Vítězslav Novák
On the pseudodimension of ordered sets

Persistent URL: http://dml.cz/dmlcz/100589

Terms of use:

© Institute of Mathematics AS CR, 1963

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
ON THE PSEUDODIMENSION OF ORDERED SETS

Vítězslav Novák, Brno
(Received January 13, 1962)

In this paper the pseudodimension and the \(\alpha \)-pseudodimension of ordered sets are defined. The relation between the pseudodimension and the dimension is determined. The economy of the representation of ordered set and the \(\alpha \)-economy are defined. Finally, the \(\alpha \)-pseudodimension of many ordered sets for various \(\alpha \) is obtained and the \(\alpha \)-pseudodimension is compared with the \(\alpha \)-dimension.

1. INTRODUCTION

In literature concerning the theory of ordered sets\(^1\), there often appear papers concerning the dimension of ordered sets. The dimension of an ordered set was defined in 1941 by B. Dushnik and E. W. Miller in the following manner (see [4] p. 601): Let \(G \) be a non-void set ordered by a binary relation \(\rho \). The dimension of \(G \) is the smallest cardinal of a system of the linear extensions\(^2\) \(\{ \tau_i \} \) of the relation \(\rho \) which realize \(\rho \) in the sense that \(\rho \) is the meet of all \(\tau_i \), \(\rho = \bigcap_i \tau_i \). It is clear that this definition may be formulated in the following slightly different way:

Let \(G \) be a non-void ordered set and let \(\{ L_i \} \) be a system of linearly ordered sets. Let \(f_i \) be a single valued mapping defined on \(G \) having a single valued inverse and such that \(f_i(G) \subseteq L_i \).

If, for any two elements \(x, y \) in \(G \), \(x \leq y \) holds if and only if \(f_i(x) \leq f_i(y) \) in \(L_i \) for every \(i \), we say that the system of mappings \(\{ f_i \} \) realizes the ordering of the set \(G \) and the dimension of the set \(G \) is defined as the smallest cardinal of such a system of mappings.

This definition was used by H. Komm. Komm defined the \(\alpha \)-dimension of the ordered set \(G \) as the smallest cardinal of a system of the 1–1 mappings of the set \(G \) into a linearly ordered set \(L \) of a type \(\alpha \) which realizes the ordering of the set \(G \) (see [5] p. 511).

Now in the definition of dimension it is easy to omit the assumption that the

\(^1\) A (partially) ordered set is a set with a nonsymmetric transitive binary relation.

\(^2\) A linear extension of the ordering \(\rho \) is a linear ordering \(\tau \) such that \(\rho \subseteq \tau \) (see [1]).
mappings \(\{ f_i \} \) are 1−1. Hence let \(\{ f_i \} \) be a system of mappings of ordered set \(G \) into the linearly ordered sets \(L_i \). If \(x \leq y \) in \(G \) is equivalent to \(f_i(x) \leq f_i(y) \) in \(L_i \) for every \(i \), we say that the system of mappings \(\{ f_i \} \) realizes the ordering of the set \(G \). The smallest cardinal of such a system we shall call the pseudodimension of the set \(G \) and denote by \(\text{pdim} \ G \). If all the sets \(L_i \) are of the same type \(\alpha \), we shall speak about the \(\alpha \)-pseudodimension of the set \(G \) (\(\alpha \)-pdim \(G \)). From this definition there follows \(\text{pdim} \ G \leq \dim \ G \), \(\alpha \)-pdim \(G \) \leq \(\alpha \)-dim \(G \). In the paper we shall prove that always \(\text{pdim} \ G = \dim \ G \), and that this relation does not hold for the \(\alpha \)-pseudodimension. From Komn’s definition there follows that \(\alpha \)-dim \(G \) need not exist. An evident necessary condition for the existence of \(\alpha \)-dim \(G \) is for instance the relation \(\text{card} \ \alpha \geq \text{card} \ G \). On the other hand, \(\alpha \)-pdim \(G \) exists always when \(\alpha \) is not equal to 0 or 1. But even when \(\alpha \)-dim \(G \) exists, the relation \(\alpha \)-pdim \(G \) = \(\alpha \)-dim \(G \) need not hold. Further, in the paper the economy of representation and \(\alpha \)-representation of ordered set is defined. It is shown that this concept is in close relation with the pseudodimension and the \(\alpha \)-pseudodimension.

The \(\alpha \)-pseudodimension for \(\alpha = 2 \), \(\alpha = \omega \), \(\alpha = \lambda \) of many specific ordered sets is obtained. It is also shown that \(\alpha \)-pdim \(G < \alpha \)-dim \(G \) is possible.

The notation used in the paper is usually the customary. Identity of ordered sets will be denoted by \(= \), isomorphism by \(\cong \).

