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RELATIONS BETWEEN THE DIAGONAL ELEMENTS OF TWO
MUTUALLY INVERSE POSITIVE DEFINITE MATRICES

MirosLAv FIEDLER, Praha

(Received January 23, 1962)

1. Introduction. It is the purpose of this paper to solve the following problem:
To find necessaryl) and sufficient conditions for 2n numbers a;;, o;;, i =1, ..., n,
to be diagonal elements of an n-rowed positive definite matrix A = (aij) and its
inverse matrix A~' = («;;). The complete solution is given in Theorems (3,2) and
(3,3). Somre applications are added which describe the geometric sense of the con-
ditions.

2. Notation and lemmas. We shall use the well known notions of the theory of
matrices and linear algebra. If 4 is a matrix with complex elements, we shall denote
by A* the conjugate transpose of A. If C = (¢;;),i,j = 1, ..., n, is a square matrix

then tr C denotes the tracezn: ¢;; of C. If D is a diagonal matrix with diagonal elements
dy, ..., d,, we shall write ;i;ply
D = diag {dy, ..., d,} .
Moreover, we shall use the following lemmas:

(2,1) Let n = m = 1 be integers, d,, d,, ..., d, positive numbers. Then,

0 Gar(55) -z Gar (L) -

i=1d; i=1d,;

1\ %
a)

with equality if and only if

dm+1 = dm+2 = .. = d" = (Zldl)%(

M=

]

i

1) A necessary condition is proved in [2].
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Proof. The case n = m + 1 follows directly:

i=1d;

m m 1 m k3
_(m+1)§[z 2 +d,,,+z +7 .Zd,.+1]_
m+1 1 B3
(m+D=Qﬁ)(Zd>—W+D.
1 4;
From this, (1) follows immediately. Suppose that in (1) equality is reached. Then

mH—<zdﬁ(21)ﬁ

11d

Ear(83)

since the relation is symmetric with respect to d 41, dpt2s ---, d,. It can be easily
seen that we really obtain equality in this last case.

as well as

Ms

dm+2 =

(2,2). Let ay, a,, a3 be real numbers such that 0 < a; < a, < as;.
Then,

-1
az a,
@) o
a, +a3 a; +a;

IIA

L,

with equality if and only if a, = a; or a, = a,.

Proof. From (a3 — a,) (a, — a,;) = 0 we obtain equivalent inequalities
ay(a; + a3) = a3 + aja;,

a3 a,a3

<l1.
ay(a; + a3)  a(a, + as)

Thus, (2) is valid, with equality as asserted.

23). Letdy, d,, ...,d,,n = 2, be real numbers for which0 < d, £d, < ...

n

and ¢y, ¢5, ..., €, non-negative numbers such that y, c¢; = 1. Then,
i=1

IIA
i

B3

3

® (Zar (2 di)% R dl)* in-2z2

= i n

=

2 2(i§:jlcidi)’f(i c—) n—2.



In the left inequality, equality is attained if and only ifd, = dy = ... =d,_{ =
= (d\d,)*. In the right inequality,®) equality is valid if ¢; = 0 whenever d, <
<d;<d,and Y ¢, =3 where M = {k; d, = d,}.

keM
Proof. The left inequality is an immediate consequence of (2,1); thus, equality
holds if and only if

L1, 1\7?
@=m=¢ﬂ=@+mzw+ﬁ = (dydy)* .
dl dn
To prove the second inequality in (3), notice first that according to (2,2) and
0<dy<d; £d,

1
(@ G
ditd, 1 1
dl dn

holds with equality if and only if d; = d, or d; = d,. Thus, if ¢; 2 0, Y ¢; = 1, then
i=1

n L
2 cid; ) d.
i=1 + i=1%i é 1’
di+d, 11
dl dn
ie.
n noc;
lglc#ji 1;1 _1 1
. < -
di+d, 1 174
—_— + —_
dl dn

From this, we obtain easily the second inequality in (3) with equality as asserted.
We shall say further that a matrix 4 is diagonally congruent to a matrix B if

A = DBD*

for a diagonal regular matrix D. It is obvious that this relation of diagonal congruence
is an equivalence relation.

