(r,) — A(0)} + exp{d(z,)} OfD exp{— A(7)} B()
and x(t;) is a solution of (5,03). |

We shall prove that () is the only regular solution of (5,03),

Lemma 5,1. Let y(t) be a reqular solution of (5,03) on (T4, 7*) (14 < 0 < T%,
we admit T, = — o or t* = o), y(0) = x(0). Then y(v) = x(7) for v € (T, T*).

Proof. If Lemma 5,1 is false, then u(r) = y(r) — 2(r) is a solution of
3—?: = DA(#) u (5,09)
and %(0) = 0, u(7) + 0 for a certain 7 e {7y, T*).

Let 7, be such a number from (z,,*) that u(r;) = 0 but in every neigh-
bourhood of 7, there exist such t that u(r) + 0. Obviously |ju(z,) — u(7;)]| =
< 4K,lr, — 7|7 for 7,, 7, € <v3 — 1, T3 + 7> where 5 > 0.

For every real & the function £u(t) is a solution of (5,09) and

fu(ry) = 0, [[Eu(r,) — fu(n))]] = 46K,

for 7,7, e<{ts — T3 + 1) .

Ty — 17

According to Lemma 4,1,1 we have
lEu(Ty) — Eu(r))|| = 21{3!'52 - 751|7 for v, 1€ (13 — M1 T3 + M)
where 0 << %, = 5 and #, does not depend on &.

Consequently u(r) = 0 for e {(t; — 5y, 7; + 1> and we arrive at a con-
tradiction. Lemma 5,1,1 is proved.

5,2. The convergence of solutions. Let the functions @;(z), + = 1,2 ...k,
Dy(x) e B, fulfil a Lipschitz condition |®D;(z,) — @,(2,)| = K|z, — x| and
let ;, >0, $>0,0,+0,i=1,2,..,k, {4y + 0, Ae E,. It is known that
the solution z(r) of

k
— = 2 Q) jesin(la + ) 4 A sin(lr ) (5,2,1)

is uniquely defined on (— o0, ). According to Theorem 2,2,1 (5,2,1) has the
same solution as
dx

Y DF(x, ¥ - 2,2
ar DFj(x, ), z(0) 0, (5,2,2)



where
k

Fix, 1) = — Z Li1@y(x) j== cos(jlit + m;) — CphAT™F cos(flpat + M) -

i=1

If « +f>1 5= min «; >}, then F(x,t)e F(&, K57, K,n*, 1), where

i=1,...k

s

y = min(x, f), G' is an open bounded subset of £, and according to Theorem
4,2,1 z;(t) — 0 almost uniformly.
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Peswome

OBOBUIEHHOE OBHHHOBEHHOE AUNOOEPEHIMAJIBHOE
YPABHEHME M HENPEPBIBHAA 3ABUCUMOCTDL OT
IMTAPAMETPA

APOCJIAB KYPUBENJD (Jaroslav Kurzweil), Ipara.
(ITocrymuio B pegaxuuo 11/XT 1956 r.)

Iens paborsl — oObsicHeHMe ABACHUs CXOIUMOCTH, ¢ KOTOPBIM MbI BCTpe-
yaeMces, ‘Hallp., Y HOCJeloBaTeIbHOCT An(PepennuanbubX ypaBHeHnI
dz, L . . .
P k= cos kit + E1-Asinkt, 2,(0)=0, k=1,2,3,...,
dx
=0, z(0)=0. : 1
w0, 2o M

Herpyuno Bujets, 970 penieHusa &, ¢XOUATCA PaBHOMEPHO K yHkunu x(t) = 0
Ha BCAKOM 3aMKHYTOM mHTepBale, cciim 0 <o =1, 0 < <1, o+ > 1
u uTo oy He cXojgaTes K x(f) = 0, ecom & + f =1 (x > 0, f > 0).1)