Let us define now the lexicographic sum (see [13]) and the cardinal product. Let \(N \) be a non-void ordered set and \(\{ M_\alpha \mid \alpha \in N \} \) a system of disjoint non-void ordered sets. The lexicographic sum of the sets \(M_\alpha \) over the set \(N \) is a set of all pairs \([x, y]\), where \(x \in N \), \(y \in M_\alpha \) ordered in the following way: \([x_1, y_1] \leq [x_2, y_2]\) if and only if \(x_1 < x_2 \) or \(x_1 = x_2 \) and \(y_1 \leq y_2 \). Let \(K \) be a non-void set and let \(\{ L_\kappa \mid \kappa \in K \} \) be a system of disjoint ordered sets. By the cardinal product \(\prod_{\kappa \in K} L_\kappa \) of the sets \(L_\kappa \) over the set \(K \) we shall mean the set of all single-valued functions defined on \(K \) and such that \(f(\kappa) \in L_\kappa \) for every \(\kappa \), and ordered as follows: \(f \leq g \) in \(\prod_{\kappa \in K} L_\kappa \) if and only if \(f(\kappa) \leq g(\kappa) \) for every \(\kappa \in K \). If \(K \) is a two-point set, this definition agrees with Birkhoff’s definition of a cardinal product.

We shall often call a linearly ordered set a chain, the set in which every two distinct elements are incomparable, i.e. which is ordered by the relation \(= \), will be called an antichain.

By the symbol \(n \) we shall mean on the one hand an antichain containing \(n \) elements, on the other hand the type of this antichain, i.e. a cardinal number; analogously by \(n \) we shall mean a chain containing \(n \) elements, and also the type of this chain.

We remark that throughout this paper every set in which an order is not explicitly given will be considered to be an antichain.

Finally, note these further references: S. Ginsburg ([6]), V. Sedmak ([7]), T. Hiraguchi ([9], [10], [11]).

\[\sum_{\alpha \in N} M_\alpha \]
2. THE REALIZER OF AN ORDERED SET

Definition 2.1. Let G be a non-void ordered set, K a set. To every $\kappa \in K$ let there be assigned a linearly ordered set L_κ and an isotone mapping f_κ of G into L_κ such that $x \leq y$ in G if and only if $f_\kappa(x) \leq f_\kappa(y)$ for every $\kappa \in K$. Then we shall say that the system $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is a realizer of the ordering of G. By the cardinal of the realizer we mean the cardinal card K. If all the sets L_κ are of type α, we shall call the corresponding realizer $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ an α-realizer.

Theorem 2.1. Let G be an ordered set, K a set. To every $\kappa \in K$ let there be assigned a chain L_κ. Then the following statements are equivalent:

(A) G is isomorphic to a subset of the cardinal product $\prod_{\kappa \in K} L_\kappa$: $G \cong G' \subseteq \prod_{\kappa \in K} L_\kappa$.

(B) For every $\kappa \in K$ there exists a mapping f_κ of the set G into L_κ such that $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is a realizer of G.

Proof. 1. Let (A) hold and let φ be the isomorphism of G onto $G' \subseteq \prod_{\kappa \in K} L_\kappa$. Thus φ assigns to every $x \in G$ a function f defined on K such that $f(\kappa) \in L_\kappa$. Fix κ; then to every $x \in G$ there is assigned just one value $f(\kappa) \in L_\kappa$, i.e. there is defined a mapping of G into L_κ which we denote by f_κ. We shall show that the system $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is a realizer of G. First, let $x \leq y$ in G; then, if $\varphi(x) = f$, $\varphi(y) = g$, the relation $f(\kappa) \leq g(\kappa)$ holds for every $\kappa \in K$, hence $f_\kappa(x) \leq f_\kappa(y)$ and hence f_κ is isotone for every $\kappa \in K$. If $f_\kappa(x) \leq f_\kappa(y)$ holds for every $\kappa \in K$, then according to the definition of the function f_κ, the set $\{f_\kappa(x) \mid \kappa \in K\}$ is the set of values of a certain function f defined on K and belonging to $\prod_{\kappa \in K} L_\kappa$; analogously $\{f_\kappa(y) \mid \kappa \in K\}$ is the set of values of a function g belonging to $\prod_{\kappa \in K} L_\kappa$ and hence $f(\kappa) \leq g(\kappa)$ holds for every $\kappa \in K$, i.e. $f \leq g$. As $\varphi(x) = f$, $\varphi(y) = g$ and φ is an isomorphism, this implies $x \leq y$. Hence $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is indeed a realizer of the set G.

2. Let (B) hold. Form the cardinal product $\prod_{\kappa \in K} L_\kappa$ and to every element $x \in G$ assign an element $\varphi(x) = f$ of this cardinal product defined by $f(\kappa) = f_\kappa(x)$. In this manner there is defined a mapping φ of G onto a subset $G' \subseteq \prod_{\kappa \in K} L_\kappa$ and we shall show that this mapping is an isomorphism. First, it is clear that φ is $1-1$. Now if $x \leq y$ in G, then $f_\kappa(x) \leq f_\kappa(y)$ for every $\kappa \in K$ because $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is a realizer of G so that if we denote $\varphi(x) = f$, $\varphi(y) = g$, then $f(\kappa) \leq g(\kappa)$ for every $\kappa \in K$, i.e. $f \leq g$ in $\prod_{\kappa \in K} L_\kappa$. Secondly let $f \leq g$, i.e. $f(\kappa) \leq g(\kappa)$ for every $\kappa \in K$; then, if we denote $\varphi^{-1}(f) = x$, $\varphi^{-1}(g) = y$, we have $f(\kappa) = f_\kappa(x)$, $g(\kappa) = f_\kappa(y)$ for every κ so that $f_\kappa(x) \leq f_\kappa(y)$ holds for every $\kappa \in K$ and hence $x \leq y$ in G. Thus φ is indeed an isomorphism.