2,4). If A = (a;;) is (Hermitian) positive definite, then every diagonally con-
gruent matrix to A has this property as well. Morevoer, there exists a matrix
C = (c;;) which is diagonally congruent to A and such.that

) ¢ = (a0 = Vii

where y;; are diagonal elements of C™1 = (y;)).

2) This is essentially the Kantorovich inequality. Sze e. g. [3]. .
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Proof. The first part being obvious, let us choose D as a diagonal matrix with
diagonal elements a;;*a¥; where A~ = («;;). It is then easy to see that C = DAD*
satisfies (5) as asserted.

We shall conclude this section by the following obvious lemma:

(2,5). Let J be a square matrix whose all elements are equal to 1, and let P be
a square matrix of the same order. Then,

JPJ = pJ
where the number p is the sum of all elements in P.

3. Results. In this section, we shall prove the main three theorems.

(3,1). Theorem. Let A = (a;;), i,j = 1, ..., n, be a (Hermitian) positive definite
matrix, A" = (a;;). Let A; be the least, l the greatest proper value of A, q =
= A,/A1. Then,
©) (trAtrA™ Y=gt + g *+n—-22=2 max ~ flaio) +n — 2.

i=1,...,

In the first inequality, equality is attained if and only if all remaining pro-
per values of A are equal to (1,2,)%; in the second, we obtain equality if and only
if n=1orif n>1 and there exist proper vectors v, w corresponding to Ay, A,
resp. such that their coordinates v;, w; fulfil the conditions vy = wy fork =1,...,
n ok #i,v;=— w

Proof. The case n = 1 being trivial, assume that n > 1. Let A = ULU* where
L = diag {44, ..., 4.} (44, ..., 4, are positive proper values) and U = (u};) is unitary.
Then,

trd=34, trd™ ' =Y !
i=1

i=1

M:

a;; = I kl A, Oy = I 1k|2 /Ik

TM:

k

I)

Since z [u,,,] = 1, we obtain (6) immediately from (3) in (2,3), 4, = min /1

ji=1,
A, = max 1, q = 4,/A;. By the same theorem, equality in the left mequahty is
j=1,...,n
attained if and only if 4; = (4,4,)* for j = 2, ...,n — 1. Assume now that
M=Ay=.. =4 <M1 £ .24 <A1 =...= 1

and that equality is valid in the second inequality. According to (2,3), u;; = 0 for
k n
j=k+1,..,0 Ylu,|* = Y |uy|* =3 There exist unitary matrices Vj, V,
p=1 qg=1+1
{(with k rows and n — I rows resp.) such that

(u"l, ceay u,»k) Vl = (2“%, 0, ey 0) s
(ui’,,l, ceey ui'") V2 = (0, 0, ceey —2_%) .
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Then, A = ULU* = UVLV*U* = WLW* where

v, 0, 0 ,
V=|(0, E 0 (E is an (I — k)-rowed identity matrix)
0’ 0, V2
and W = UV is unitary.
If W= (wy), then w;; = 27% w;, = —27%; hence,
% = — Wi Wiy =kZ, Wit Wiy S (kz |Wk1l2)’Ir ( Z_l{wknlz)% =
i ki kei

= (1 = [wa* (0 = |wal)* =3

so that wy =ow,, k=1,..,n, ks#i But c=1 since ;=Y Wy, =
k=1
k#i

n
=0 ) |Wi|* = 30. Consequently, the first column vector v and the last column vector w
k=1

k#i
of W which are proper vectors corresponding to 1;, 4, resp. have the property of the

theorem. It is easy to see that the converse part is also valid. The proof is complete.

(3,2). Theorem. Let A = (a;;), i,j = 1,...,n, be a Hermitian positive definite
matrix, A™' = (a;;). Then,

(7) a; >0, a;>0,

(®) agu; 21,

® V@) =1 ZI[\/ (aj5;) — 1]
iri

fori=1,...,n.

Conversely, let a;;, a;; (i = 1, ..., n) be 2n real numbers which satisfy (7), (8) and
(9) for i = 1,...,n. Then, there exists a positive definite (even real) matrix A =
= (ay) such that its diagonal elements coincide with the given numbers a; and
the diagonal elements of its inverse matrix with o;;.

