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Yexoc/i0Baukuii MaTeMaTHyeckuii xkypuasa, 1. 15 (90) 1965, Ilpara

ON CONVERGENCE SPACES AND THEIR SEQUENTIAL ENVELOPES

Joser NovAk, Praha

(Received November 11, 1963)

In this paper closure topological structures of convergence spaces
(Z-spaces of M. Fréchet) and their Cartesian products are investigated. By
means of continuous functions on L the sequentially regular convergence
spaces and their sequential envelopes 0,(L) are defined. The existence of
o-envelopes is proved and topological and convergence properties of such
spaces are studied. Several convergence spaces are constructed as examples
illustrating some properties of convergence topology.

The notion of convergence on an abstract point set L was axiomatically introduced
by M. FrECHET [3]. By convergence on L we mean a system £ of elements ({x,}, x)
where {x,} is a sequence of points and x a point of L fulfilling axioms (%), (£,)
and (&,). The closure of a set A consists of all points x such that ({x,,}, x)e ¢
where Ux, = A. Two distinct convergences on L can induce the same convergence
topology. This fact leads to a classification within the system of all convergences on
a given set L. In section 2 it is proved [Theorem 1] that in each class of convergences
there is a largest convergence £* which is characterized by axiom (&3). There is
a one-to-one order preserving mapping on the system of all convergence topologies
onto the system of all largest convergences on L[Corollary 1].

In section 3 convergence Cartesian space is defined by means of coordinatewise
convergence (8). A Cartesian convergence is largest if and only if each coordinate
convergence is largest (it is a Cartesian property). The convergence topology on the
Cartesian product X{(L,, £,, 4,) :n =1,2,..., ny} of a finite number n, of spaces
does not depend on the choice of convergences in the classes [£,] of equivalent
convergences. However, the example (p. 84) shows that this need not be true if the
number of spaces is infinite [Theorem 6]. The convergence Euclidean space of
dimension P(I) is defined as convergence Cartesian space X{(L,, &, 1) : « € I} where L,
denotes for each o €I the set of real numbers and £ the usual convergence on it.

In section 4 some properties of sequentially regular spaces are studied and the
location of such spaces in the scheme of classification of convergence spaces is given.
It is proved that the sequential regularity is a Cartesian property provided that
¢, = £, ael. [Theorem 10]. Sequentially regular spaces can actually be treated as
subspaces of convergence Euclidean spaces [Theorem 11].
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A sequentially regular space S is a sequential envelope o,(L) of a convergence
subspace L of S if S is the smallest closed set in S containing L, and the largest
sequentially regular space such that each continuous function fon L has a continuous
extension f on S. In section 5 a criterion for a sequentially regular space S to be
a sequential envelope of a subspace L is given [Theorem 13]. Each sequentially
regular space has sequential envelopes which are homeomorphic to each other
[Theorem 14 and Corollary 5]. A sequentially regular space L,, is constructed such
that Ly, & o(Ly,).

In section 6 it is proved that each system of point sets for which the well known
convergence of sets applies is a sequentially regular space. The study of convergence
topological properties of systems of sets is essentially the same as the study of the
convergence topological structure of the convergence cube vertex space [ Theorem 16].

It should be noticed that the definition of a <0, 1) sequential envelope o (L) of
a completely regular topological convergence space L(which is sequentially regular)
is to a certain extent analogous to the definition of Stone-Cech compactification B(L).
The properties of Stone-Cech compactification [)’(L), however, can substantially
differ from those of the sequential envelope o,(L).

In this paper we call the T, closure space a point set P and a map u on the system
of all subsets of P into itself fulfilling two axioms:

(C,) uA = A for any finite set 4 = P;
(C;) u(Av B) = uAd v uBfor Ac Pand B < P.

It will') be denoted by (P, u) or simply?) by P. The Ty closure space (P, u) is called
the topological T; space if the axiom

(F) u(ud) = uA for A< P
is true.

The map u is called the T; closure topology. If it has the property (F), we speak of T
topology. The set uA is called the u-closure or simply closure of the set A. If A = uA,
the set 4 is closed; it is open if its complement is closed.

From (C,) and (C,) it immediately follows that 4 = B implies A = u4 < uB.

A subset U(x) of a T closure space (P, u) is a u-neighbourhood of a point x
if xe P — u(P — U(x)).

It is easy to prove that x € U(x) and that the intersection of any two u-neigh-
bourhoods of the same point x is its u-neighbourhood as well. From the definition

'y Each T, closure space is a gestufter Raum in the sense of F. HAUSDORFF [5].

2y When no confusion seems possible we shall suppress the symbols of topologies and conver-
gences.
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of a neighbourhood of the point x it follows that x € uA if and only if A N U(x) + 0
for each neighbourhood U(x) of x.

Let u and v be two T; closure topologies on the same point set P. We say that u is
weaker than v (or that v is stronger than u) in symbols u < v, if uA = vA for each
A < P. The binary relation < partially orders the system of all T} closure topologies
on the set P. The discrete topology is the weakest element in it.

Now, we mention the definition of a continuous map ¢ on a T closure space (P, u)
into a T, closure space (Q, v). The map ¢ is continuous [5] on P if

(1) o(ud) = v @(4) foreach A< P.
It is easy to prove that ¢ is continuous on P if and only if

(2) for each point a € P and every v-neighbourhood V(¢(a)) of the point ¢(a) € Q,
there is a u-neighbourhood U(a) = P such that ¢(U(a)) = V(¢(a)).

A continuous map ¢ on a T closure space P onto a T, closure space Q is a homeo-
morphism if it is one-to-one and ¢ ™! is also continuous.

2

Let L be a point set. Denote by N the set of all naturals. A map ¢ on N into L
such that ¢(n) = x, is called a (simple) sequence and denoted by {x,},>, or simply
{x,}. A map y on N x N into L such that y(m, n) = x,,, will be called a double
sequence and denoted by {x,,} - or simply {x,,}; a (simple) sequence {x,,, }m-,
(in this case {n,,} need not be increasing) is called a cross-sequence of {x,,,}. A cross-
subsequence is a subsequence of a cross-sequence.

Let Lbe a point set. Let £ be a set of pairs ({x,}, x) where {x,} is a sequence of
points x, € L and x a point of L. We say that ¢ is a convergence on L if the following
axioms are true [3]:

(%) If ({x,}, x) € L and ({x,}, y) € £, then x = y.

(#,) If x, = x for each natural n, then ({x,}, x) € &

(#,) If ({x,}, x) e Land {x,,} is a subsequence of {x,} ,then ({x,}, x) € &

The set L with a convergence £ on it is called the #-space (Fréchet) and designated
by (L, ).

Instead of ({x,}, x) € £ we shall?) write £ — lim x,, = x and say that the sequence
L-converges to the limit x. A sequence of points is totally £-divergent if there is no
L-convergent subsequence of points in it. .

By means of the convergence £ on an #-space (L, £) the closure of a set is defined
as follows [5]:

The closure 14 of a set A <= L is the set of all points x € Lsuch that x = £ — lim x,,
all x, being points of A.
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It is easy to see that A is a T, closure topology. The Ty closure space (L, 1) will be
called the convergence space and denoted by (L, £, 4); 2 will be called the convergence
topology. '

From the definition of neighbourhoods in T closure spaces it follows that a set
U(x) is a A-neighbourhood of a point x in a convergence space (L, £, 1) if

3) ¢ — lim x,, = x implies x, € U(x) for nearly all n.

Now we shall construct several convergence spaces which will be used as examples
illustrating some convergence and closure topological properties.

Let A4 be the set of points x,, and B the set of points x,, and x,, m and n being
naturals. Let {m,} and {n;} denote subsequences of the sequence of all naturals.

The convergence space (Ly, &, 4,): L; = Band £, contains elements of two kinds,
viz. all ({y,}, x) such that y, = x for nearlyall n, where x € L, and all ({y,}, x,) such
that there does not exist a constant subsequence {x} of {y,} for any x = x.

The convergence space (L,, £,, 4,): L, = B and &£, consists of elements of two
kinds: of ({x}, x) for x € L, and of ({x,,,}, x,) for each {m }.

The convergence space (Lj, $5,43): Ly = AU B and £, is the set of elements
({x}, x) for each x € L,, of ({x,,,}, xo) and of elements ({x,,,.}:2, x,,) for each {m,}
and {n;} and for each m = 1,2, ...

The convergence space (L,, &4, 4,): Ly = A U (x,) and ¥, is the convergence of
elements ({x}, x) where x € L,, and of ({x,,,}, xo) for each {n;} and for each m =

=1,2,....

The convergence space (Ls, &5, 5): Ls is the set of all real numbers and £ is the
ordinary convergence on it, i.e. ({x,}, x) € ¢5 whenever |x, — x| - 0.

The convergence space (Lg, £, 4¢): L is the set of all real numbers and €, consists

of all elements ({x,}, x) with the property: } |x, — x| < c.
n=1

Lemma 1. Let (L, £, 1) and (L, M, p) be convergence spaces. Then the two following
- statements are equivalent:

(a) 4 < n
(b) If ({x,}, x) € £ then ({x,}, x) €M for a suitable subsequence {x,} of {x,}.

Proof. If A < p and ¢ — limx, = x, then xeAUx, = uUx,; consequently
there is a subsequence {x,,} of {x,} such that M — lim x,, = x. On the other hand
if x € 44, then from (b) it instantly follows that x e u4 ie. A < p.