Theorem 2.2. Let G be an ordered set, K a set, L a chain of a type α. Then the following statements are equivalent:
(A) G is isomorphic to a subset of the cardinal power $L^K : G \cong G' \subseteq L^K$.
(B) To every $\kappa \in K$ there exists a chain L_κ of type α and a mapping f_κ of set G into L_κ such that $\{L_\kappa, f_\kappa \mid \kappa \in K\}$ is an α-realizer of G.

Proof. This theorem is an immediate consequence of theorem 2.1.

Lemma 2.1. Let A, B be chains of type α, β such that $A \cong A_1 \subseteq B$. Let G be an ordered set, K a set. If $G \cong G_1 \subseteq A^K$, then $G \cong G_2 \subseteq B^K$.

Proof. If the assumptions of lemma are true, then clearly $A^K \cong A^K_1$. Let φ be an isomorphism of A^K onto A^K_1. Then $G \cong G_1 \cong \varphi(G_1) = G_2 \subseteq B^K$.

Theorem 2.3. Let G be an ordered set, let L be any chain with at least two elements. Then there exists a set K such that $G \cong G' \subseteq L^K$.

Proof. Let R be a chain containing just two elements. According to [2] there exists a set K such that $G \cong G' \subseteq R^K$. Now our statement is a consequence of lemma 2.1.

Theorem 2.4. Let G be an ordered set, K a set. For every $\kappa \in K$ let there exist a chain L_κ such that $G \cong G_1 \subseteq \prod_{\kappa \in K} L_\kappa$. Then there exists a chain L such that $G \cong G_2 \subseteq L^K$.

Proof. Let B be any chain of cardinal K, let φ be any $1-1$ mapping of B onto K, and put $L = \sum_{\beta \in B} L_{\varphi(\beta)}$. Clearly $L_\kappa \subseteq L$ for every $\kappa \in K$. Hence $\prod_{\kappa \in K} L_\kappa \cong L'$ \subseteq L^K. If φ is an isomorphism of $\prod_{\kappa \in K} L_\kappa$ onto L', then $G = G_1 \cong \varphi(G_1) = G_2 \subseteq L'$ $\subseteq L' \subseteq L^K$.

Corollary 2.1. Let G be an ordered set, let α be a type of any chain which contains at least two elements. Then there exists at least one α-realizer (and hence at least one realizer) of the set G.

Proof. This is a consequence of theorems 2.3, 2.2.

3. THE PSEUDODIMENSION OF AN ORDERED SET

Definition 3.1. Let G be an ordered set. The minimum of cardinals of all realizers (α-realizers) of the set G is called the pseudodimension (α-pseudodimension) of the set G and is denoted by $\text{pdim } G$ (α-pdim G).

Theorem 3.1. Let G be an ordered set, α a type of any chain which contains at least two elements. Then G has α-pseudodimension and thus also pseudodimension. There holds $\text{pdim } G = \min \alpha \text{-pdim } G$.

Proof. This follows from corollary 2.1. and theorem 2.4.

Theorem 3.2. Let G be an ordered set. Then $\text{pdim } G = \text{dim } G$.

Proof. By the definition of pseudodimension, we have $\text{pdim } G \leq \text{dim } G$. Thus it
is sufficient to show that \(\dim G \leq \pdim G \). Thus, let \(\pdim G = m \). This means that there exists a realizer \(\{ L_{\kappa}, f_{\kappa} \mid \kappa \in K \} \) of the set \(G \) of cardinal \(m \). Let \(M_{\kappa} \subseteq L_{\kappa} \) be the set of all elements \(y \) such that there exists at least one \(x \in G \) with \(f_{\kappa}(x) = y \). Then \(f_{\kappa} \) is an isotone mapping of \(G \) onto \(M_{\kappa} \), and \(M_{\kappa} \) is a linearly ordered set. Let \(y \in M_{\kappa} \) be any element. Let \(M_{\kappa}^L \) denote the set which is a linear extension of the set \(f_{\kappa}^{-1}(y) \). Form the lexicographic sum \(\sum_{y \in M_{\kappa}} M_{\kappa}^L = N_{\kappa} \). This set is linearly ordered and it is clear that it is a linear extension of the set \(G \). Denote by \(g_{\kappa} \) the identity mapping of \(G \) onto \(N_{\kappa} \). Then \(g_{\kappa} \) is an isotone mapping of \(G \) onto \(N_{\kappa} \) and this mapping is 1–1. Now show that the mappings \(\{ g_{\kappa} \mid \kappa \in K \} \) realize the ordering of the set \(G \).

Let \(g_{\kappa}(x) \leq g_{\kappa}(y) \) for every \(\kappa \in K \). Then it is clear from the definition of the mapping \(g_{\kappa} \) that \(f_{\kappa}(x) \leq f_{\kappa}(y) \) for every \(\kappa \in K \) and thus \(x \leq y \) in \(G \). Hence \(\{ g_{\kappa} \mid \kappa \in K \} \) indeed realize the ordering of the set \(G \) and thus \(\dim G \leq m \).