I pese Becero Ml BBOgHM 0606wenue unmeepana Heppona: Tyers peiictau-
renpHass Gyurnus U(r, §) oupegenena mid 7, =7 < 1*%, 7 —0(r) =t =7
+ d(z), rme O(r) — monoskurenpHass Qypriwsa. Oynrmuio M(t) Mbl HazoBeM

1) O6mas Teopema,; KOTOPYI0 MOKHO IIPUMEHNTH B caydae o = 1, f = 1, Oblza floKkazana
M. A. Kpacroceavcrum u C. I'. Kpeiirnom B padore [1]. Ilpn Gonee o6Iuux mnpegnoiiormKeHusx
ara TeopeMa jokasana B pabore [2] aBropa u 3. Bopiia n ee MOKHO MCIIOJIB30BATH B ClIydae
x=1,1=>28>0.
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BepxXHell QyHKIOueii, eciu CyUecTBYeT TojoxkutesdbHasg QyHKIma 0'(r) = 6(r)
TaKas, 9TO

(t — 1) (M(zx) — M(z)y) = (v — 70) (U(r,7) — Ulto, ) ,

ecil TONBKO Ty = Tp = 7%, 79 — 0'(7)) =7 = 79 + 0'(75). (Ecou cupaBemnmso
o0paTHoe HepaBeHCTBO, TO (YHKIWIO MBI Ha3plBaeM HIGKHeH ¢yHKIHIe.)
Ecmu cymecrsyer u Bepxusasi (QVHKOUA ¥ HIDKHAA (QYHKIOUA #  ecJan
inf (M(z*) — M(r,)) = sup(m(z*) — m(ry)), rne M(zr) npoGeraer Bce BepXHue
M(t) m(t)

¢yaruun, a m(r) upoberaer Bce HIKHME QYHKIOUM, TO 3TO YHCIO MBI HA3HI-

1-‘

saem uurerpaiiom Ileppona or DU or 7, o v u oGosuavaem cumsonom [ DU.

Tx
%

Nnrerpan [ DU mMo3kHO oNpefesiuTh Takske PH NOMOIII H3BECTHRIX 06001eH-
Tx

HeIX cymMm Pumana. Ecin monoskurs Uz, t) = f(r) ¢(t), rne @(t) ecrs pyHKUMS

: -

¢ orpaHudYeHHBIM m3MmeHenmeM, To [ DU cymecrByer B TOYHOCTH TOT/A, KOTIA
T* 'r;

cymecrByer [ f(z) dg(r) B cmbiciie ITeppona 1 oTH JiBa HHTErpala PABHbI MEHLY
Tx

coboii.

Bo Bropom naparpade Ml nmpucrynaem K 0006meHHbM AuQdepeHIaIbHbIM
ypaBuenusam. Ilyers mana ¢ysrums F(z, 7, t). Oyurouio z(r) MBL Ha3bBaeM
pewenuem 0b60b6wennozo dugdepenyuarvnozo ypaBHeHUs

dx

dr

= DF(z,7,1), (2)

ecu x(ty) — x(ty) = fDF(x(r), 7, 1) Ut M00BIX T4, T,. (Mbl Belogy nmpejiona-

raeM, 9T0 - u F - BerropH eBKIWjoBa mpocrpaHcrsa K, F = (F,, ..., F,),

Ty Ty T2 .
u ecrectsenno nonaraem [ DF = ([ DF,, ..., [ DF,).) Ecin f(z,7) -— neupe-
7y Ty Ty

puiBHAA (QYHKIMA UM ecmr NONoKuTh F(x, 7, t) = f(x, v )t wm F(z,7,1) =
t
= [z, 0) do, T0 KamgOe peneHne ypapHenus

' d
&~ @ (3)

OyJer B TO jke BpeMdA pemcHmeM ypaBHenus (2) u HaoOOpoT.
. . X " T*
B rpetsem naparpade Mbl' oKasbiBaeM cymtecTBoBamire maTerpaia [ DU
o Ty

B 11pestmosiozkenun, uto gynrnus U(z, ¢) HeupepbiBHAa ¥ 4TO Pa3HOCTh
Ur+n,t+n —U@+ 9t — U, t + ) + Ur, t) upnGmmraercs pocra-
TOYHO OBICTPO K HYJI0 sy — 0. Jlamee Mur lokasniBaes Teopepy 0 CXOAMMOCTH
T* *
[ DU, — [ DU.