If § = M, then the condition (b) of Lemma 1 is obviously fulfilled so that 2 < p.
If however A < u, we cannot conclude that £ = IM. As a matter of fact, we have
Ay = Ay, ie. Ay < A,, but the convergence £, is not contained in the convergence £,.
In order to find the necessary and sufficient conditions let us notice that the
inclusion = partially orders the system £ of all convergences defined on the same
point set L. Let us define the equivalence relation ~ in the system £:
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If e and Me 2, then &L ~Mif A = p.

In such a way every class [ €] is a partially ordered class containing all convergences
on L which induce the same convergence topology 1 in L.

Theorem 1. In every class [2] of convergences on L there is a largest element

e [¢]
Proof. Denote £° = U M and prove®) that £ = * If ({x,},x)e 2 and

Ne[ €]
({x4}, y). € ¥ then ({x,}, x) e N’ and ({x,}, y) e N” where N’ and N" are suitable
convergences in the class [ £]. Denote by 4, v’ and v" the respective topologies. Then
A=V =" and yev' Ux,(= v Ux,) so that ({x,}, y) e R for a suitable subse-
quence {x,,} of {x,}. By (¢,) and (%,) we have x = y. Therefore the axiom (Z,) is
fulfilled in £°. Evidently £° also satisfies the axioms (%) and (&,).

It remains to prove that A° = A. First notice that £ = £° so that 1 < 1°. Now
suppose that x € 2°4; then there is a sequence {x,}, x, € 4, such that ({x,}, x) e N”
for a suitable N” e [¢]. Therefore x e v Ux,(<= v"A = A4), v being a topology
induced by N”; hence A° < A. Therefore £° = £*.

F. HAUSDORFF [5] has defined the maximal #-space the convergence of which
cannot be extended without having changed its closure topology. He proved that the
maximal #-space satisfies the following axiom [1]:

(#5) If each subsequence {x,} of a sequence {x,} contains a subsequence {x,,ik}
converging to a point x, then the whole sequence {x,} converges to x.

It is clear that the maximal #-space (L, ) is defined by the largest convergence in our

sense,ie. L= U N.
Ne[&]
Now we shall prove that each convergence satisfying condition (3’3) is the largest

one. This assertion is contained in the following

Theorem 2. Let (L, &, ) be a convergence space. Then the conditions 1), i), III)
are equivalent:

I) & is a largest convergence on L.
1) £ fulfills axiom (&5).
III) £ — lim x, = x if the following property is fulfilled: each A-neighbourhood

of x contains nearly all x,,.

Proof. I) = II) by Hausdorff. Prove II) = III). Suppose III) is not true; let x be
a point and {x,} a sequence of points of L fulfilling the property mentioned in III)
however not £-converging to x. Then by (%,), there is a subsequence {x,,} of {x,}

3) The convergences will be denoted by the German capitals &, M, N, P, , &, G, ... and the
respective convergence topologies usually by the Greek letters 4, 4, », 7,7, ¢, 7, .... The largest
convergence and the respective topology will be usually denoted by the asterisk.
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which is totally £-divergent or which £-converges to y + x and such that x + x,,l: .
for each i. Then from (3) it follows that L — (Jx,, is a A-neighbourhood of x not

containing nearly all x,. It remains to prove that III) = I). Suppose III) is true.
Denote by Z the set of all elements ({x,}, x) having the property mentioned in III).
If %te[£] and ({x,}, x) € N then, in view of (3), ({x,}, x) €T so that U N = I.
Ne[ 2]
On the other hand, from our supposition it foliows that T = £ Hence £ = Y N.
Ne[ £]

and £ = £* by Theorem 1.

Let us notice that neither the convergence £, nor ¢ is the largest one. On the other
hand, &, and £ are largest convergences and €5 = €,, € = ¢ so that 4, = 1,
and A¢ = 4s.

Corollary 1. Let (L, £, 2) and (L, 9, ) be convergence spaces. Then A < p if
and only if £* < M*.

Proof. If 2 < u and ({x,}, x) € &*, then xe AUx,, = pUx,, for each subse-
quence {x,} of {x,}. Therefore outside of each g-neighbourhood of x there is at most
a finite number of x,. Hence ({x,}, x) € M*, by Theorem 2. The converse part of the
proof follows immediately from Lemma 1.

From Corollary 1 it can be deduced that there is a one-to-one order preserving
correspondence between the system of all largest convergences (this system is partially
ordered relative to the ordering <) and the system of all convergence topologies on the
same point set L. As a matter of fact, if &* & IMN*, then ¥ — M* & @ or M* — L* +
#+ 0. Consequently, by Corollary 1, either 2 < u or u < A is false so that A % p.
From the same Corollary it follows that this one-to-one correspondence preserves
the order.

Let (P, u) be a closure space. Let  be the set of all elements ({x,,}, x) such that
each u-neighbourhood of x contains nearly all x,. Then € evidently fulfills [4]
axioms (£,) and (&,). It is easy to see that (&5) is also fulfilled. Therefore in the
case when the axiom (%) is also valid — for example if any two distinct points can
be separated by u-neighbourhoods — ¥ is the largest convergence and we get a con-
vergence space (P, Z, t) such that T < u; clearly © = u whenever x € u4 implies
that ({x,}, x) € T for a suitable sequence of points x, € 4. In such a case the closure
topology u is a convergence topology and (P, u) is a convergence space.

Let (L, &, 2) and (M, M, ) be convergence spaces. Let L= M. Then (L, £, 4) is
a subspace of (M, M, u) whenever A4 = L pA for each A = L. If a convergence
space (M, awm, u) is given and if P is a subset of M, then it is possible to define a con-
vergence P on P in different ways to get a subspace (P, ¥, n) of (M, M, p); for
example to define P as a subsystem IM, = IM consisting of all elements
({x4}> x) e M such that x, € P and x € P. It is clear that Mp is largest if M is the largest
one.
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Lemma 2. Let (L, &, 1) and (M, M, p) be convergence spaces. Let L= M. Then
’ (L, &, %) is a subspace of (M, M, ) if and only if the following conditions 1° and 2°
are satisfied:

1° If ({x,}, x) € &, then ({x, }, x) € M for a suitable subsequence {x,} of {x.}-

2° If ({y'l}7 y)e"IVE, yGL, yneL’ then ({ynk}’ y)E 2’ {ynk} being a suitable
subsequence of {V,}-

Proof. Let (L, ¥, A) be a subspace of (M, M, p). Let ({x,}, x) € &. Thenx € A Ux, =
= L pUx, so that 1% is true. If ({y,}, ) eM, ye L, y,e L, then ye Ln g Uy, so
that 2° is also true.

Now, let 1° and 2° be satisfied and let 4 be a subset of L. From 1° it follows that
x € 1A implies x € uA so that A4 = L pA. On the other hand, if ye Ln uA,
then y € 14, by 2°. Hence 14 = L uA.

F. Hausdorff [5] defined the continuity of a map y = ¢(x) on an #-space E onto
an Z-space H by means of the following property

4) limx, = x implies lim ¢(x,) = ¢(x) foreach xeE

and proved that (4) implies (1). The following example, however, shows that (4)
need not be implied by (1):

Let ¢(x) = x be the identical map of (Ls, &, As) onto (Ls, %, 4¢)- Then
€5 — lim (1/n) = 0 whereas {¢(1/n)};-, does not Le-converge in (L, %, 4¢) at all.

For this reason the following definition*) seems to be useful:

A map y = ¢(x) of a convergence space (L, £, 2) into a convergence space
(M, M, p) is sequentially continuous if

(5) £ —limx, = x implies M — lim ¢(x,,) = ¢(x) for a suitable subsequence {x, }
of {x,}.

From this definition it follows that the properties (1), (2) and (5) in convergence
spaces are equivalent. (1) implies (5): if ({x,}, x) € € then ¢(x) € po(Ux,), by (1),
so that there is an element ({¢(x,,)}, ¢(x)) € M. Now, suppose (5) is true. Then
A < Land x € A4 implies that there are elements ({x,}, x) € Land ({¢(x,,)}, ¢(x)) e M,
where Ux, = A sothat ¢(x) € 1 Uo(x,,) = up(A). i.e. (24) = ugp(A4). Consequently
(1) is true.

It is easy to be proved [6] that (5) can be replaced by (4) whenever M is the largest
convergence in [IM].

In this paper all three equivalent definitions of continuity of a map in convergence
spaces will be used.

According to E. CEcH [2], toany T, closure topology v there corresponds a modified
topology u(v). The topological modification u(v) of v is characterized as the weakest T,

4) See [6] p. 85 the footnote under the line.
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topology among all topologies which are stronger than the given T, closure topology v.

Now, we shall investigate the structure of the topological modification u(2) of

a convergence topology A. First define [5], for each ordinal &, the correspondence A°

on the system of all subsets 4 of a convergence space (L, £, 1) into itself as follows:

A=A 1A=04, A =22""14) if £ -1 exists and 1A =U VA4 if &€— 1
<¢

does not exist. Using the method of transfinite induction we easilny prove that the

map 2° fulfills both axioms (C,) and (C,); consequently 1% is a T closure topology.
Clearly

(6) WAcHMAc...clAc...

for each A < L. Therefore n < ¢ implies that A" is weaker than A°.

The T, closure topology A° need not be a convergence topology. As a matter of fact,
the T, closure topology A3 on L, fails to be a convergence topology because
X € 42 UUx,,,, but there is no sequence of points in UUx,, such that each 1%-neigh-
bourhood of x, would contain nearly all of them.

Theorem 3. Let (L, £, 1) be a convergence space. Then A*, o 2 2, is a convergence
topology on L if and only if A fulfills the axiom (F)

Proof. Let A%, & = 2, be a convergence topology on L. Let A < L; it suffices to
prove that A24 < AA4. Let x, € A>A. Because A* is a convergence topology and
X, € A°A there is a sequence {x,,} of points x, € A converging to x,. Consequently

J*B = xq U B, where B = | x,, by (¥,) and (&,). Since 1 < A%, we have B
n=1

< AB < xy, U B. Hence x, € AB; otherwise B = AB so that B = A*B which is not
possible. Therefore x, € 1A4.