Theorem 3.3. Let \(G \) be an ordered set, \(m \) a cardinal. Then the following statements are equivalent:

(A) \(\pdim G \leq m \).

(B) There exists a set \(K \) of cardinality \(m \), and for every \(\kappa \in K \) a chain \(L_{\kappa} \) such that \(G \) is isomorphic to a subset of the cardinal product \(\prod_{\kappa \in K} L_{\kappa} \).

Proof. This theorem follows from theorem 2.1.

Corollary 3.1. Let \(G \) be an ordered set, \(m \) a cardinal. Then the following statements are equivalent:

(A) \(\pdim G \leq m \).

(B) There exists a chain \(L \) and a set \(K \) of cardinality \(m \) such that \(G \) is isomorphic to a subset of \(L^K \).

Proof. This follows from theorems 2.1 and 2.4.

Theorem 3.3a. Let \(G \) be an ordered set, \(K \) set of cardinality \(m \), \(\alpha \) the type of a chain \(L \) with at least two elements. Then the following statements are equivalent:

(A) \(\alpha\pdim G \leq m \).

(B) \(G \) is isomorphic to a subset of \(L^K \).

Proof. Our theorem is an immediate consequence of theorem 3.3.

Theorem 3.4. Let \(m \) be any cardinal, \(K \) a set of cardinality \(m \), \(\alpha \) the type of any chain \(L \) with at least two elements. Then \(\alpha\pdim L^K = m \).

Proof. Denote \(L^K = G \). According to theorem 3.3a we have \(\alpha\pdim G \leq m \). Let \(B \) be a chain which contains just two elements. Then \(m = \dim B^{K^4}) \leq \dim L^K = = \dim G = \pdim G \leq \alpha\pdim G \).

Corollary 3.2. For every cardinal \(m \) and every type \(\alpha \) of a chain containing at least two elements there exists an ordered set \(G \) such that \(\alpha\pdim G = m \).

4) see [5], Theorem 2.1. It is evident that the ordered sets \(P(\alpha) \) — the system of all subsets of any set of cardinality \(a \) ordered by set inclusion — and \(2^a \) are isomorphic.
Theorem 3.5. Let A be a chain of type α, B a chain of type β. Let $A \cong A_1 \subseteq B$. Let G be any ordered set. Then α-pdim $G \geq \beta$-pdim G.

Proof. Under the assumptions of our theorem $A^K \cong A_1^K \subseteq B^K$ holds for every set K. Our statement is now an immediate consequence of theorem 3.3.α.

Corollary 3.3. Let α be the type of a chain containing at least two elements. Then 2-pdim $G \geq \alpha$-pdim G.

Theorem 3.6. Let L be a chain containing at least two elements, let G be an infinite ordered set. Let card $\alpha \leq \alpha$-pdim G. Then 2-pdim $G = \alpha$-pdim G.

Proof. According to corollary 3.3 we have 2-pdim $G \geq \alpha$-pdim G. Now $G \cong G_1 \subseteq L^K$, where card $K = \alpha$-pdim G. According to $[2]$, $L \cong L_1 \subseteq B^M$ where B is a chain containing just two elements and M is a set with card $M = \text{card } L$. Now, using the assumption card $\alpha \leq \alpha$-pdim G, we have $L^K \cong L_1^K \subseteq (B^M)^K = B^{MK} = B^K$. Hence $G \cong G_2 \subseteq B^K$ and we have 2-pdim $G \leq \text{card } K = \alpha$-pdim G.

Corollary 3.4. Let G be an infinite ordered set, let α be the type of a chain L containing at least two elements and whose separability of ordering is $m \leq \alpha$-pdim G. Then 2-pdim $G = \alpha$-pdim G.

Proof. From the assumptions it follows that $L \cong L_1 \subseteq B^M$ where B is a chain containing just two elements and M is a set with card $M = m$ (see $[3]$, theorem 2). Now the statement may be proved analogously as theorem 3.6.

4. THE ECONOMY OF A REPRESENTATION OF AN ORDERED SET

Definition 4.1. Let G be an ordered set. Further, let M be a set and for every $m \in M$ let L_m be a chain containing at least two elements. Let $F \supseteq \prod_{m \in M} L_m$, let r be an isomorphism of the set G onto F. Then we shall say that $[M, F, r]$ is a representation of the set G. By the economy of this representation we mean the cardinal card M and we define $ek\{G; [M, F, r]\} = \text{card } M$.

Theorem 4.1. Let G be an ordered set, $[M, F, r]$ a representation of this set. Then pdim $G \leq \text{card } M$.

Proof. This follows from theorem 3.3.

Corollary 4.1. Let G be an ordered set. Then $\min ek\{G; [M, F, r]\} = \text{pdim } G = \dim G$.

Proof. This statement follows from theorems 4.1., 2.1., 3.2.