Tx

Tx
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YersepThiit naparpad) coiepsKuT 0CHOBBL TCOPUN YPABHCHUSA

dz

Hyers G c B,y — OTKpbITOe MHOKeCTBO, o > 0, uycrn Qyukmun o),
1 =12 onpejesiensl, HenpepsBEL 1 He yobBalorT i 0 < 5 < o, wi(’?) =
= cn, 0(0) = 0 (c > 0) s 0 =< 5 < o. llyers F = F((, vy, w,, ) oboznavaer
muoskecTBO QyHKTNN F(x, t), oupefesieHHBIX U HEUNPEePLIBHBIX B (' 1 BGLIIOJI-
HAIOIIX HepaBeilcTBa

B, ty) — Fla, b)) = ou(t, — 4,]) s (2, 4), (2, 8) € G, |ty — 1] = o,
B (s, t,) — F(xg, ty) — Flay, t,) + Flay, )] = [lr, — 2] wz(itz — tll)
W (g, 1), (X, 1), (24, ), (24, £;) € G, o, — x| = 2m,(0), ltz - tli =o0.

Homosum p(n) = wy(n) wy(y) w MpeponokuM, uro QyHKIMA 7~ 'y(y) He YOLI-

- . g
BaCT U 4TO 2 2%y (5) < o0 2).

Ecmn F(x, t) € F, 1o paa ypaBHeHuA (4) nmeeT MECTO Meopema 0 Cyuecmeo-
eanuu, nogobHas Kiaccmieckoil Teopeme o cymtecrBoBanuu: Ecout (z,, £,) € G,
TO CYILECTBYET peeyaaproe peuwtenue x(t) ypasHeuus (4), onpejesientoe Ha He-
KoTopoM HMHTepBaje {t, — o, t, + o*). (Pemenne z(r) ypaBsenus (4), onpe-
AejleHHOe HA WHTepBase {(T;, T,> HA3BIBACTCS PeeyAsPHUIM, €CIHN ST T000ro
T € {1y, T,y cymecTtByer A > 0 Tak, uto ||[o(ry) — x(vs)ll = 20,(|t, — 75)), ecau
Tg, T € T — A, T+ 4> 0 {7y, 7).

Touno Tak e M TEOPEMA 0 HENPEPLIGHOU 3ABUCUMOCIU OM NAPAMEMPA TIO-
HoGHa COOTBETCTBYIONEH XOpOMIO WM3BECTHON Kiaccudyeckoit Teopeme: Ilycrn
Fi(x,t), F(x,t) e F, k= 1,2,3, ... Fi(z, t) — F(z, t) pasuomepno na G. Ilycrs
(2o, ty) € G m mycTh perynapHoe pemeHue y(r) ypasHeHHsA (4) onmpefeneHo s
h=t=t, (t, <t), ylty) = x,, 1 WycTh BBIIOJHsCTCA CcJedylomiee YclIOBUE
OJIHO3HAYHOCTH: eciu z(T) — peryispHOe pemieHHe ypaBHeHMA (4), onpesieseH-
HOG Tl by =T = by, 171€ by < by =< 1y, 2(8y) = @y, 10 2(7) = y(7) st bty = v £ .
Iycry xy€ B,, 2, — 7. Torna mus Beex mocratouHo OonbmnX k cymecTByer
peryisipHOe pemeHue ¥,(r) ypaBHeHUs

& DR ), (%)
onpeénenennoe Ha uHTepBane (ly, t,>, Yi(ty) = x;. Pemenue y,(r) He HOMKHO
OBITH OJHO3BHAYHO OIpeJIeJIeHHbIM, HO BCerjla mMeer MecTo ¥,(7) — y(r) paBHO-
MeprHO Ha (ty, t;)>.