Remark. In (8), equality holds for a fixed i if and only if a, = 0 for k # i,
i = 1,..., n. The case of equality in (9) will be completely solved in (3,3).

Proof. Since (7) as well as (8) written in the form a;;4;; = det 4 (4;; is the comple-
mentary principal minor of a;; in A) are well known, we shall prove (9) only. Thus,
let C = (¢;;) be the matrix from (5) in (2,4). Then,

Y o) =tr C=tr €71 = (tr Ctr C71) >
k=1

> 2 max \/(c,-,-yﬁ) +n—2=2 max \/(a,.iaﬁ) +n-—2
i=1 n

i=1,..., i=1,...,n
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according to (3,1). From this, (9) follows immediately. To prove the converse part,
notice that the statement does not depend on the choice of a matrix from the class
of diagonally congruent matrices, i.e. according to (2, 4) it is sufficient to prove:

Let ¢4, ..., ¢, be non-negative numbers such that

n—1
(10) Zlci >c¢,= max c;.

Jj=1,...,n

Then, there exists a positive definite matrix 4 = (a; j), i,j=1,...,n such that its
diagonal elements a;; and the diagonal elements of its inverse matrix a;; fulfil the

relations

\/(ai,-oc,.i —1l=c¢ (i=1,..,n).
This is obvions for n = 1. If n > 1, let us denote by g; the numbers
ei=cfe;+2) (i=1,..,n)

so that ¢, = max g;.

Jj=1,...,n

Let us distinguish two cases:

n—1

1°If ) ¢; = @, put
i=1

09‘ 0: ERRE] 19 \/Qn—l
\/Qla \/QZ’ s \/Qn—l’ 1+ Qn

Obviously, det 4 = 1 > 0 and A is positive definite. But diagonal clements o;

of A7 ! are
“ii=1+gi7 i=1,...,n'-15
a, =1.

nn

Consequently, a;o; = 1 + ¢; = (1 + cj)2 forj=1,....n.

n—1 '
2° Let now Y. 0; # @, so that g, > 0. Denote by @1(x), ,(x) the real functions
i=1
defined for x = —p, "

n—

1
(pl(x) =n-—- 2 - Z(l + Qix)% + (1 + an)%’
1

n—

1
(Pz(x) =n-2- Z(l + Q,'x)% - (1 + an)%s
' 1
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and put further

1

n—1
Xo=—o0,', e=sgn(g, — Y 0)-
i=1

n-1
Since ¢4(0) = 0, ¢1(0) = %(Qn - 2.0
i=1

o) = = (Tei=e) S0, o) = 0als0)s 0:00) = ~2 <0,

the following assertion is valid:

If ¢ = 1, then ¢,(x) has a root in (0, 1. If ¢ = —1 and @,(x,) = 0, then @,(x)
has a root in {x, 0). If ¢ = —1 and ¢,(x,) < 0, then ¢;(x) has a root in {xo, 0).

Let us denote by ¢ such a root (in each case), and by o, ¢’,dy, ..., d, the real
numbers

(11) o=14+.J1-9, o=1-/01-9,
1 L d
\(12) di = [E ((1 + Qié)z _ 1)] . i= 1,...,7’! -1 .
e +
do=t00+ 000+ 1]
where
n=11i e=1, n= —sgne,(x) if e=—1.
According to the definition of &
1+9¢¢>0 (i=1,..,n—-1), 14+0¢=0

and it follows easily that all d; exists since

(13) e€>0.
Moreover,
n—1
14) Yd: —ed; = 2671
i=1

Now, we shall show that the matrix

A=V+ oDJD
where

V=diag{l,1,...,1, —¢},

D = diag {dy, ....,d,} and J = (ju), ju =1 (i, k = 1,'..., n) fulfils our conditions.
Really, A is positive definite since

detA = — ¢+ o(d? — enild%) =& 1+ /1 -8 >0
i=1
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according to (12) and (13) while the principal submatrix consisting of the first n — 1
rows and columns of A is obviously positive definite itself. Further,

ay=1+0ed? (i=1,..,n=1), a,=—¢+ad>.
But, A™! = V + ¢'VDJDV since (V + ¢DJD)(V + ¢'VDIDV) =E + [0 + ¢ +
+ arf'(”z_:ld,-2 — &d})] DJDV = E according to (2,5) and (14). Thus,
i=1
ay=1+dd? (i=1,..,n-1), a,=—¢+dd.
Hence
aey =1+ (@ +0)di +o0di =1+0,=(1+¢) (i=1..,n-1),
Al = 1 — &(0 + 0')d? + oa'dy =1+ 0, = (1 + ¢,)*.
The proof is complete since both matrices 4 are even real.