The converse assertion follows immediately from the fact that 14 = 124 = A*4
for each A « Lwhenever the convergence topology A fulfills (F)

Now, we shall show that 1°* iss) the topological modification of A.

Theorem 4. Let (L, £, /l) be a convergence space. Then A°' is the weakest T,
topology of all T, topologies which are stronger than A.

Proof. From (6) and with regard to the property of the set of all countable
ordinals it follows that if ({x,}, x) € &, Ux, = A”'4, then x € 1°'4 so that 2A°'4 =
= 2°14. Consequently A°'1°'A = 1°'A. Thus (L, A**) is a topological space®).

If v is a topology on Lsuch that A < vthen 4 = Land 1"4 < vA implies 1"*'4 <
< v*A(= vA) for each ordinal n. From this it easily follows that A°4 < vA for each
ordinal &. Therefore 1°'A < v4 and so A”' < v.

3) ), is the first uncountable ordinal.

%) From this it follows that each T, closure topology 28, &= wy, is identical with the T
topology A®1, 2 being a convergence topology. Consequently there is no sense in constructing T,
closure topologies 2% for & > w,.
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1t is worth noting that, by Theorem 3, A & A2 if and only if the topological modi-
fication A°! of A fails to be a convergence topology.

Let (L, g, /1) be a convergence space, x a point in L and A4 a subset in L such that
X € 1°'A. Then there is the least ordinal 9 with the property x € °4. Evidently 9 is
an isolated ordinal. It will be denoted by (x, A) or simply by 3 and called the order
of the point x relative to the set A in the space L. Now, denote by 9(x) the least
ordinal such that 9(x) = 9(x, A) for each A = L such that x € 2°'4 and call %(x)
the order of the point x in the convergence space L.

Lemma 3. Let (L, L, /1) be a convergence space. Then the order of a point x
relative to a set A = Lsuch that x € A°'A is a topological property.

Proof. Let h be a homeomorphism mapping the convergence space (L, £, 1)
onto a convergence space (M, I, u). Suppose h(A'4) = p"h(A) for all ordinals
n < & It follows that h(A°A) = uu®~' h(A) for isolated & 0 and h( U 174) =
= U u" h(A) for non-isolated &. In both cases n<¢

n<¢

(7) h(354) = 4 h(A).

Hence 9(x, A) = 9(h(x), h(A)) whenever x € A*'A.
Let (L, £, ) be a convergence space. Let us define a set 4 = Lto be A*-dense in
a set B « Lwhenever A°4 = B. Then we have

Corollary 2. Let (L, £, /1) be a convergence space. Then )*-density is a topological
property for each ordinal &.

Proof follows instantly from (7).

Let (L, £, ) be a convergence space. It can happen that A°' = A° for a countable
ordinal ¢ For example 19" = 1, or 25' = A%. If there is a subset A = L such that
1A % 1°A for each ¢ < w,, then the power of A°'4 and consequently also of L
must be uncountable. Now we are going to construct a countable convergence space
(L4, &, A7) such that 25" % 25 for each ¢ < ;.

The convergence space L, consists of all rational numbers. We define the conver-
gence &, as follows:

Well-order the irrationals and define P to be a one-to-one sequence of rationals
converging (in the usual sense) to the &-th irrational, £ < w,. For each ¢ < w, and
n £ ¢ let Py, be subsets of P, such that

(1) Pyy = Pyy = ... € Py ... © Py

(2) Pg, and Py, — P, are infinite sets for each n < &;

(3) P; = Pand Py, = {U Py, for non-isolated ordinal 7.
<n

Let & < w,. Define P, _; = (. Using the method of transfinite induction we shall
define sequences S5 of points in P, as follows: Suppose that, for each ordinal 4 < «,
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where o < &, we have just assigned to each point xe€ P, ; — P;, a one-to-one
sequence S; of points of Pg, such that

(+) yePs,+y — Py and x # yimplies that S and S; have no points in common.

If « is an isolated ordinal, then assign to each point x € P,,,; — P;, a one-to-one
sequence S5 of points of Py, — Pg_y with the property (+), for n = o.- If o is
a limiting ordinal, then choose a sequence of isolated ordinals o; < &, < ... such
that lim«, = o and assign to each point x € P,,,; — P, a one-to-one sequence
S¢ = {x,} such that x, € P,, — P, _, and such that (+) holds for y = a.

In such a way to each point x € P, — P, there corresponds a sequence S¢ of
points such that

(++) yePg; — Pyand x + yimplies that S¢ and S; have at most a finite number
of points in common.

The convergence ¢, consists of all elements ({x}. x), where x € L,, and of all
elements (S5, x) where x € Py — Py, & < o, Si¥ being a subsequence of S5. The
axioms (£,) and (£,) evidently hold true. Now, if ({x,}, x) € &, ({x,}, y) € & and
if {x,} is a constant sequence, then evidently x = y. If {x,} is not constant, then S5 =
= {x,} = S}} for suitable ordinals ¢ and {. Since f < y < w, implies that Py, N P,,
contains at most a finite number of points, we have ¢ = {. Therefore x = y, by (+ -+—)-

The convergence space (L,, £;, 1,) has the following property: If o < f < w,
then A5Pyo = Py, + Py, = 19'P4,. Consequently 19" # 15 for each & < w,.

Now, we are going to construct a countable convergence space containing a point
of order w,. For this purpose add to the set L, a new element x* and denote Lg =
= Lg U (x*). Define the convergence £5 on Ly : ({x,}, x) € & whenever ({x,}, x) € ¢,
orx =x, =x*forallneN, or x = x* and {x,,} is a one-to-one sequence of points
such that Ux, = Py — Py where ¢ denotes isolated countable ordinals. It is easy
to show that (L, %, 1g) is a convergence space such that x* € A3* 1P,y — A5Py,
i.e. 9(x*, Pso) = & + 1 for each isolated ordinal ¢ < w,. Consequently 9(x*) = w;.

3

Let I be a non-void set of indexes and (L,, X,, 4,), « € I, convergence spaces. Let
L= X{L,:ael} be the Cartesian product of the sets L,. The Cartesian T, closure
topology in L is defined by Cartesian neighbourhoods as follows: U(x,) is a Cartesian
neighbourhood of a point (x,) € L if it is a Cartesian product of ,-neighbourhoods
U(x,) < L,, where U(x,) = L, except for at most a finite number of indexes « € I.
Now we shall define a convergence £ in the Cartesian product in the following
manner: '

(®) ({(x:)}, (x4)) € ¢ whenever ({x3}. x,) € &, foreach ael.
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It is easy to see that all three axioms (Z,), (¢;) and (£,) are fulfilled. The conver-
gence ¢ will be called the Cartesian convergence; it induces a Cartesian convergence
topology 1. The space (L, £, 1) will be called convergence Cartesian space or conver-
gence Cartesian product and denoted by X{(L,, %, 4,) : « e I}.

From (3) and (8) it follows that the Cartesian convergence topology is weaker
than the Cartesian T; closure topology [7].

Theorem 5. The Cartesian convergence £ in a convergence Cartesian space
(L, &, ) = X{(Ly» & 4,) €1} is largest if and only if each convergence &, is
largest on L,,a€l.

Proof. Let £ = £* and yel. Let {x"};>, be a sequence of points x" € L, and x
a point of L,. Choose a point (x,) € L such that x, = x and suppose that each
subsequence of {x"} contains a subsequence -converging to x. Then the same
property holds for the sequence of points (x}) € L and the point(x,) € L where x; = x,
for « % y and x} = x". Consequently ¢ — lim (x}) = (x,) by (;). Now from (8)
it follows that £, — lim x} = x,, i.e. ¢, — lim x" = x. Hence ¢, = ¢, by Theorem 2.

Now let £, = £ for cach a e l. Let {(x})},2, be any sequence of points (x}) € L
and (x,) a point of L such thatin each subsequence there is a sequence -converging
to (x,). In view of (8) the same property holds for the sequence {x}},2 and the point
x, € L, for each ael. Then £, = £ implies that ¢, — lim x} = x,, a eI, so that
¢ — lim (x}) = (x,), by (8). Consequently, according to Theorem 2, we have € = £*.

Remark. In each convergence space (L, £, 1) both convergences £ and ¢* induce
the same topology 4, so that A = A*. If (L, &, 1) = X{(L,, &, 4,) 1o = 1,2, ..., k}
and (L, ¥, ') = X{(L,, £;, A,) :« = 1,2, ..., k}, k being a natural, then 1 = 1’ = A*
as well. As a matter of fact, let A = Land (z,) e 24; then £ — lim (z}) = (z,) for
a suitable sequence of points (z;) € 4 and £, — lim z} = z, foreach & = 1,2, ..., k.
Since £, = £, we have & — lim 2 = z* for each o = 1,2, ..., k; consequently
(z,) € XA and so AA = A'A. On the other hand, if (t,) € ’4 then £ — lim ) = 1,
for each o = 1,2,...,k, where {(f;)},>, is a suitable sequence of points of A.
From (£,), (£,) and because o < k, it follows that there is a subsequence {(;)}:2
which £-converges to the point (t,). Consequently (2,) € A4 and we have 24 o 1'A.
Therefore 1 = A’ = A*.

