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RELATIONS OF COMPLETENESS

ZpeNEK FroLik, Praha
(Received July 19, 1960)

A problem of G. CHOQUET [1] is solved. The concept of the relation of
completeness is introduced. A (completely regular) space P is a Gs-space or
topologically complete in the sense of E. CECH (i.e. Pis a Gs-subset of the
Stone-Cech compactification of P) if and only if there exists a relation of
completeness on the space P. Analogously, the spaces containing a topolo-
gically complete space as a dense subspace are characterized internally.

1. All spaces are assumed to be completely regular. For convenience in this section
we shall recall the definitions and some theorems from [2] that are connected with
our subject.

Definition 1. A space P is said to be topologically complete in the sense of E. Cech
(in the terminology of [2] a G,-space), or merely topologically complete, if P is a G-
subset of the Stone-Cech compactification B(P) of P. A space is said to be almost
topologically complete in the sense of E. Cech (in the terminology of [2], an almost
Gs-space) or merely an almost topologically complete space, if P contains a topolo-
gically complete space as a dense subspace.

If a topologically complete space P is a dense subspace of a space R, then P is G,
in R.If a space P is a G,-subset of a topologically complete space, then P is a topolo-
gically complete space.

Using complete sequences of open coverings (almost coverings, respectively), an
internal characterization (i.e. without references to larger spaces) of topologically
complete (almost topologically complete) spaces is given in [3]. First let us recall
that a family 9 of subsets of a space P is said to be an almost covering (of P)if the
union of M is a dense subset of P.

Definition 2. A sequence {2} of open coverings (almost coverings, respectively) is
said to be complete if, whenever a family 2 of open subsets has the finite intersection
property and A N A, + @ for all n = 1,2, ..., then N {A; Ae U} + 0.

Theorem 1. A necessary and sufficient condition that P be a topologically
complete (an almost topologically complete) space is that ihere exist a complete
sequence of open coverings (almost coverings, respectively) of the space P.‘)

1) For proof see [3], Theorems 2.8 and 4.5.
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Itis evident that if {2,} is a complete sequence of open coverings (almost coverings)
and if %, is an open refinement of %,, n = 1,2, ..., then {B,} is also a complete
sequence. It may be proved that whenever {¥,} is a complete sequence of open co-
verings (almost coverings) then {%,} is a complete one, where B, consist of unions
of all finite subfamilies of %,.%) Thus we have proved the following.

Theorem 2. If P is a topologically complete space (an almost topologically
complete space) then there exists a complete sequence {U,} of open coverings
(almost coverings, respectively) such that

) YoYUy, n=1,2,...,

(ii) If A is open and A < Be U, then Ae ¥,

(iii) Every U, is (finitely) additive, i.e. if both A and B belong to %, then A LU B
belongs to Y,.

Finally we shall need the following (see [3], theorem 2.14):

Theorem 3. A sequence {,} of open coverings of space P is complete if and only
if the following two conditions are satisfied:

() If M = () A, where A, € U,, then M is a compact subspace of P.
n=1

(ii) If {F.,} is a sequence of closed subsets such that F, = F,,; + 0,(n = 1,2,...)
and for some A, € U, we have F, = A,, then (\ F, + 0.
n=1

2. Now we are prepared to formulate the definition of the relation of complete-
ness. For convenience we shall use the term ‘‘relation” in the following special
manner:

Definition 3. A relation r on a space P is a binary relation defined for open subsets
of P and such that

(1) r(4, B)= 4 > B.

(2) If (A, B) and both C and D are open, C > 4, D = B, then r(C, D).

Definition 4. A relation of almost completeness on a space P is a relation r on P
satisfying the following two conditions:

(3) If a family U of open sets has the finite intersection property and if for every
positive integer n there exist 4, ..., 4,,; € A such that (4, 4,,,), i=1,...,n,
then N{A; AeU} +0.

(4) If A4 is a non-void open set then there exists a B with r(4, B).

. Definition 5. A relation of completeness on a space P is a relation r on P satisfying
(3) and .
(5) For every open set A the family {B; r(4, B)} is a base for open subsets of A.