(3,3). Theorem. Let A = (a;;), i,j = 1,...,n, be a (Hermitian) positive definite
matrix, A~ = (a;;). Then, the following three properties of A are equivalent with
each other:

1° \/(annann -1 =:§:(\/(aiiaii - 1)’

2° 1,...,n—1,

a;; _ oy =
NCENCTERNCINGY
as well as
o

Qin in .
- — N 1 =
\/aii \/ann \/aii \/ann
3° A is diagonally congruent to a matrix of the form
15) E + (a — 1)bb*, b./(a*—1)
b*/(a® - 1), a

where E is the (n — 1)-rowed identity matrix, b is an (n — 1)-rowed unit vector
and a 2 1.

,...n—1;

Remark. The matrix (15) has proper values a + \/(az —1),1,...,1 and its
inverse is
E+(a—1)bb*, —b /(a®-1)

(16) < —b*Ja* -1, a )

Proof. The assertion being trivially fulfilled if n = 1, assume that n > 1. We shall
show that 1° — 2° — 3° — 1°. In the first step 1° — 2°, we shall use another method
(though it is not necessary to prove it in this manner).
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Let 1° be fulfilled and denote by Y = (y;;), i,j = 1, ..., n the matrix with elements

V=

. — <_ b S g % )
ij “i J >
\/‘xn \/a,-j Jaiay; \/"‘ii \/“jj
i,j=1,...,n, whereg;=1fori=1,...,n — 1, ¢ = —1. According to (3,2), the
function #(X) = ¢; \/(x,.,.é,.,-) defined on the open set M, of all n-rowed positive
i=1

definite matrices X = (x;;) with X! = (&;) attains its minimum n — 2 for the
matrix 4. We shall prove 2° by showing that if Y # O then there exists a matrix
C e M, for which &(c) < P(A). To prove this, put

= (E + ¢Y) A(E + ¢Y*)

where ¢ is a sufficiently small positive number. For a moment, we shall use the
following notation:

If ¢,(¢), @,(¢) are functions or matrix functions of ¢, we shall denote by ¢,(¢) ~
~ @,(¢) the fact that ¢,(g) — @,(¢) is O(e?) for & — 0.

Thus,
CrA+eYA+ AY®), Cla At —g(Y*4™! + A71Y).

If C = (c;), C™' = (y;), then
P(C) = .lei \/(cii)’ii) = _Zlai(aii + 2¢ RC.21Yijaj;)‘¥ (or; — 2¢ Re~zlaij’v‘i")% ~
i= i= = f
~ )& \/(aii“ii <1 +eRe), aiiyij> <1 —&ReY Ol.'j)’ji) ~
i=1 : a —==

j=1 4 j=1 Oy

~ B(4) + 8} [ReZ Yijdji \/<&> - Re} ;o J(&ﬂ =
=1 i=1 aii i=1 oy
= &(4) + eRe ¥ [yije.-aji \/(a ) Yot \/(Eg) -
ih,j=1 a;; d.lJ

—w)-c Y o ’

i,j=1

< ®(4).

o

_ ) J

J NN
ai au X A/ %jj

To prove 2° — 3°, let C = (c;;) be the matrix in (2 4) satisfying (5). According
to 2°, C is of the partitioned form

C= (Cl’ c) while C~! = ( Co _c>
C*9 Y _C*’ Y

(C,isan (n — 1)-rowed square matrix, ¢ is a column (n — 1)-rowed vector).
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Consequently,

(17) C} — cc* = E; (E, is identity matrix),
(18) —c*c+y2 =1,
(19) Cic = yc.

From (18) it follows that y > 1. If y = 1, then ¢ = 0, C} = E, so that C, = E,
since C, is positive definite. Thus, 4 satisfies 3°.