If (L, &, 2) = X{(L,, £, %,): «€l} and (L, ¥, X') = X{(L,, &, 2,): « €I}, where I
is infinite, then it might happen that 4 # '. This is shown by the following example”):

Let I = N. Let each L,, « € N, consist of numbers 0 and 1/n, where ne N. Let &,
be the set of elements ({y,}, y) such that ye L, and y, = y foreachne Nory =0
and {y,} is a subsequence of {1/n},,. In such a way we get convergences £, and £;
on L, Let (L, & 1) = X{(L,, &, 4,): « € N} and (L, ¥, }') = X{(L,, &, 4,): « € N}.

7) Another example was given by V. KouTnik: Let each Ly, « € N, consist of two numbers 0

and 1. Let ({y,,}, ») € £, whenever y € L, and y, = y for each n€ N. Then (0) € /B — .B
where B is the set of all (z%) € L such that z7 = 1 for n = « and z;; == 0 for n Fa.
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Denote A the set of points (z}) € L where z} = 1/n, ae N, neN; let (0) be the
point (z,) € L where z, = 0 for each « e N. It is clear that (0)e 2’4 — AA.

It is worth noting that in this example ¢ ¢ ¢* < ¥ = ¥* and that £ & ¥* + ¥
Hence 4 < A’ & . From this it follows that the convergence topology in the Cartesian
product can depend on whether or not the convergences £, on the spaces L, are
largest or not.

Let (L, £, 1) be a convergence space. Let us classify all elements of the largest
convergence £* (with regard to £) into three classes as follows:

Each element ({x,},2,,x) of &* — & such that ({x,};2,.,x)e ¢ for a suitable
natural n, will be called the element of the first kind. Each element of £* — £ which
is not of the first kind will be called the element of the second kind and each element
of £ the element of the third kind.

Let ({x,}, x) be an element of the first kind. Let m, be the smallest natural such
that ({x,},% 0, X) € £. Evidently m, > 1. We call ({x,}, x) the element of the first
kind in the strict sense if each subsequence {x,,} of {x,} such that n;, < m,, is of the
first kind.

Notice that €5 — £, contains elements of the first kind in the strict sense whereas
£ — £ contains only elements of the second kind.

Theorem 6. Let
(L, &, 2) = X{(L,, &, 4,) :a€el} and (L, ¥, ') = X{(L,, ¥, A,) a1}

be convergence Cartesian spaces. If there is at most a countable number
of a eI such that &, + ¥ and at most a finite number of a € I such that £ contains
elements of the first kind, then A = J'. If there is an infinite number of o € I such
that ¥ contains elements of the first kind in the strict sense or if there is a subset
I, = I of power = 2% such that £, + £ for each a €1, then A + A'.

Proof. Denote by I, a subset of I containing all a for which £, + £* and by I,
a subset of I consisting of all « such that £¥ contains elements of the first kind. Evi-
dently I, = I,. If I, is finite, then the proof of the first assertion follows instantly
from what has just been proved above in the Remark. Consequently we can put
I, = N.

Let A = Land let (x,) be a point of A'A4; then there is a sequence {(*x})},~, of
points in A which £'-converges to (x,).

In order to prove that (x,) € A4 let us suppose (mathematical mductlon) that for

each natural i < k, where k > 1 is a natural, we have just chosen subsequences
{(*F'x)ey of {(xh)} such that

(+++) ({"x x)

For i =k —1 we have the subsequence {(*x;)}=., of {(*"'xp)}=, Wthh
¢'- converges to the point (x,). Consequently, by (8), ¥i — lim *x} = x,.In view of (Z;),
n
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there is a subsequence {(**'x})}=; of {(*x2)}:>, such that £, — hm Fragn _ X, 50
that (+ + +) also holds for i = k.

Insuch a way we get a sequence {("*'x;)},%, such that {("*'x})};%  isa subsequence
ofthe sequence {(** 1)}, consequently {**'+{}7 s asubsequenc of (i1
k = 1,2, .... Denote by I, the set of all indexes « € I such that ({"*'xz}= .) is the
element of the first kind. Then Iy < I is finite so that there is a natyral mg such
that ke I implies ({" " 'x}3% 5 ;) € &. Sincefora € I — Ipnoelement ({"*1xx} = | « )
of £ is of the first kind, we have ({("*'x})}sZm, (%,)) € & Therefore (x,)e 4.
Consequently 1’4 = 14.

Now, suppose that there is an infinite countable set I, < I such thateach £, ael,,
contains an element ({x}}; ;, x,) of the first kind in the strict sense. Denote I, =
Since £, + £ for each « € N, there s a point y, € L,, ¥, + x,, o € N. Choose a point
(t,) e L such that 1, = x, for e N. Let (f;) be points of L such that for
oael — N :t; =t, for each natural n whereas, for « € N : f; = y, whenever n < «

and 7} = x; “if n > a. It is easy to show that (1,)e A" U (#;) — 2 U (&)
n=1 n=1

Now, let I; be the set of all indexes « €I such that £, + £5. Suppose that P(I,) =
= 2% Then there is a one-to-one map ¢ on the system of all subsequences {n;}
of the sequence of all naturals onto I; = I,. For each a el choose an element
(X3, x,) € & — £, and define the element ({y3};>,, x,) as follows: Let aelj.
If o({n;}) = athenputy, = x}if n = n,and y, = x,if n + n,foreachi. Ifael — I},
then choose x, € L, and put y = x,, for each natural n. From axiom (&) it
easily follows that ({yi}:,, x,) € & for each a 1.

Denote B = U (yf;). Since ({yi} 1. x,) € £, a €I, the point (x,) belongs to A'B.

On the other hand let {(¥5')};2 be a subsequence of {(ya)} . Denote ¢({n;}) =
Since ({x}}: 1, x;) does not belong to £, and because xj = yj, it follows that {y} }
does not £z-converge to x,. Therefore (x,) € A'B — AB.

In [13] I called a g-point any point x of a convergence space (L, ¢, 4) having the
following property: there is a one-to-one double sequence of points x;' € Lsuch that
€ — lim xI' = x for each natural m, but there is no cross-subsequence £-converging

to x. For example the point x, is a g-point in the space (L, &4, 44). It is easy to see
that both convergence spaces (L,, £, 4,) and (L, &, 4,) are topological spaces
although their convergence Cartesian product L, x L, fails to be a topological
spaces). As a matter of fact, if we denote by A the convergence topology in L, X L,,

then (x,, x,) € AA4 — 14 where 4 = U U (X, X,,). The following problem arises:

m=1n=1

Does the assumption that X{(L,, £,, 4,) : « = 1, 2} is not whereas (L,, &, 4,), & =
= 1, 2, are topological spaces imply the existence of a g-point in L, or in L,?

8) Cf. the example in [7] p. 22.
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The convergence Cartesian product (E, €, ¢) = X{(L,, &, 45): L, = Ly, a e}
will be called the convergence Euclidean space of the dimension P(I), P denoting the
power of I. Since &5 = £ from Theorem 5 it follows that ¢ = G*. If I is the set of
real numbers (i.e. I = Ls), then the elements of E are real valued functions of the
real argument x € I and the convergence € is the convergence of functions at each
point x € [. If we denote by D the set of all continuous functions on (Ls, 5, 15),
then &“'D is the set of all Baire functions. Consequently the convergence Cartesian
space (E, €, ¢) of dimension = 2% does not fulfill the axiom of closed closure (F),

w1

i.e. g F &L

Let (E, €, &) be a convergence Euclidean space. Let C be the set of all points
(x,) € E such that x, € <0, 1) and C, the set of all points (x,) € E such that x, = 0
or =1,ael. Put§ = €. and €, = E, (see p. 79). Then (C, €, y) and (Co, €y, o)
are subspaces of (E, €, ¢). We call (C, €, y) the convergence cube space and
(Co, €y, 7o) the convergence cube vertex space.

The relation between the convergence topology y, of the convergence cube vertex
space (Co, €y, 7o) of the dimension P(I) and the usual Cartesian topology u on C,
is described in the following:

Statement. u = y, if and only if P(I) < N,.

Proof. It is well known [6] that in the case when P(I) = N, the spaces (Co, 7o),
(Cy, u) and the Cantor discontinuum are homeomorphic.

Now, let P(I) > N,. Let 4 be the set of all points (z,) of C, such that z, = 1 for
at most countable number of a. Denote by I(z,), where (z,) € 4, the set of all o €[
such that z, = 1. If (z;)e 4, n = 1,2, ..., and €, — lim (z}) = (y,), then z; =0

for each a e I — JI(z}) and each n. Consequently (y,) € A so that A = y,A. Since
n=1

P(I) > No. the point (t,) of Cy, where?, = 1 for a €, is not contained in 4. On the
other hand, each u-neighbourhood of (t,) contains points of A4 so that

(ta) eud — ‘YOA' )

We have just proved that 4 = y,4 = y5'A + uA. From this and since ¢ * &
it can be deduced that in convergence Euclidean space E of the dimension =2%°
we have ¢ &+ £“' = u =+ ¢, u being the usual Cartesian topology on E.

4

A convergence space is said to be separated if any two distinct points of it can be
separated by two disjoint neighbourhoods. A convergence space (L, £, 4) is regular
if for each point x € L and each A-neighbourhood U(x) of x there is a A-neighbourhood
V(x) of x suchthat A ¥(x) < U(x). It is not difficult to construct topological conver-
gence spaces which are not separated and those which are separated but not regular.
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The usual definition of completely regular space is not suitable for spaces in which
axiom (F) is not fulfilled. This is shown by the following consideration: Let (P, v)
be a T; closure space not fulfilling axiom (F). Then there is a set A = P and a point
xo € wA — vA. If fis any real valued function continuous on P such that f(x) = 0
for each x € v4, thenalso f(x,) = 0 because every v-neighbourhood of x, contains
points of vA. In particular, if fis a continuous function on a convergence space
(L, &, 2) such that f(x) = 0 for each x € B, B < L, then f(x) = 0 for each x € A**B.