2) For proof see [3], Theorem 2.14.
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Note 1. Evidently (5) implies (4). Thus every relation of completeness is a relation
of almost completeness. A space P is compact if and only if the inclusion relation o is
a relation of completeness. A space is locally compact if and only if the following
relation is a relation of completeness: r(4, B) if and only if 4 o B and the closure
of Bis a compact space. A metric space (P, @) is complete if and only if the following
rel tion is a relation of completeness: r(4, B) if and only if 4 > B and the diameter
of Bis finite and less than the half that of 4.

First we shall consider the connection between relations of completeness and
complete sequences of open coverings.

Theorem 4. Let P be a space. There exists a complete sequence of open coverings
(almost coverings) if and only if there exists a relation of completeness (almost
completeness, respectively).

Proof. First let us suppose that {2} is a complete sequence of open coverings
(almost coverings) of the space P. Without loss of generality we may assume that
conditions (i) and (ii) are satisfied. Now if 4 is an open set which does not belong
to A, put n(4) = 0. In the other case put -

n(A) = sup {n; Ae,}.
Thus n(A) is either an integer 0, 1, 2, ... or co. Let us define a relation r on the space P
such that (4, B) if and only if either n(4) < n(B) or n(4) = n(B) = o and B < A.

Evidently the axioms (1) and (2) are fulfilled. Now we shall prove (3). Let us sup-
pose that a family 2 of open sets has the finite intersection property and for every
positive integer n there exist Ay, ..., A, € ¥ with H(Ay, Ay4,), i=1,2,..,u.
To prove () {4; A € U} =+ 0, it is sufficient to show Y N Y, = @ foralln = 1,2, ,...
But according to the definition of r, if r(A,., Aiﬂ) for i=1,2,...n, then 4,,,
belongs to U, , ;. The proof of (3) is complete. It remains to prove that if 9, are co-
verings (almost coverings) then the axiom (5) (the axiom (4), respectively) is fulfilled.
But this is evident and may be left to the reader.

Conversely, let r be a relation of completeness (almost completeness), respectively
on the space P. Let U; be the family of all non-void open subsets of P. By induction,
put

Nos1 = {A4;r(B, A) for some Be%,}.

We shall prove that {2,} is a complete sequence of open coverings (almost coverings).
Let us suppose that a family of open subsets of P has the finite intersection property
and %, " U + O forall n = 1,2,.... Without loss of generality we may assume

B open, B> AeU=BeY.

It follows that if A4,,,e€,,; N U, then there exist A, ..., A, €U such that
"(A4;, Aiyy), i=1,..,n. In consequence, by (3) we have N {A4; A} + 0. It
-remains to prove that U, are coverings or almost coverings provided that the condi-
tion (5) or (4), respectively, is fulfilled by r. But this is evident.
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Note 2. The sequence {¥,} from the second part (i.e. the “if” part) of the proof
of the preceding theorem satisfies the conditions (i) and (ii) of theorem 2. -
As a consequence of the preceding theorem and theorem 1 we have at once

Theorem 5. A necessary and sufficient condition that P be a topologically com-
plete space (almost topologically complete space) is that there exists a relation of
completeness (almost completeness, respectively) on the space P.

In the following section we shall prove the preceding theorem 5 directly (i.e.

without reference to theorems 1 and 4). We shall also prove a characterization of
complete sequences in theorem 3.

3. Proposition 1. Let us suppose that P is a dense subspace of a space K and
that there exists a relation r of completeness (almost completeness) on the space P.
Then P is a Gs-subset of P (P contains a dense Gs-subset of K, respectively).

Proof. We shall prove the assertion concerning the relation of completeness only.
For every open subset 4 of P let A" be the union of all open U <« K with U n P =
= A. Thus we have A" n P = A. Let U, be the union of all A’ for which there exist
sets A4y, ..., 4, open in P such that r(4,, 4) and

r(AivAi+1) (i =1,..,n—=1).
Put

Clearly G o P. To prove the converse inclusion, let us suppose that there exists
a point x in G — P. Let B be the family of all open neighborhoods of the point x and
let A be the family of all 4 = B n P where B € . Since P is dense in K, the family
has the finite intersection property. Clearly the assumption of (3) is satisfied, and
hence

N{A" AeU} +0.
Choosing a point y in this intersection, we have y #+ x. But this is impossible since

N {B*; Be B} = (x).