Let thus y > 1 so that ¢ # 0. From (17) it follows easily that, since C? =E, + cc*
and Cj is positive definite,

C,=E, + L [ + c*e)f — 1] cc*.
c*c

Consequently, if we puta = 9, b = ¢(y> — 1)~%, we obtain C in the form (16).

The implication 3° — 1° is a very simple consequence of (15), (16) and the fact
that both properties are invariant under diagonal congruency. The proof is complete.

4. Applications. We shall show first that the conditions (7)—(9) involve necessary
and sufficient conditions for the lengths of 2n vectors forming a biorthogonal basis
in a (real or complex) n-dimensional unitary vector space X,. Here, we denote by
(x, y) the scalar product of vectors x and y and by |x| the length (x, x)* of the vector x.
Two bases ay, ...,a, and by, ..., b, are said to form a biorthogonal system?) if
(a;, b;) = 6;; (9, is the Kronecker symbol) for i, j = 1, ..., n or, equivalently, if the
basis aq, ..., a, is an image of an orthonormal basis e, ..., e, by a regular linear
mapping C while the basis by, ..., b, is image of ey, ..., e, by the inverse adjoint
mapping C*~1:

(20) a;=Ce;, b;=C*"e;, i=1,...,n.

It is well known that to any basis a;, ..., a, in X, there exists a (single) basis
by, ..., b, forming with the preceding basis a biorthogonal system.

(4,1). Theorem. Let ay, ..., a,, by, ..., b, be a biorthogonal system in a unitary

n-dimensional vector space X,. Then, the lengths a; = lai[, Bi = |bj ,i,j=1,..,m,
fulfil the inequalities
(21 wupi =1, ' (i=1..n)),
(22) afi — 1= Z(ajﬂj - 1) (i =1,..., n).
i=1
j#i

3) See e. g. [1].
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Conversely, if oy, ..., o, By, ..., B, are 2n non-negative numbers satisfying (21),
(22), then there exists a biorthogonal system ay, ..., a,, by, ..., b, such that [ail = q,
16| = Bpii=1,....,n _

Further, equality is attained in (21) if and only if a; and b; are linearly dependent.
In (22), equality holds if and only if the angles of the vectors aj, a; (j, k =1, ...,
<.wn, j % i+ k) are equal to the corresponding angles between bj, by while the
anles between a; and a, (k = 1, ..., n, k % i) are equal to the corresponding angles
between —b; and b,.

Proof. Let ey, ..., e, be an orthonormal basis in X, and C such a linear mapping
that (20) holds. Then,

a? = (Ce;, Ce;) = (C*Cey, e;) = (Ae;, e;)
where 4 = C*C is a positive definite mapping in X,. Analogously,
Bi = (C* e, C*7le)) = (CT'C* e, ) = (A7 tey e)) -

Thus, (21) and (22) are identical with conditions (8) and (9) for the corresponding
matrix with elements a;; = (4e,, ¢;).

Conversely, if (21) and (22) hold, there exists a positive definite matrix (a;;) (which
may be chosen real) such that relations a;; = o7, a;; = B (i = 1, ..., n) are satisfied
where «;; are diagonal elements of the inverse matrix («;;) to (a;;). Consequently,
there exists a positive definite mapping A fulfilling a;; = (de;, ¢;), a;; = (47 e, e;).
If we choose a mapping C such that C*C = A (and it is possible to choose C positive
definite), then the vectors ay, ..., a,, by, ..., b, from (20) form a biorthogonal system.
Since then

a;; = (Ce;, Ce;) = (a;, ay)
and ‘
o = (C* e, C*7lej) = (b;, b)),

it follows easily from (3,2) that in (21) equality holds if and only if (a;, a;) = 0 for
Jj=1,..,n,j #ile if a; = b; (since (b;, a;) = 0forj =1,...,n,j # i, as well).
According to the equivalence of 1° and 2° in (3,3), equality in (22) is attained if and
only if !