Instead of complete regularity we are going to introduce the notions of sequential
and o sequential regularity in convergence spaces as follows:

Let (L, &, 2) be a convergence space. Denote by o a property such that it can be
decided whether or not any real valued continuous function fon L has the property «
or not.

A convergence space (L, £, 1) is called a sequentially regular [« sequentially regular |
space if for each point x, € L and each sequence of points x, € L no subsequence of
which Y-converges to x,, there is a real valued continuous function f on L[having
the property o] such that the sequence {f(x,)} does not converge to f(x,).

If £* is a largest convergence, then the definition of sequential regularity can be
simplified; this is shown in the following

Lemma 4. A convergence space (L, £, /1) is sequentially [oc sequentially] regular
if and only if for each point x,€ L and each sequence of points x, € L not
L*-converging to x, there is a real valued continuous function f on L [having
the property o] such that {f(x,)} does not converge to f(x,).

As a matter of fact, if (L, ¥, 4) is sequentially [« sequentially ] regular, ¥* the largest
convergence in [£], xo e Land {x,} a sequence not £*-converging to x, then, by
Theorem 2, there is a subsequence {'x,,i} no subsequence of which £-converges to x,
so that, by the definition above there is a continuous function f on L [having the
property o] such that {f(x,,)} and consequently {f(x,)} does not converge to f(x,).
The proof of the converse is evident.

In the sequel we shall consider two special properties o' : 0 < f(x) < 1 for each
x € Land: f(x) = 0 or =1 for each xe L. In this case instead of &’ we shall sometimes”)
write <0, 1> and {0, 1}. From the definition it immediately follows that each o
sequentially regular space is sequentially regular as well. Notice that the convergence
space (Ls, &5, 45) is {0, 1} sequentially regular.

Now, we are going to determine the location of sequentially regular and {0, 1}
sequentially regular spaces in the classification of the convergence spaces. First of all
we shall prove the following

Theorem 7. Each sequentially regular space is separated; its topological modific-
ation is also separated. :

%) In [9] <0, 1) sequential regularity is called ,,halbe Regularitit*. See also [10].
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Proof. Let a and b be two distinct points of a sequentially regular space (L, £, 1).
In view of (&,) the constant sequence {b} does not L-converge to the point a.
Consequently there is a continuous function f on L such that f(a) # f(b). Hence
{xeL:|f(x) — f(a)] < 6} and {xeL:|f(x) — f(b)] < 8}, where & = 3f(a) —
. = f(b)], are two disjoint A-neighbourhoods of the points a and b. Moreover, both
neighbourhoods are A-open in L so that they are also A“'-neighbourhoods of the
points a and b in the topological space (L, A°").

Theorem 8. Let (L, £, 1) be a sequentially regular space fulfilling the first axiom
of countability. Then it is regular.

Proof. Suppose, on the contrary, that there is a point x, € L and a A-neighbourhood
U(xo) such that the A-closure of each A-neighbourhood of x, has points common
with L — U(x,). Denote by V, the elements of a countable strictly monotone complete
system of A-neighbourhoods of the point x, and choose points x, € AV, — U(x,).
Then, by Theorem 2, the sequence {x,} does not {*-converge to x,. Since each
J-neighbourhood of x, contains points of V,, itis easy to deduce that lim f(x,) = f(X,)
for each continuous function fon L. By Lemma 4 this is a contradiction.

Let us notice that the convergence 2%° dimensional Euclidean space E,x, fails
to be regular [15]. Nevertheless E,x, is sequentially regular. As a matter of fact,
let fo and f,, n € N, be elements of E,x, such that no subsequence of {f,} converges
to fo. Then there is a real number a such that {f,(a)} does not converge to fo(a).
The function ¢ such that ¢(f) = f(a) for each fe E,x, is sequentially continuous
on E,x, and such that the sequence {¢(f,)} does not converge to ¢(f,)-

In [8] I constructed a regular convergence space Q such that each sequentially
continuous function f on Q is constant. Therefore every regular convergence space
need not be sequentially regular. In [11] it is proved that a sequentially regular space
need not be {0, 1} sequentially regular.

Denoting by %, S, R, sR, {0, 1} sR the general, separated, regular, sequentially
regular, {0, 1} sequentially regular convergence space and by — the direction of the
specialization then we get the scheme of the classification of convergence spaces as
follows: ‘

7 R
L =S R {0,1) R

Remark. We have shown that the sequentially regular space E,x, is neither regular
nor topological space. Under the supposition that 2% = N, I constructed the
topological {0, 1} sequentially regular space Ly which is not regular.

Let {x,,,} be a one-to-one double sequence of points. Denote by U the system of
all cross-sequences {x,,,. }w_, of {x,,}. Define a binary relation < in % as follows:
{%ma} < {Xmp..} Whenever n,, < p, for nearly all n. Then the ordering < directs
the system U so that 9 is partially ordered.
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‘

Suppose that 2% = N,. Then from a result of W. SIERPINSKI [14] it follows that
there is a completely ordered subsystem U, = U of elements

Ao <Ay < ... A< ...

¢ < wy, which is cofinal in Y.

Now, let L, be the set of all points x,,,, x, and of points y,, £ < w,. Define a con-
vergence £, on L,: each constant sequence {x} £,-converges to x, x € L,; each sub-
sequence of {x,,}.=, $o-converges to x, for every m = 1,2, ...; each subsequence
of A, £y-converges to y, & < ;.

The convergence space (Lg, %o, /19) is a topological space. As a matter of fact,
each point x,,, is isolated and its order 9(x,,,) = 0 whereas each point z € Ly, z # x,,,
has order 9(z) = 1. Hence A = Lo implies Aglod = }LQA

The space Ly is not regular: The set U(x,) = (x,) U U U X,y 1S @ neighbourhood

m=1n=1

of xo, by (3). Now, let V(x,) be any neighbourhood of x, such that V(x,) = U(x,).
Since £, — lim x,,, = X,, then, by (3), there is a sequence {p,,} of naturals such that

X € V(x0), 1 > pos m = 1,2, .... Since U, is cofinal in U there is a cross-sequence
Ay, > {Xpp,}; hence y, € Ao V(x0) — U(xq).

The space L, is {0, 1} sequentially regular: Let z be a point and {z,} a sequence of
points of Ly not containing z such that no subsequence of {z,} %,-converges to z.
It suffices to prove that there is a closed-open set B = L containing z and not con-

taining any z,. If 9(z) = 0, we put B = (z). If z = y,, then we put B = Ag4, — U z,.
n=1
Now, let z = x,. Since no subsequence of {z,} converges to x,, there are naturals

Pm,m =1,2,...,suchthat Uz, n U U x,, = 0. Denote by ¢ a countable ordinal

m=1n2pm

such that ¢ < ¢ for each point y, of Uz, and such that {x,,,p } < A, Denote A, =

= {Xpy,.}m=1 and put s,, = max {p,, r,}); then the set B = (x,) U U yé U U U x,.

m=1nzsy,
is open by (3) In order to prove that B is closed, suppose {t } isa one to -one sequence
of points in B converging to a point t e Ly. Then either ¢ = x, so that te B, or
t = y,, for a suitable &,. If {; < ¢ then 4, < A, which would contradict the fact
t, € Ag and t, € B for nearly all n. Consequently ¢ < &; and ¢ € B.

Theorem 9. Sequential regularity is a topological and hereditary property.

Proof. Let (L, £, 1) be a sequentially regular space; let h be a homeomorphism
on L onto a convergence space (M, M, p). Let y, and y,, n e N, be points of M such
that no subsequence of {y,} M-converges to y,. Then no subsequence of {h~*(y,)}
f-converges to h™'(y,); since Lis sequentially regular, there is a continuous function f
on Lsuch that {f(h™"(y,))} does not converge to f(h™*(yo)). Then fh~! is a conti-
nuous function on M such that {fh~'(y,)} does not converge to fh™'(y,). Conse-
quently (M, m, u) is a sequentially regular space.
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Now, let (P, P, n) be a convergence subspace of a sequentially regular space
(L, &, ). Let z,, be a point of P and {z,} a sequence of points z, € P no subsequence
of which P-converges to z,. By Lemma 2 no subsequence of {z,} ®-converges to z,;
consequently there is a continuous function f on Lsuchthat {f(z,)} does not converge
to f(zo). Hence (P, 9, ) is a sequentially regular space, the partial function f, being
continuous on P.

Theorem 10. The convergence Cartesian product (L, g, /1) of convergence spaces
(L £, 2,), a1, is sequentially regular if and only if each space L,, o€ 1, is
sequentially regular.

Proof. Suppose that each (L,, ¢, J,) is sequentially regular. By Theorem 5 we
have § = ©* If {(z})}-, is a sequence of points of L not £*-converging to a point
(z2) € L then, by (8), there is an index y € I such that the sequence {z}},>; does not
¥-converge to z, in L,. Since L, is sequentially regular, there exists a continuous
function g on L, such that {g(z})};., does not converge to g(z,). Therefore the
function f such that f((x,)) = g(x,) is sequentially continuous on L and such that
{f((z3))}=-, does not converge to f((z,)).

The proof of the converse follows immediately from Theorem 9.

Theorem 11. The convergence space (L, , A) is sequentially regular if and only
if it is homeomorphic to a subspace of a convergence Euclidean space of the
dimension < 2%F®D),

Proof. The sufficiency of the condition follows instantly from'®) Theorems 9
and 10.