4

Proposition 2. Let us suppose that P is dense and G; in a space K and that
there exists a relation of completeness (almost completeness) on K. Then there
exists a relation of completeness (almost completeness, respectively) on P.

Proof. Again we shall prove the assertion concerning the relation of completeness
only. Let r be a relation of completeness on K and let

P=N{U;n=12..},

where U, are open subsets of K and U, > U, ;. Let us define a relation.r, of P as
follows:
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For every open A < P put u(A4) = 0 if the closure of 4 in K is not contained in U,.

In the other case put
n(A) = sup {n; AX < U,}.

Thus n(A)is 0, 1, ... or . Now we shall define r(A, B)if and only if 1(4’, B') where A’
is the interior of the closure of 4 in K and either n(B) = n(A) = oo or n(4) < n(B).

It is easy to see that r, is a relation of completeness on the space P. Indeed, (5) is
evident and if U satisfies the assumption of (3) with respect to r, then the family of
all 4', A € ¥, satisfies the assumptions of (3) with respect to r. Thus

F=N{A% AcU} +0.

But from the definition of r, we have that F < U, for every n and hence F < P.
The proof is complete.

Proposition 3. Let P be a closed subspace of a space K.If there exists a relation
of completeness on K, then there exists one on P also.

Proof. Let r be a relation of completeness on the space K. For every pair of open
subsets 4 and B of P pur r,(A4, B) if and only if there exist open subsets 4’ and B’
of K such that 7(4’, B') and A' P = A4, B'n P = B. Evidently r, satisfies (1),
(2) and (5). To prove the condition (3), it is sufficient to prove the following.

Proposition 4.If r is a relation of completeness on a space P, then the following
condition (3') is satisfied:

(3)Ifa family M of subsets of P has the finite intersection property and if for
every positive integer n there exist Ay, ..., A,y € M with r(4;, Aiyy), (i = 1, ..., n)
then N{M; MeM} + 0.

Proof. Let U be the family of all open subsets 4 of P containing a set M e IN.
Evidently U has the finite intersection property and the assumptions of (3) are satis-
fied. Thus we have

F=N{4, AeU} +0.
The space P being regular, every closed subset K ot P is the intersection of closures
of all open sets containing K. Thus for every M in M we have F = M and conse-
quently F = () {M; M e M} which completes the proof of proposition 4 and also
that of proposition 3.

Note. For almost relations the analogue of proposition 3 does not hold.

As an immediate consequence of the preceding propositions 1—4 and theorem 4
we have the following theorem:

Theorem 6. The following conditions on a space P are equivalent:

(1) P is G, in the Cech-Stone compactification of P.

(2) P is G, in some compactification of P.

(3) There exists a relation of completeness of the space P.

(4) There exists a complete sequence of open coverings of the space P.
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Theorem 7. The following conditions on a space P are equivalent:

(1) There exists a dense Gy-subset R of the Stone-Cech compactification of P
such that R < P.

(2) There exists a dense Gzsubset S of some compactification of P with S = P.

(3) There exists a relation of almost completeness of P.

(4) There exists a complete sequence of open almost coverings of the space P.

Finally, we shall prove the following analogue of theorem 3:

Theorem 8. Let r be a relation on a space P such that condition (5) is satisfied.
Then r is a relation of completeness if and only if the following two conditions are
satisfied:

(k) Let M be a subset of P such that for every positive integer n there exist
Ay ooy Apyy such that M < A, and r(A,, Aivq), i =1,2,...,n. Then the closure
of M is a compact subspace of P.

(kk) Let {F,} be a sequence of non-void closed subsets of P such that F, > F, .,
and that for every positive integer n there exist Ay, ..., Anyqsuchthat A, ., > F, .,

and r(A;, A,y), i = 1,...,n. Then (\F, % 0.
n=1

Proof. First let us suppose that r is a relation of completeness. The condition (kk)
follows at once from (3). To prove (k) it is sufficient to notice that if I is a family
of subsets of M with the finite intersection property, then the assumptions of propo-
sition 4 are satisfied and hence ) {N; N e M} #+ 0, which proves the compactness
of M and completes the first part of the proof.