(@wa) _(Bob) (o p oy n kil
[ak| laz| |bk| |b,| : :

while

(ai ay) _ (b b;)
la |a;] |6 |b)]

j=l,...,n,j;éi.v

The proof is complete.
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(4,2). Theorem. If ay,...,a,, by,..., b, is a biorthogonal system in a unitary
space, then the angles ;, 0 < w; < %n, between the corresponding vectors a; and b;
fulfil inequalities

(23) secw,-—l§21(secwj— 1), i=1,..,n.
Iz
Conversely, if wy,...,w, are zero or acute angles satisfying (23) (or the single

inequality (23) for that i for which a; = max ), then there exists a biorthogonal
k=1,..., n

system ay, ..., a,, by, ..., b, such that w; is the angle between a; and b;, j = 1, ..., n.
Proof. Follows immediately from the preceding theorem since

_ (ai’ bi) _ 1 o

cos w; = = .
]“n‘[ |b,-| |a,-| lbil

In the next application, we shall use the notion of the spherical m-simplex. This
will mean essentially a system of m + 1 linearly independent directions J, ..., 0,44
in a Euclidean (m + 1)-space E, ;. We shall call altitude-angle of the spherical
m-simplex corresponding to the vertex-direction &; the angle (acute or right) @,
between J; and the hyperplane in E, ., which contains all J; for j # i. It is easy to
see that, if ay, ..., a,4, are any non-zero vectors such that a; (i = 1,...,m + 1)
is of direction d; and by, ..., b, ., are vectors forming together with ay, ..., d,41
a biorthogonal system in E,,, , then w; = %—n — ¢, is the angle between a; and b;
(i=1..,m+1).

Conversely, if ay, ..., ap4y, by, ..., b, 4 is a biorthogonal system in E,,,; and o;
is the angle between a; and b; (i = 1,...,m + 1), then ¢; = 37 — w; is the altitude-
angle corresponding to the direction of a; in the spherical m-simplex whose vertex-

directions are the directions of ay, ..., a4 ;.

From this observation and (4,2) the following theorem follows immediately:

(4,3) Theorem. Let ¢y, ..., ¢,,.; be the altitude-angles of a spherical m-simplex.
Then,

m+1
(29) cosec ¢; — 1 g';(cosecq)l‘— D, i=1...m+1.
j#i
Conversely, if ¢y, ..., @11 are acute or right angles satisfying (24) (or the single

inequality (24) with such i that ¢, = min ¢,), then there exists a spherical
k=1,..m+1

m-simplex whose altitude-angles are ¢; (i = 1,...,m + 1).

Remark. It can be proved that, if equality in (24) is attained, the corresponding
m-simplex is orthocentric (i.e., his “altitudes” have a common direction) and satisfies
a further condition.
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Pe3ome

COOTHOIEHUA MEXAY NUATOHAJILHBIMU OJIEMEHTAMMUN
JABYVX B3AMMHO OBPATHBIX ITOJIOXKMUTEJIBHO
ONPEJEJIEHHBIX MATPUIL]

MUPOCJIAB ®UIJIEP (Miroslav Fiedler), Ilpara

Hoxka3piBaeTcs cienyroiuas teopema: Heobxooumbim u docmamoutvim ycaoguem
044 Mo2o, umobsl 2n 0elCMBUMENbHBIX YUCEA A1y - ..y Aups Ci1y -« -» Upy 0OPA308aIU
cucmemvl OUAZOHAALHBIX IAEMEHMO8 NOAONCUMENLHO ONpedeseHHOo mampuybl A =
= (ay) u ouazoHabHbLX 34eMeHMO6 0bpamnoii k Heli mampuybt A~* = (xy), A6aaemca
00HOBpEeMEHHOE 8bINOAHEHUE CAeOVIOWUX HepageHcme 048 i = 1, ..., n:

a; >0, 0;>0,a;0;=1,
n .
\/(aii“ii) -1= ) [\/(a”ocjj) —1].
j=T.j#i
I[anee XapaKTEPU3YXOTCs CIIyYyau paBCHCTBA U Na€TCA T€OMETPUUYECCKOE HCTOJIKOBA~
HUE 3TOM TEOPEMBbI KaK YCJIOBMS, HajaraeéMoro Ha IJIMHBl BEKTOPOB OHOpPTOro-

HaJIbHO! CHUCTEMBI, Ha yrjibl COOTBETCTBYIOILIEX BEKTOPOB 6K0pT0rOHaJ’ILHOf{ CHUCTEC-
MBI WIH Ha BbICOTHI cq)epnqecxoro CUMILJICKCA.
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