Now, suppose that (L, £, 1) is a sequentially regular space. Denote by §(L) the family
of all continuous functions f,, ael, on L. Let (E, €, &) = X{(L,, &, 4s) : L, =
= Ls, a€l} be the P(I)-dimensional convergence Euclidean space, where P(I) =
= P(§(L)). Since P(F(L)) < (2%)"™®, we have P(I) £ 2%°"™_ Prove that the map

(9) o(x) = (fx)) where xe L, (f,(x)) € E and f,e§(L)

is a homeomorphism'') on L onto the subspace ¢(L) = E. As a matter of fact, if X
and y are two distinct points of L, then fy(x) + fy( y) for a suitable index y € I, L being
sequentially regular. Hence ¢ is one-to-one map of L onto ¢(L). Now, if £ — lim x,= x
in L, then lim f,(x,) = f,(x) for each « €1, f, being continuous on L and £5 = £3.
Hence € — lim ¢(x,) = ¢(x); thus ¢ is continuous on L.

On the other hand, if € — lim (z}}) = (z,), where (z,) € (L) and (z) € (L), ne N,
then there is a subsequence {(z3")}i%, of {(z3)} such that {¢~'((z}))} L-converges to

10) Notice that (Ls, £5, Z5) is a sequentially regular space such that £ = £¥ and that the

convergence space containing only two distinct points @ and h with the usual largest convergence is
{0, 1} sequentially regular.

1) The map defined in (9) will be called a special homeomorphism on L and will be denoted
by the thick letter ¢.
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the point ¢ ~'((z,)) in L; otherwise there would be a continuous function f; e F(L)
on L such that the sequence of real numbers {f;(¢ ~*((z})))}s%, would not converge
to the real number f,(¢ ™ '((z,))), L being sequentially regular. Since f5(¢ ~'((z3))) = 25
and fi(¢~*((z,)) = zs, the sequence {z}}7-, would not converge to zs; this would
contradict the assumption that ¢ — lim (z}}) = (z,). Consequently, the inverse

map ¢~ ! is also continuous, by (5).

Remark. If we replace the postulate of sequential regularity by the assumption
that the space is o’ sequentially regular, then Theorems 9 and 10 remain true and
Theorem 11 can'®) be formulated as follows [10]:

The convergence space (L, £, 1) is <0, 1) sequentially [{0, 1} sequentially] regular
if and only if it is homeomorphic to a subspace of the convergence cube space
[convergence cube vertex space] of the dimension < 28F®),

The proofs of the theorems are analogous to the proof above and involve no
difficulties; therefore they may be omitted.

5

Let (L, £, 4) and (M, M, p) be convergence spaces. Let (L, £, 1) be a subspace of
(M, M, p). Let f be a continuous function on (L, £, 1) and g a continuous function

on (M, M, ). If x e L implies f(x) = g(x), then g is called the continuous extension
of f.

Lemma 5. Let (L, ¥, 4) and (M, M, u) be convergence spaces. Let (L, %, ) be
a subspace of (M, M, u) such that y”'L = M. Then each continuous function f on L
has at most one continuous extension g on M.

Proof. Suppose, on the contrary, that there are two different continuous exten-
sions g and g’ of a continuous function f on L onto M. Then there exists a point
xo € M of the least possible order 9 = Y(xo, L) in M such that g(x,) + g'(x,).
Since f(x) = g(x) = g'(x), x € L, then 3 > 0. Consequently, there is a sequence {x,}
of points x, € u*~!L which M-converges to x,. Since g and g’ are real valued conti-
nuous functions on M and &5 = £%, it follows that g(x,) = lim g(x,) = lim g'(x,) =
= ¢'(x,); this is a contradiction.

Definition. Let (L, £, 1) and (S, &, o) be sequentially regular spaces. Denote by
a property such that for each real valued continuous function f on L it can be decided
whether it has property « or not. Then (S, &, o) is called the sequential [ sequential]
envelope (abbr. g-envelope) of (L, &, ) if the following conditions are satisfied:

o0) (L, &, 2) is a subspace of (S, &, o).

ol) L is ¢®*-dense in S.



62) Each continuous function fon (L, £, 1) [with the property «] has a continuous
extension f onto (S, &, o).

03) There is no sequentially regular space (S’, €', ¢') containing (S, &, ) as
a proper subspace and fulfilling ¢1) and ¢2) relative to L and S'.

Theorem 12. Let (L, ¢, &) and (M, M, p) be sequentially regular spaces. Let L be
a subspace of M such that p®'L = M. Let ¢ be a special homeomorphism on Linto
the convergence Euclidean space (E, C, ¢) of dimension P(§(L)). Then each conti-
nuous function on L can be extended to a continuous function on M if and only if
there is a homeomorphism h on M into e”'(L) such that h(x) = ¢(x), x € L.

Proof. Let ¢ be a special homeomorphism on L onto the subset of E:
o(L) = {(fx))eE : feF(L). xe L, xel}.

Suppose that each continuous function fe§(L) can be extended to a continuous
function g € §(M). According to Lemma 5 there is a one-to-one correspondence
on (L) onto F(M). Denote by g, the corresponding continuous extension of f,,
a € I. Consequently there is a special homeomorphism y on M onto the subset of E:

Y(M) = {(9.x)) € E : g, €F(M), xe M, xel}

such that Y(x) = ¢(x), x € L.

Now, assume that for all ordinals ¢ < 5, where 0 < &, # < o, we have just
proved that y(u°L) = e%p(L). If n is isolated, then y(u'L) = ey(u"~'L) < &"¢(L),
by (1). If # is not isolated, then Y(1'L) = y( U L) = U °¢(L) = &'(L). Thus, by

&<n &<n

transfinite induction we have proved that

(10) Y(M) < e”'o(L)

With respect to (10) it is sufficient to put h(x) = y(x), x € M.

Now, let ¢ be a special homeomorphism on L onto ¢(L) = E. Let h be a homeo-
morphism on M into &”! ¢(L) such that h(x) = ¢(x), x € L. Let f be any continuous
function on L. Then there is an index aq €I such that f = f,,. Define a projection
mapping: p((z,)) = z,, for each (z,) € €** (L). The function phis continuous on M,
by (4), and h(x) = ¢(x), x € L, implies ph(x) = f(x), x € L. Consequently ph is
a continuous extension of f.

Corollary 3. Let (L, £, 2) and (M, I, 1) be sequentially regular spaces. Let L
be a subspace of M such that u®'L = M. Let ¢ be a special homeomorphism on L
into the convergence Euclidean space (E, €, ¢) of dimension P(§(L)). Then each conti-
nuous function on L can be extended to a continuous function on M if and only if
there is a special homeomorphism W on M into &' @(L) such that Y(x) = ¢(x),
xel.

The proof follows instantly from Theorem 12 and from (10) by putting h(x) = y(x);
xeM.
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Theorem 13. Let (L, £, %) be a sequentially regular space and (S, &, ¢) a conver-
gence space. Let L be a subspace of S. Let ¢ be a special homeomorphism on L into
the convergence Euclidean space (E, €, ¢) of dimension P(§(L)). Then (S, &, o) is
a sequential envelope of (L, £, ,1) if and only if there is a homeomorphism h on S
onto e”* ¢(L) such that h(x) = ¢(x), x € L.

Proof. Let (S, &, ) be a g-envelope of (L, £, 2). Let ¢ bea special homeomorphism
on L onto the subset of E:

o(L) = {(f(x) € E :/;,e%(L), xeL,ael}.

By o1), 62) and Corollary 3 there is a special homeomorphism ¥ on S into &°* ¢(L)
such that Y(x) = ¢(x), x € L. Suppose, on the contrary, that there is a point
be et (L) — ¥(S) with the least possible order 8 = 9(b, ¢(L)) in E. Add a new
element a to the set S, put h'(x) = y(x) for x € S, h'(a) = b and define a conver-
gence & ontheset S’ = S U (a) as follows: '

If x is a point and {x,} a sequence of points of S’, then ({x,}, x) € & whenever
€ — lim h'(x,) = K'(x). In such a way we get a convergence space (S’, &, o’).
Evidently h'(x), x € S’, is a homeomorphism on S’ onto the convergence subspace
h'(S’) = &* ¢(L). Hence, from Theorem 11 it follows that (S’, &', ¢’) is a sequen-
tially regular space. It is easy to see that ({x,}, x) e & implies ({x,}, x) e & and
({va}, ») €@, y€S, y,eS implies ({y,.}, ) € S, {y,,} being a suitable subsequence
of {y,}. Therefore, by Lemma 2, (S, &, ¢)and consequently also (L, £, 1), are subspaces
of (S, &, ¢'). From Lemma 3 it follows that the order 9(a, L) in (S’, &', ¢’) equals
the order § = 9(b, h'(L))in (E, €, ¢). Hence a € 6"*L.and so S’ = ¢’“'L. Since h'(x) =
= Y(x) = ¢(x), x € L, then in view of Theorem 12, each continuous function on L
can be continuously extended onto S’. Consequently all conditions 60), 61) and ¢2)
are satisfied with respect to the spaces Land S’. This contradicts the property ¢3).
Therefore there is a special homeomorphism ¥ on S onto

(11) Y(S) = e (L) .

Consequently we can put h(x) = y(x), x € S.

Now, suppose that a special homeomorphism ¢ on Lonto ¢(L) < E is given and
that there is a homeomorphism h on S onto &“* (p(L) with properties mentioned in
Theorem 13. Since h(S) = & ¢(L) and ¢(L) = h(L), then S = ¢°'L by Corollary 2.
Consequently, 0'1) is true. In view of Theorems 11 and 12 the property ¢2) is also
satisfied. The validity of 63) remains to be proved.