[Tpumenum sror pesymprar K ypasaemmio (1). ITomoxum
Fy(x, t) = xk~= sin kt -+ k= #(1 —cos kt), F(x,t) = 0 u Jerxo oGHapy;KuUM, 4TO
Fy(x, t), F(x, t) e F(G, Ky7, K=, 1), tie G — mo6oe OTKPHTOE OTpaHWYEHHOE

2) Hamp., MOHO NOJIOKNTL y(n) = n+e, ¢ > 0.
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HOAMIOKECTBO Trpoctpanctsa B, ., K — joctatouno Golbpmasn TOCTOSHHASA 1
y = min(x, ). Urag, ;(f) — 0 paBHOMEPHO Ha BCAKOM 3aMKHYTOM MHTepBajie,
ecit y + o> 1, 1. e. ecim x >3, « 4+ > 1. flBiaenne cxXoxmmocTi AJIs
vpasuenust (1) moTHOCTHIO He 0OBACHEHO, TAK KAK MBI IOJIyyaeM 100aBOYHOE
yemosue x > %,

B narom maparpade moipo6HO Mccaeyerca c¢JIydail JIMHeTHLIX YpaBHEHMUII,
JoKa3BIBaeTcs TeopeMa 00 OJHO3HAYHOCTH Ji71A 000OMEeHHBIX JTMHEHHBIX YPaBHe-
HUIl 1 YyKa3aHO NOPHMEHEHNEe TeOPEMLI O HeMPEephIBHOI 3aBUCHMOCTH OT Iapa-
MeTpa K KiaccniecKuM TndgepeHnmaababIM ypaBHeHISIM.

3amerTuM, HaKOHEL, Y4TO IOJyYeHHBIE Pe3yJIbTaThl MOMKHO MCTOJIKOBATEH NPH
nomonyt T. Had. 0000wennunx @ymnryuii (pacnpedesenuir). Ecmm  F(x, t) €

e F(G, oy, wy, 0) [1n0703mM cHOBA (1) = 01(n) wy(n) M UPEIONOKEM, UTO

"

o oF
53] < o), nososkum f(x, t) = —, rHe upo-

2¢ at’
U3BOJHYIO MBI GepeM B cMbicsie Teopuu 0600menubiXx gyHkiuii. Tlyers GyHKmms
y(r) onpesesiena Ha uureppasie (T, T,> M IUYCTh BHUIOJUATCH CJELYIONMC
YCILOBUsI:

7 ly(n) ne yobiBaeT M UTO 21 20 g;(

1 y(z) e @ pasate (T, To).
2. CymecrByer QyHKnuA wy(7), onpejiesieHHas, HelpepblBHAS W HeyBbIBAIO-
was g 0 =9 = oy, (0 < 0y = 0), wy(n) > cn, ¢ >0, wy(0) = 0. Ecanm no-

1]

HOUTH  Yy(n) = wy(n) wy(n), TO nTlyy(n) He yOBIBaeT, Z 2i’/)3(%) < ©
ic1
1 VIMECT MecTO

ly(zs) — y(Ts)ll = wa(]ﬁ — T'xl) Ui Ty, Tg € Ty, Ty, [1:4 — 7:3! < o.

3
B rakom cmyuae cymecrsyer pynrmms g(&) = [DF(y(r), t) aaa o, & € {t;, T5);

aTa (yHKNus HerpepbiBHA. MOKHO onpeenurh

0, 5 = S o).

Oyuxmuio y(t) Mbl HA30BeM pelIeHWeM ypaBHEHHs
dy
L= 1,0 (6)

ecllu BHINOJIHEHH! ycaoBus 1., 2. u eciim 0600ueHAEBe JYHKINA B 06EnX YacTax
ypasuenus (6) pasHBI, eciim nojctaBuTh ¥ = Y(t). MokHO mokasaTth, uro ¥y(t)
Oyner pemeHmeM ypaBHeHus (6) B TouHOocTH Torja, Korfma ¥(t) — peryds-
pHOe pemieHue ypaBHeHHs (4).
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