Definition 4.2. Let L be a chain of type α containing at least two elements. Let G be an ordered set. Further, let M be a set, $F \subseteq L^M$, let r be an isomorphism of G onto F. Then we shall say that $[M, F, r]$ is an α-representation of the set G. By the
α-economy of this α-representation we mean the cardinal card M and we put
\[\alpha\text{-ek}\{G; [M, F, r]\} = \text{card } M. \]

Theorem 4.2. Let G be an ordered set, $[M, F, r]$ an α-representation of this set.
Then α-pdim $G \leq \text{card } M$.

Proof. This follows from theorem 3.3α.

Corollary 4.2. Let G be an ordered set, let α be the type of a chain containing
at least two elements. Then $\min_{[M, F, r]} \alpha\text{-ek}\{G; [M, F, r]\} = \alpha$-pdim G.

Proof. This statement is a consequence of theorems 4.2., 2.2.

5. EXAMPLES

Theorem 5.1. Let G be a finite antichain such that card $G = m$. Let n be a positive
integer such that $\left(\frac{n - 1}{\left[\frac{1}{2}(n - 1)\right]}\right) < m \leq \left(\frac{n - 1}{\left[\frac{1}{2}n\right]}\right)$. Then \(2\)-pdim $G = n$.

Proof. Our statement will be proved if we show that the cardinal power 2^n
contains an antichain of cardinality $\left(\frac{n - 1}{\left[\frac{1}{2}n\right]}\right)$ and that it contains no antichain with
greater cardinal. Consider the set of all sequences $\{x_k\}; k = 1, \ldots, n$, where $x_k = 0$
or 1, and which contains $\left[\frac{1}{2}n\right]$ 0’s and $n - \left[\frac{1}{2}n\right]$ 1’s. This set contains clearly $\left(\frac{n - 1}{\left[\frac{1}{2}n\right]}\right)$
elements and each two elements of this set are incomparable. In [12] it is proved
that the cardinal power 2^n contains no antichain with cardinal greater than $\left(\frac{n - 1}{\left[\frac{1}{2}n\right]}\right)$.

Theorem 5.2. Let G be a chain, card $G = m$. Then

a) if m is finite, then 2-pdim $G = m - 1.$

b) if m is transfinite, then 2-pdim $G = n$, where n is the separability of ordering
of the set G.

Proof. a) is a consequence of the obvious fact that the cardinal power 2^n
contains a chain with $n + 1$ elements:

\[
\begin{align*}
[0, 0, \ldots, 0] \\
[0, 0, \ldots, 1] \\
\vdots \\
[1, 1, \ldots, 1]
\end{align*}
\]

and it contains no chain with more elements.

b) Is a consequence of the corollary of theorem 2 in [3].

Let us denote by $P(a)$ the set of all subsets of a set of cardinality a ordered by
set inclusion. H. KOMM proved in [5] that dim $P(a) = a$. We shall prove:
Theorem 5.3. \(2\text{-pdim } P(a) = a\).

Proof. \(P(a) \cong B^M\) where \(B\) is a chain containing two elements and \(M\) is a set such that \(\text{card } M = a\). From this we obtain \(2\text{-pdim } P(a) = 2\text{-pdim } B^M = a\).

Our theorem can be also proved in the following manner:

Let \(M\) be a set of cardinality \(a\). We shall construct to every \(x \in M\) a function \(f_x\) in the following manner: for \(A \subseteq M\) we put \(f_x(A) = 0\) if \(x \in A\) and \(f_x(A) = 1\) if \(x \notin A\).

The system of all these functions has cardinality \(a\) and, moreover, it realizes \(P(a)\).

Indeed, let \(A \subseteq M\), \(B \subseteq M\), \(A \subsetneq B\). Then \(f_x(A) \leq f_x(B)\) for every \(x \in M\); also there exists an element \(y \in B\), \(y \in A\) such that \(f_y(A) = 0 < 1 = f_y(B)\). Let \(A \parallel B\); then there exist elements \(x, y \in M\), \(x \in A\), \(x \notin B\), \(y \in A\), \(y \notin B\) such that \(f_x(A) = 0 < 1 = f_y(B)\), \(f_x(A) = 1 > 0 = f_y(B)\). Hence \(2\text{-pdim } P(a) \leq a\). On the other hand \(2\text{-pdim } P(a) \geq \text{pdim } P(a) = \dim P(a) = a\). Hence \(2\text{-pdim } P(a) = a\).

Corollary 5.1. Let \(\alpha\) be the type of a chain containing at least two elements.

Then \(\alpha\text{-pdim } P(a) = a\).

Proof. This is a consequence of theorem 5.3 and corollary 3.3.

Let \(E_k\) denote the set of all sequences \([x_1, x_2, \ldots, x_k]\), where \(x_i (1 \leq i \leq k)\) is any real number. H. Komm defined two orders \(P'(E_k)\) and \(P(E_k)\) in the following manner: \([x_1, x_2, \ldots, x_k] \leq [y_1, y_2, \ldots, y_k]\) in \(P'(E_k)\) if and only if \(x_i \leq y_i\) for every \(i\); and \([x_1, x_2, \ldots, x_k] < [y_1, y_2, \ldots, y_k]\) in \(P(E_k)\) if and only if \(x_i < y_i\) for every \(i\). If we denote the set of all real numbers ordered in the natural way by \(E\), then evidently \(P'(E_k)\) is the same as the cardinal power \(E^k\).