Suppose, on the contrary, that there is a sequentially regular space (S, S, G)
containing (S, &, o) as a proper subspace and fulfilling 1) and ¢2) with regard to
the spaces L and S. Then there is a least ordinal 9 such that 6°L — S % 0; choose
a point 3€G°L— S. Then 9 = §(a, L) in § and L< S implies that 9 > 0 and
G*"'L— S = 0. By 62) and Theorem 12 there is a homeomorphism % on § into

¢ (L) such that h(x) = ¢(x), x € L. We shall prove that fi(x) = h(x) for each
xeo® L.
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Assume that h(x) = h(x) for each x € 0°Land each & < {, where 0 < { < § — 1.
If { is a limiting ordinal thereis nothing to be proved. If { is an isolated ordinal and x,
a point of ¢°L, then there is a sequence {x,} of points x, € 6°~*L which S-converges
to xo. Then h(xo) = € — lim h(x,) = € — lim h(x,) = h(x,).

Now, choose a sequence {t,} of points 7,e S n 'L which &-converges to the
point a. Then € — lim h(t,) = h(a) e ' ¢(L). Since ¢* 'L— S =0, we have
o*'L=Snga*"'L; consequently € — lim h(t,) = h(a). Since h(S) = &' (L)
then h(a)e h(S), h™'(h(a))eS and & — limt, = h™'(h(a)). By Lemma 2 there
is a subsequence {t,} of {t,} which S-converges to the point h~!(h(a)). Since
h~'(h(a)) # a and because the axiom (&) is true, we have a contradiction.

Corollary 4. Let (L, £, 1) and (S, &, 6) be sequentially regular spaces. Let L be
a subspace of S. Let ¢ be a special homeomorphism on L into the convergence
Euclidean space (E, €, ¢) of dimension P(§(L)). Then S is a sequential envelope
of Lif and only if there is a special homeomorphism Y on S onto £°* o(L) such that
¥(x) = o(x), xeL.

The proof follows immediately from (11) and Theorem 13 by putting h(x) = y(x),
xeS.

Theorem 14. Let (L, €, 4) be a sequentially regular space. Then there exists
a sequential envelope (S, &, o) of (L, &, 2).

Proof. Let ¢ be a special homeomorphism on L onto (p(L) < E. Choose a set S
containing L as a subset such that S — L and &”* ¢(L) — ¢(L) have the same power.
Then there is a one-to-one map s on S onto ! (L) such that s(x) = ¢(x) for each
xeL. Define the convergence & on S as follows: ({x,},x)e S whenever ({s(x,)},
s(x)) € €, where x € S and x, € S. In such a way we get a convergence space (S, &, o).
The map sis a homeomorphism on (S, &, ) and (L, £, A) is a subspace of (S, &, o).
Consequently (S, &, ¢) is a o-envelope of (L, £, ), by Theorem 13.

Theorem 15. Let (S, @, 6'V) be a sequential envelope of a sequentially regular
space (LP, £, 3D) i = 1,2. Let hy be a homeormorphism on IV onto L®. Then
there is a homeomorphism h on S® onto S® such that h(x) = ho(x) for each x e L.

Proof. Let ¢, be a special homeomorphism on I{) onto
pi(L”) = {(Hx)) € E : [, e BI), x e IV, ae T}

Since g € 8(]}2)) if and iny if g = fhy ' where fe %(L(”), then there is a one-to-one
correspondence on §(L") onto F(L?) such that g, = f,h5!, ael. Consequently
0:(») = (g{y), y e I[?, is a special homeomorphism orito

0, (1?) = {(fiha'(v) € E : ha ' €B(LD), y e I, neT} .

. _ _ 1
Since f,hg '(y) = fx) for each y = ho(x), x € LD e have 0,(x) = @,(hy(x)),
x € I'V; therefore ;I(L(l)) = @,([?) and & ‘PI(L(”) = g@1 q,z(L(Z)) 2( 0( ))
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According to Theorem 13 there is a homeomorphism h; on S onto &** ¢,(L?)
such that h{x) = ¢(x), xe [”, i = 1,2. Then h = h; 'h, is a homeomorphism
on S onto S® such that h(x) = he(x) for each x e L")

Corollary 5. Let (S,, €. 6,) and (S,, &,, 0,) be sequential envelopes of a sequen-
tially regular space (L, £, A). Then there is a homeomorphism h on S, onto S, such
that h(x) = x for each x € L.

Proof. If suffices to be put in Theorem 15: () = [, €D = @ 1D =] i=1,2,
and hy(x) = x for each x € L.

Now, let us show that there exists a sequentially regular space (L, ¢, 2) such that
a(L) % L. We are going to construct such a space.

Let L,, be the set of all pairs («, k), « being an ordinal < w, and k a natural.
Define the convergence £, on L, as follows: ({z},z)e @, for each ze L,
({(2s 1)}, (o, 1)) € &4 whenever lim o, = o ({(a, k)} i1, (@4, k)) € &;o Whenever
k > 1and a, + a, for n + m. ({(x, k;)}7=,, (2 1)) € &, for each @ < w, and each
ky < k, < .... In such a way we get a convergence space (Lo, ¥4, 410). Notice
that each point (o, k), o + w,, k + 1, is isolated in L,, and that the set U (, k),

asSw;

where k =+ 1, is closed-open. Now, let & < w;; arrange all ordinals ¢ < « in a one-
-to-one sequence {¢, } >, and then choose any sequence of naturals p; < p, <

Evidently, the set U U (&, k) is closed-open in Lo It will be denoted by

n=1 k> pn

[ {¢ss Pa}]: =
Prove that (Lo, %0, 410) is sequentially regular. Suppose that («, ko) is a point
and {(a,, k,)}.-; a sequence of points of L;, such that no subsequence of it
£, 0-converges to (0, ko). It suffices to find a closed-open set G such that (a,, k,) € G for
infinitely many naturals n whereas («o, ko) € Lyo — G. If there is a natural k' > 1
such that k, = k' for each n e N’ where N’ is an infinite subset of naturals, then put
G = U (o, k') — (g, ko) if (a2, ko) = (@, k') (in this case G is a finite set of isolated

neN’

points) or G = U (x, k') — (a0, ko) if (e, ko) * (e, k). Hence we may suppose

that either k, = 1 for all n or k, # k, for n = m.
First suppose that ko, > 1. Then we put G = L, — (%, ko) if 09 + @, or G =
=Li— U ( ko) if a9 = w;. Now assume that ko, = 1. Denote by f the least

aswg
ordinal such that «, < f for each n e N” where N” is an infinite subset of naturals.

If oy < Bthen put G = Lyo — [0 {&,, pu}]- If o9 > B then put G = U (o, k,) U
neN”
U [B; {¢, pu}]- In the remaining case o, = B there is a subsequence {(ot» ky)} of

{(ot> ky)} such that «,, < B and k,, > 1 for all i so that G = U (%> Ky, 1s a closed-
-open set not contalmng the point (ao, 1) =1

Now, prove that each continuous function f on the subset L,; = L, — (wl, 1)
can be extended to a continuous function on L,,. Define the convergence £,, on L,
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as follows: ({x,}, x) € ¥;; whenever Ux, = L;;, xe L,; and ({x,}, x) € ¢;,. Then
(Ly1s 51> A1q) is a sequentially regular subspace of (Lyg, ¥, A10), by Theorem 9,
and A;oLy; = Lyo. Let f be a continuous function on L. Let k > 1 be a natural.
Since £, — lim (a,, k) = (wy, k) if &, <o, < ..., then there is a countable ordinal y,
such that y, < « < w, implies f(o, k) = f(w;, k). From the property of the set of
all countable ordinals it follows that there exists a countable ordinal y exceeding all y,,
k =2,3,..., and a real number ¢ such that y < « < w, implies f(«, 1) = ¢. Since
&y — lim(y, k) = (y, 1), then lim f(y, k) = c. Consequently f(y, k) = f(w,, k),
k k

k =1,2,...,implieslim f(w,, k) = c. Now, define f(x) = f(x), xe L;, and f(w,, 1) =
k

= ¢. Then fis a continuous extension onto (Lyo, £, 4;¢) of the function f. From
property o3) it follows that 6(L;,) # Ly;.

Remark. If we replace the assumption that the sequential envelope S is sequentially
regular by the postulate that it is a convergence space, then Theorem 13 need not be
true. This is shown by the following example:

Add a new element (w,, 0) to the set L;,, denote L;, = L, U (w;, 0) and define
the convergence £, on L,, as folows: ({x}, x) € £,, for each x € L,,.

If (wy,0) + x + (w4, 1), then ({x,}, x) € &, whenever ({x,}, x) € ¢,.
If (0y.0) = x, then ({x,},x)e &, if {x,} is a subsequence of {(w;,2n)}:.,.
If (wy, 1) = x, then ({x,}, x) € &, if {x,} is a subsequence of {(w,, 2n — 1)} .

The convergence space (L, ,, ¥12, A1) is not sequentially regular'?). The sequentially
regular space (Ly, ¢4, 41,) is a subspace of (L,,, £,,, 4;,) such that A,,L,; = L,,
and that each continuous function on L;, has a continuous extension'?) on L,,.
From Theorem 11 it follows that the space L,, is not homeomorphic to any subspace
of a convergence Euclidean space (E, €, ¢).

Let X be an abstract point set and X the system of all its subsets. The following
definition of the convergence ¥ on the system X is well-known: ({4,}, A)e X whenever
A=U NA,=N N A, The convergence ¥ fulfills [12] all four axioms of conver-

k=1 n=k k=1n=k
gence (£,) — (&3). Consequently (X, %, &) is a convergence space; it will be called
the convergence system of sets.