Conversely, suppose (k) and (kk) and let the family 9 satisfy the assumptions

of (3). Let 9 be a maximal family of subsets of P with the finite intersection property
and containing 2. It is easy to construct by induction a sequence {F,} of closed sub-

sets of P, satisfying the assumptions ot (kk). Put F = () F,. By (kk) we have F = 0,
n=1 ’

and by (k) the set F is compact. Now it remains to prove that the family of all F ~ M,
M e M, has the finite intersection property. According to the maximality of M it is
sufficient to prove M n F =+ @ for all M € M. But this is evident, since
MnAnF=ONMnF,,
n=1

and the sequence {M n F,} satisfies the condition (kk). The proof is complete.
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. Pe3zrome
OTHOHEHUWS ITOJIHOTHI

3EHEK ®POJIMK (Zdenék Frolik), ITpara

TycTs maHoO mpocTpaHCTBO P (paccMaTpuMBaloTCsi TOJBKO BIOJIHE DPEryJIApHbIE
TOTOJIOTHYECKHE NIPOCTPAHCTBA). ,,OTHOIIEHHEM Ha P Mbl 6y/ieM Ha3biBaTh GuHAp-
HOE OTHOUIEHHE 7, ONPEMIEICHHOE [UIsi OTKPBITBHIX MMOAMHOXECTB P M Takoe, 4To

(1) ecn (4, B), T0 A > B;

(2) ecmu (A, B), C u D otkpeithl, C > 4,0 % D < B, 10 r(C, D).

OTHoleHNe r Ha P Ha3bIBACTCS OMHOWEHUEM NOUMU-NOAHOMbL, €CTTH

(3) U1t 0003 EeHTPUpPOBaHHON cUCTeMbl U OTKPBITBIX MHOXKECTB TaKOM, YTO
TIpH JIF060M HATYpalIbHOM n HalimyTes A; € U, st KoTophix r(A;, A;4q), i = 1,..., 1,
nepeceyenue Beex A, A € U, nenycro;

(4) st iro6oro oTkpeiToro A < P, A % (, cyumiectByeT B Tak, 4To r(A, B).

Ecin xe ynosieTBopsiercst yciaosust (3) u

(5) mas moboro oTkphITOro 4 cucrema {B; r(4, B)} siBisieTcst OTKpbITOM 6a30it 4,
TO F HA3bIBACTCS OMHOUEHUEM NOAHOMIbL.

OCHOBHBIM pPE3yJIbTATOM SIBJISIOTCS CJEAYIOUIME Teopembl (BCTpevaroLeecs
B HHUX IOHSTHE IOJIHOM IOCJIEJOBATEILHOCTH TOKPHITHHA WIH ,,IOYTH-TIOKPHITHI
onpezesieHo B pabote [3]).

Teopema. Caedyrowue ceoticmea npocmparncmea P sxeusasenmmol:

(1) P agasemca GzgMHOMCECMBOM 8 C80eM UeX08CKOM pacuiuperuu P;

(2) P sganemca Gg-MHONCECHBOM 8 OOHOM U3 CBOUX KOMNAKMHBIX PACUUDEHUL;
(3) cywecmeyem ommnowenue noanomsl Ha P;

(4) cywyecmsyem noanas nocaed06amenbHOCHb OMKPLIMBIX NOKpblmuli P.

Teopema. Caedyrowue ceoiicmea npocmpancmea P 9Keu8aneHmHbl:

(1) Cywecmeyem R < P, agaarwweeca niomuoim Gs-noOMHOICECMEOM NPOCMPAH-
cmea BP;

(2) cywyecmseyem R < P, ssasoweecs niomuvim Gy-MHOICECMBOM 6 OOHOM U3
Komnakmuulx pacwuperuti npocmpancmea P;
(3) cywecmeyem ommnowenue noumu-noanomsl Ha P;

(4) cywecmsyem noanas nocaedo8ameabHOCMy OMKPbIMbLX NOYMU-NOKPLIMULL NPO-
cmpancmea P.
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