Theorem 5.4. \(2\text{-pdim } P(E_k) = 2^{\aleph_0}\).

Proof. As \(\text{card } P(E_k) = 2^{\aleph_0}\), we have \(2\text{-pdim } P(E_k) \leq 2^{\aleph_0}\). On the other hand we shall prove (corollary 6.4) \(\lambda\text{-pdim } P(E_k) = 2^{\aleph_0}\); this implies \(2\text{-pdim } P(E_k) \geq \lambda\text{-pdim } P(E_k) = 2^{\aleph_0}\).

Theorem 5.5. \(2\text{-pdim } P'(E_k) = \aleph_0\).

Proof. The set \(E\) has separability of ordering \(\aleph_0\). Thus \(E \cong E_1 \cong 2^{\aleph_0}\). From this we have \(P'(E_k) = E^k \cong E_1^k \cong (2^{\aleph_0})^k = 2^{\aleph_0} = 2^{\aleph_0}\). Hence \(2\text{-pdim } P'(E_k) \leq \aleph_0\). But \(2\text{-pdim } P'(E_k)\) is certainly infinite. Hence \(2\text{-pdim } P'(E_k) = \aleph_0\).

6. THE COMPARISON OF THE \(\alpha\text{-DIMENSION WITH }\alpha\text{-PSEUDODIMENSION}

From the definition it follows that \(\alpha\text{-pdim } G \leq \alpha\text{-dim } G\), if \(\alpha\text{-dim } G\) exists. We now shall show that there exists an ordered set \(G\) such that \(\alpha\text{-pdim } G < \alpha\text{-dim } G\).

It is clear that if \(\alpha\) is a finite ordinal then \(\alpha\text{-dim } G\) exists if and only if \(\text{card } G \leq \text{card } \alpha\); in this case \(\alpha\text{-dim } G = \alpha\text{-pdim } G = \dim G\). We shall therefore first consider the \(\omega\text{-dimension and }\omega\text{-pseudodimension.}

Define two ordered sets: Let \(N\) denote the set of all positive integers ordered by
magnitude. Let N_k be the set of all sequences $[x_1, x_2, \ldots, x_k]$ where $x_i \in N$, $1 \leq i \leq k$. We define $P(N_k) = N^k$, $P(N_k)$ in a manner similar to $P(E_k)$, $P(E_k)$ respectively.

Theorem 6.1. ω-dim N^2 exists.

Proof. As ω is a homogeneous order type (see [5]), it is sufficient to show that N^2 has an ω-extension. Let us decompose the set of all positive integers into countably many classes $\{W_n\}$ in such a manner that each W_n is infinite. Let $W_n = \{a^n_1, a^n_2, a^n_3, \ldots\}$, where $a^n_i < a^n_j$ for $i < j$. Let us assume that for $m < n$, $a^n_m < a^n_i$ holds for every i. Such a decomposition can always be constructed, for instance in the following manner:

$$
W_1 = \{1, 2, 4, \ldots, 2^n, \ldots\}, \quad W_2 = \{3, 9, 27, \ldots, 3^n, \ldots\},
$$

$$
W_3 = \{5, 25, 125, \ldots, 5^n, \ldots\}, \quad W_4 = \{6, 36, 216, \ldots, 6^n, \ldots\}.
$$

Now to every element $[x, y] \in N^2$ we assign the element a^n_x. This mapping is evidently one-one and it is an ω-extension, because $[x_1, y_1] \leq [x_2, y_2]$ in N^2 implies $x_1 \leq x_2$ and $y_1 \leq y_2$ and this implies $a^n_{x_1} \leq a^n_{x_2}$ according to our construction.

Corollary 6.1. ω-dim N^k exists for every positive integer k.

Proof. We shall prove our theorem by induction. For $k = 2$ our statement holds. Assume it holds for $k - 1$, so that there exists an ω-extension φ of the set N^{k-1}. Construct the same decomposition as in the proof of theorem 6.1 and assign to every element $[x_1, x_2, \ldots, x_{k-1}, x_k] \in N^k$ the element $a_{\varphi([x_1, x_2, \ldots, x_{k-1}])}^{i(x_1, x_2, \ldots, x_{k-1})}$. This mapping is evidently an ω-extension so that ω-dim N^k exists.

Corollary 6.2. ω-dim $P(N_k)$ exists for every positive integer k.

Proof. The ω-extension of N^k constructed in the proof of corollary 6.1 is evidently the ω-extension of $P(N_k)$.

Theorem 6.2. If there exists in any ordered set G an ascending chain C of type ω and an element a such that $a \parallel x$ holds for every $x \in C$, then G has no finite ω-dimension.

Proof. Assume the contrary, ω-dim $G = r < \aleph_0$. Let $\{f_i, N; i = 1, 2, \ldots, r\}$ be the ω-realizer of G in Komm’s sense. Denote $C = \{x_n\}$, where $x_n < x_{n+1}$, for $n = 1, 2, \ldots$. Then $f_i(x_n) < f_i(x_{n+1})$ holds for every i and n. Choose any i. As f_i is an ω-extension, there exists an index p_i such that $f_i(x_p) < f_i(a) < f_i(x_{p_i+1})$ and hence $f_i(a) < f_i(x_n)$ for every $n > p_i$. Let $p = \max \{p_i\}$. Then $f_i(a) < f_i(x_n)$ for every $n > p$ and for every i, which implies $a < x_n$. This contradicts our assumption and thus the theorem is proved.