Theorem 16. Let X be a set and X the system of all subsets of X. Then the conver-
gence system (X, %, &) is homeomorphic to the convergence cube vertex space
(Co» €4, 70) of dimension P(X).

12y The easy proof may be omitted.
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Proof. Put I = X and define ¢(4) = (f(A4)), x eI, A e X, whereby f,(4) =0
or =1 according to whether x e X — A or x € A. Then ¢ is a one-to-one map on
X onto C,. )

Now, let ¥ — lim 4, = A4 and x € X; then x € 4 if and only if lim f(4,) = 1 and
xe(X — A)if and only if lim f,(4,) = 0. Consequently €, — lim ¢(4,) = ¢(A).

Conversely, suppose that €, — lim (z}) = (z,) in C, and denote B, = ¢~ '((z}))
and B = ¢~ '((z,)). If xe B, then z, =1 and lim z} = z, implies xe U ) B, and

k=1 n=k

o0 0 o0 o0
so xe () U B,; on the other hand, if xe y U B,, then z% = 1 for infinitely many n
k=1n=k k=1n=k

feel 0
and since lim z, = z,, we have z, = 1 so that x e B. Therefore B= UB, =
. k=1n=k

@ =e]
=U N B, Hence ¥ — lim ¢~ '((z})) = ¢~ '((z.))-

k=1n=k

Let (X, %, £) be a convergence system of all subsets of a set X. Let A be a conver-
gence subsystem of (X, X, £). From Theorems 16 and 11 it follows that (A, %,, &,)
is a {0, 1} sequentially regular space. Since A is homeomorphic to a subset of the
convergence cube vertex space, it follows that the study of convergence topological
properties of convergence systems of sets is essentially the same as the study of the
convergence structure of the convergence cube vertex space.

From this consideration it can be deduced that each {0, 1} sequentially regular
space is homeomorphic to a subspace of a convergence system of all subsets of
a point set X of a suitable cardinal. For example the convergence space (L;, 7, 1,),
i=1,2,3,4,9, 10, 11, may be realized by convergence systems of sets.

The following questions might be of interest: What is the relation between the
sigma ring o(E) of a ring E of sets and o sequential envelopes o,(E) of the ring E?
What is the relation between the system of all Baire functions and o sequential
envelopes of the system of all real-valued continuous functions?

Remark. In [10] I used the notion of <0, 1) sequential regularity instead of
sequential regularity. It is worth noting that both notions are the same. As a matter
of fact, a convergence space (L, £, ) is sequentially regular if and only if it is <0, 1)
sequentially regular. It is clear that <0, 1) sequentional regularity implies the sequen-
tial regularity. On the other hand, suppose that Lis sequentially regular; let {x,,} be
a sequence of points and x, a point of L such that no subsequence of it converges.to x,,.
Then there is a continuous function f on Lsuch that {f(x,)} does not converge to
S(xg) so that |f(x,) — f(xo)| > ¢ for a suitable ¢ > 0 and for infinitely many ».
Now, it suffices to put g(x) = (1/c) |f(x) — f(xo)| for all xeL such that
|f(x) = f(xo)] < ¢ and g(x) = 1, if |f(x) — f(xo)| > ¢. Consequently, L is <0, 1>
sequentially regular.

It should be noticed that the definition of a <0, 1) sequential envelope o (L) .of
a topological space L which is a completely regular convergence space is to a certain
extent analogous to the definition of Stone-Cech compactification (L), viz. as to the
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conditions ¢0), o1) and ©2). However, both envelopes (L) and o,(L) can differ
substantially from each other. For instance, let P be an infinite isolated space. Since
B(P) is compact, we have P # B(P). On the other hand, it is easy to see that g (P) = P.
From this example it follows that the sequential envelope of a topological space need
not be compact, not even countably compact.
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Pe3rome

O MNPOCTPAHCTBAX CXOAUMMOCTH
N X CEKBEHLMOHAJIbBHBIX OBOJIOUKAX

MOCE® HOBAK (Josef Novak), ITpara

CxommMoCThI0 £ Ha MHOXKeCTBe L MBI pa3yMeeM MOJAMHOXKECTBO AeKapToBa MPo-
uspenenus 1 x L, rie W — cucrema Beex nociepoBatesbHoOCTel {X,} Todek x, € L
yIoBieTBopsifolux akcuomam ®dperue (L), (&) u (L ,). 3ambikanne A4 MHOXeCTBa
A = L — 3T0 MHOXECTBO BCeX TOUEK X € L, K KOTOPBIM CyLIECTBYET Takasi MOCIelo-
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BATENBHOCTh TOYEK X, € A, uTo ({x,}, X) € &. OToGpakeHue A ABISCTCSH CCKBEHIIHO-
HaJBHOM TomMoJorHeit, ynoBaeTBOpsitolel akcuomam (C;) u (CZ). CxomumoctH &
u M Ha MHOXECTBEe L IKBUBAJIICHTHBI, €CJIM COOTBETCTBYIOLIME CCKBEHIIHOHAJIbHBIC
TOIOJIOTUM TOXAECTBEHHBI. JloKa3bpIBaeTcs, YTO B KaXJOM KJacce B3aUMHO 3KBM-
BaJICHTHBIX cXxoAMMOcTei Ha L cymecTByeT camast O0splasi CXOOUMOCTh, XapaKTepu-
30BaHHAsi AaKCHOMOM (2 3),,BLITI> HauOOJIBILIEN CXOAUMOCTBIO " — 3TO TOMOJIOTUIECKOE
H NPOIYKTHBHOE CBOMCTBO (T.c. CBOMCTBO JekaproBa IPOM3BEJEHHSA, B KOTOPOM
CXOMMOCTH OTIpefiesicHa o KoMmoHenTam). Ha mpuMepax 1okasaHo, 4To B CiIy4ae,
KOrja CXOOUMOCTh B KOMIIOHEHTaX IeKapToBa IPOU3BEIACHUS 3aMEHEHA JKBHMBa-
JIEHTHBIMU CXOIOUMOCTSIMH, MOXET W3MEHUTBHCSI M JEeKapTOBa TONOJOTHS CXOIH-
MOCTH.

IToHsITHIO BMOJIHE PETYISIPHOTO TOMOJOTMYECKOTO MPOCTPAHCTBA COOTBETCTBYET
CHeNyIoliee MOHATUE CEeKBEHLMOHAJIBHO PErYJISPHOrO MPOCTPAHCTBA CXOOUMOCTHU:

IIpocTpaHCTBO CXOOUMOCTU L SIBIISIETCS CEKBEHIMOHAJIBLHO DErYJISIPHBIM, €CIIH
K KaXIOoM Touke Xo € L M K KaXHO# TMOC/IeOBATEbHOCTH TOYeK X, € L, mpuiem
H¥KaKasi BRIOpaHHAs U3 Hee MOCIe0BATEIIBHOCTD He CXOAUTCS K TOUKE X, CYLIECTBYET
JefiCTBHUTEIbHAsT HenpepbiBHAs QYHKIMA f Takas, 4TO IOCJIEAOBATEIbHOCTh YHCEN
S(x,) He cxomutes x f(x,). IIpocTpancTBO CXOMUMOCTH L SBIISIETCS CeKBEHIMAILHO
PETYISIPHBIM TOTAA M TOJBKO TOTIA, KOIJa CyLIECTBYeT roMeoMopdHoe oTobpaxe-
HHE IPOCTPAHCTBA L B €BKIMIOBO IPOCTPAHCTBO CXOAUMOCTH (T.e. JEKapTOBO IpPO-
U3BENEHNE CXOJUMOCTH, KaXXAasi KOMIIOHEHTa KOTOPOro IIPEACTAaBISIET MHOXECTBO
JEMCTBUTENBHBIX YHCEN ¢ OGBIKHOBEHHOMN CXOMMOCTHIO).

IIpom3Benena xiaccuduKamuy NPOCTPAHCTB CXOOUMOCTH.

CeKBeHIIMOHAILHO PETYJISIPHOE MPOCTPAHCTBO S SBISACTCSA CEKBEHIIMOHAIBHOM
000IOYKOI CEeKBEHIIMOHAJIBHO PEryjsipHOro Impocrpancrsa L < S, ecinnm S — Hau-
MEHBIIIeE 3aMKHYTOE MHOXECTBO B S, coJiepxkallee L, 1 0qHOBpEMEHHO HauboIbIIee-
CEKBEHIIMOHAJIBHO PETyJspHOE IPOCTPAHCTBO, OOJIajjalolee TeM CBOHCTBOM, YTO
KQXAYI0 HeupepbiBHYIO GYHKIUIO f Ha L MOXHO HENpPEpBIBHO DAaCHIMPUTH Ha S.
Joxa3aHo, 4TO K KaXIOMY CEKBEHIIMOHAJIbHO DETYJIIPHOMY HpOCTpaHCTBY L cy-
IECTBYET CeKBeHOUOHaNbHas 06oiouka o,(L). [IpuBeeHbI KPUTEPUH, TIO KOTOPBIM
MOXHO YCTaHOBUTb, eciii S = 6,(L). [ToCTpOeH mpuMep CeKBEHIMOHAILHO PEryJIsip-
Horo npocrpauctsa L + o, (L).

B 3awiroyenue paboThl BHUMaHHE OOPAILEHO Ha CUCTEMbI MHOXECTB C OOBIKHO-
BEHHOM CXOAMMOCTBIO MHOXeCTB. Kaxkast Takast CHCTEMA SIBJISIETCS CEKBEHIMOHAIb-
HO peryJIsipHBIM HIPOCTPAHCTBOM CXOAUMOCTH M, CJIEOBATENIHHO, CYLIECTBYET K HEM
CeKBEHIMOHAJIbHAs 000JI0YKa.
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