Theorem 6.3. If in the ordered set G there exists an infinite antichain, then ω-pdim G is infinite.

Proof. If ω-pdim $G = k < \aleph_0$, then G is isomorphic to a subset of the cardinal power N^k. We shall show (lemma 6.1) that the cardinal power N^k contains no infinite antichain, which will contradict our assumption.
Lemma 6.1. If $k < \aleph_0$, then the cardinal power N^k contains no infinite antichain.

Proof. We shall prove our statement by induction. Let $k = 2$. Assume that N^2 contains an infinite antichain $C = \{[x_n, y_n]; n = 1, 2, \ldots\}$. Note that the elements $[x, y], [x, z]$ are always comparable in N^2 so that all x_n are distinct and we may assume $x_1 < x_2 < \ldots$. But then it is clear that the elements y must satisfy the relation $y_1 > y_2 > y_3 \ldots$ so that the elements y determine an infinite descending chain in N. This is impossible and, therefore, N^2 does not contain any infinite antichain.

Now, let us assume that our theorem holds for $k - 1$ so that N^{k-1} does not contain any infinite antichain. Suppose that N^k contains an infinite antichain R. Denote the projection of the set R into N^{k-1} by R'. R' is certainly infinite. Suppose that R' is finite, i.e.,

$$R' = \{[x_{i_1}^{n_1}, x_{i_2}^{n_2}, \ldots, x_{i_{k-1}}^{n_{k-1}}]\}, \text{ where } 1 \leq i_1 \leq n_1, 1 \leq i_2 \leq n_2, \ldots,$$
$$1 \leq i_{k-1} \leq n_{k-1}.$$

Then $R = \{[x_1^{i_1}, x_2^{i_2}, \ldots, x_{k-1}^{i_{k-1}}, x_k]\}$ where the set of indexes i_k is infinite. From this we obtain that there exists at least one system of indexes $i_1^0, i_2^0, \ldots, i_{k-1}^0$ such that $[x_1^{i_1^0}, x_2^{i_2^0}, \ldots, x_{k-1}^{i_{k-1}^0}, x_k^0] \in R$ holds for infinitely many i_k. But all these elements are comparable in N^k and this contradicts the assumption that R is an antichain. Hence R' is infinite. The assumption that N^{k-1} contains no infinite antichain implies that every infinite subset of R' contains at least two comparable elements, so that according to [4] (Theorem 5.24) R' contains an infinite chain $C = \{[x_1^n, x_2^n, \ldots, x_{k-1}^n]\}; n = 1, 2, \ldots$. As N^{k-1} satisfies the descending chain condition, this chain is necessarily ascending and we may suppose $[x_1^n, x_2^n, \ldots, x_{k-1}^n] < [x_1^{n+1}, x_2^{n+1}, \ldots, x_{k-1}^{n+1}] < \ldots$. This chain determines a certain subset in R: $\{[x_1^n, x_2^n, \ldots, x_{k-1}^n, x_k]\}$ and it is clear that $x_1^1 > x_2^1 > \ldots$ so that we obtain an infinite descending chain in N. This, however, is impossible and the theorem is proved.

Theorem 6.4. ω-dim $N^k = \aleph_0$ for any positive integer $k \geq 2$.

Proof. N^k is a countable set, hence ω-dim $N^k \leq \aleph_0$. Now, put $x_n = [n + 1, 1, 1, \ldots, 1]$ for $n = 1, 2, \ldots, a = [1, 2, 1, \ldots, 1]$. Then the set $\{x_n\}$ is a chain of type ω and $a \parallel x_n$ for every n. Hence according to theorem 6.2. N^k has no finite ω-dimension.

Theorem 6.5. ω-pdim $N^k = k$ for every k.

Proof. The theorem is a consequence of theorem 3.4.

Theorem 6.6. ω-pdim $P(N_k) = \aleph_0$ for any positive integer $k \geq 2$.

Proof. $P(N_k)$ is a countable set, therefore ω-pdim $P(N_k) \leq \aleph_0$. Now, put $x_n = [n, 1, 1, \ldots, 1]; n = 1, 2, \ldots$ Then the set $\{x_n\}$ forms an infinite antichain. Hence according to theorem 6.3. $P(N_k)$ does not have finite ω-pseudodimension.

Corollary 6.3. ω-dim $P(N_k) = \aleph_0$.

Proof. This fact follows from the inequalities

$$\aleph_0 = \omega$-dim P(N_k) \leq \omega$-dim P(N_k) \leq \aleph_0.$$
Let us now consider the \(\lambda \)-pseudodimension. We shall determine \(\lambda \)-pdim \(P(E_k) \), \(\lambda \)-pdim \(P(E_k) \). It is known ([5]) that both \(\lambda \)-dim \(P(E_k) \) and \(\lambda \)-dim \(P(E_k) \) exist and \(\lambda \)-dim \(P(E_k) = \aleph_0 \), \(\lambda \)-dim \(P(E_k) = 2^{\aleph_0} \).

Theorem 6.7. \(\lambda \)-pdim \(P(E_k) = k \) for every \(k \).

Proof. This follows from theorem 3.4.

Theorem 6.8. \(\lambda \)-pdim \(P(E_2) = 2^{\aleph_0} \).

Proof. As card \(P(E_2) = 2^{\aleph_0} \), we have \(\lambda \)-pdim \(P(E_2) \leq 2^{\aleph_0} \). Suppose that \(\lambda \)-pdim \(P(E_2) < 2^{\aleph_0} \) so that \(P(E_2) \) is realized by the set \(\{ f_x \mid \kappa \in K, \text{card } K < 2^{\aleph_0} \} \) of mappings into a set \(L \) of order type \(\lambda \). Consider in \(P(E_2) \) the set of all points \([x, 0] \) and \([x, 1] \). For any \(x_0 \) we have \([x_0, 0] \parallel [x_0, 1] \). As card \(K < 2^{\aleph_0} \), there exists a \(\kappa_0 \in K \) such that \(f_{\kappa_0}([x, 1]) < f_{\kappa_0}([x, 0]) \) for a non-denumerable set of \(x \)'s i.e. for \(x \in C \), where card \(C > \aleph_0 \). Now, if \(x, y \in C \), \(x < y \), then \([x, 0] < [y, 1] \) in \(P(E_2) \) so that \(f_{\kappa_0}([x, 1]) < f_{\kappa_0}([x, 0]) \leq f_{\kappa_0}([y, 1]) < f_{\kappa_0}([y, 0]) \). If we denote \(f_{\kappa_0}([x, 1]) = a_x \ (\in L) \), \(f_{\kappa_0}([x, 0]) = b_x \ (\in L) \), we have \(a_x < b_x \leq a_y < b_y \) for \(x, y \in C \), \(x < y \).

From this it follows that we may construct in \(L \) a non-denumerable set of non-overlapping intervals. But this is impossible, because \(L \) has the order type \(\lambda \) and hence each set of non-overlapping intervals in \(L \) is denumerable. Thus, \(\lambda \)-pdim \(P(E_2) = 2^{\aleph_0} \).

Corollary 6.4. \(\lambda \)-pdim \(P(E_k) = 2^{\aleph_0} \) for every finite \(k \geq 2 \).

Proof. As card \(P(E_k) = 2^{\aleph_0} \), we have \(\lambda \)-pdim \(P(E_k) \leq 2^{\aleph_0} \). On the other hand \(\lambda \)-pdim \(P(E_k) \geq \lambda \)-pdim \(P(E_2) = 2^{\aleph_0} \).

References

Резюме

О ПСЕВДОРАЗМЕРНОСТИ УПОРЯДОЧЕННЫХ МНОЖЕСТВ

ВИТЕЗСЛАВ НОВАК (Vítězslav Novák), Брюно

В статье определяется псевдоразмерность и α-псевдоразмерность упорядоченного множества следующим образом: Пусть G — непустое упорядоченное множество. Псевдоразмерностью множества G (pdim G) мы разумеем наименьшую мощность системы изотонных отображений $\{f_i\}$ G в линейно упорядоченные множества L_i такой, что имеет место $x \leq y \Rightarrow f_i(x) \leq f_i(y)$ для всех i. Если все множества L_i того же типа α, мы говорим о α-псевдоразмерности множества G (α-pdim G).

В статье доказывается: $\text{pdim } G = \text{dim } G$ для всякого упорядоченного множества G (теорема 3.2), $\text{pdim } G = \min \alpha \alpha$-pdim G (теорема 3.1).

Далее доказывается: Теорема 3.3. Для упорядоченного множества G эквивалентны следующие утверждения: (A) $\text{pdim } G \leq m$. (B) Существует множество K мощности m, и для всякого $k \in K$ целая L_k такова, что $G \cong G' \leq \prod_{k \in K} L_k$.

Теорема 3.3x: Для упорядоченного множества G эквивалентны следующие утверждения: (A) α-pdim $G \leq m$. (B) Существует множество K мощности m и целая L типа α такая, что $G \cong G' \leq L$.

Далее, определяется экономия представления упорядоченного множества. Если r — изоморфизм упорядоченного множества G на множество $F \subseteq \prod_{m \in M} L_m$ ($F \subseteq L^M$), где L_m — цепь (L — цепь типа α), то тройка $[M, F, r]$ называется представлением (α-представлением) множества G. Мощность $\text{card } M$ называется экономией (α-экономией) этого представления. В статье доказывается:

$$\min_{[M,F,r]} \text{ek}(G; [M, F, r]) = \text{pdim } G = \text{dim } G \quad (\text{следствие } 4.1),$$

$$\min_{[M,F,r]} \alpha - \text{ek}(G; [M, F, r]) = \alpha\text{-pdim } G \quad (\text{следствие } 4.2).$$

Наконец, в статье приведен ряд примеров в которых доказывается, что существуют такие упорядоченные множества G, для которых $\alpha\text{-pdim } G < \alpha\text{-dim } G$. 598