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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

ON CONVERGENCE SPACES A N D THEIR SEQUENTIAL ENVELOPES 

JOSEF NOVAK, Praha 

(Received November 11, 1963) 

In this paper closure topological structures of convergence spaces 
(oSP-spaces of M. Frechet) and their Cartesian products are investigated. By 
means of continuous functions on L the sequentially regular convergence 
spaces and their sequential envelopes aJ^L) are defined. The existence of 
cr-envelopes is proved and topological and convergence properties of such 
spaces are studied. Several convergence spaces are constructed as examples 
illustrating some properties of convergence topology. 

The notion of convergence on an abstract point set Lwas axiomatically introduced 
by M. FRECHET [3]. By convergence on Lv^e mean a system Ï of elements ({x„}, x) 
where {x„} is a sequence of points and x a point of L fulfilling axioms {^oj, (-^i) 
and (=^2)- The closure of a set Ä consists of all points x such that {{x„], x) e S 
where \Jx„ с A. Two distinct convergences on L can induce the same convergence 
topology. This fact leads to a classification within the system of all convergences on 
a given set L. In section 2 it is proved [Theorem 1] that in each class of convergences 
there is a largest convergence 2* which is characterized by axiom (<^з). There is 
a one-to-one order preserving mapping on the system of all convergence topologies 
onto the system of all largest convergences on L [Corollary 1]. 

In section 3 convergence Cartesian space is defined by means of coordinatewise 
convergence (8). A Cartesian convergence is largest if and only if each coordinate 
convergence is largest (it is a Cartesian property). The convergence topology on the 
Cartesian product X{(L„, S„, À„) : n = 1, 2, ..., HQ} of a finite number UQ of spaces 
does not depend on the choice of convergences in the classes [2„] of equivalent 
convergences. However, the example (p. 84) shows that this need not be true if the 
number of spaces is infinite [Theorem 6]. The convergence Euclidean space of 
dimension P(/) is defined as convergence Cartesian space X{(L^, i, X) : ael} where L^ 
denotes for each a e / the set of real numbers and S the usual convergence on it. 

In section 4 some properties of sequentially regular spaces are studied and the 
location of such spaces in the scheme of classification of convergence spaces is given. 
It is proved that the sequential regularity is a Cartesian property provided that 
i^ = S*, ocel. [Theorem 10]. Sequentially regular spaces can actually be treated as 
subspaces of convergence Euclidean spaces [Theorem 11]. 
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A sequentially regular space S is a sequential envelope (^^{L) of a convergence 
subspace L of 5 if S is the smallest closed set in S containing L, and the largest 
sequentially regular space such that each continuous function / on L has a continuous 
extension / on S. In section 5 a criterion for a sequentially regular space S to be 
a sequential envelope of a subspace L i s given [Theorem 13]. Each sequentially 
regular space has sequential envelopes which are homeomorphic to each other 
[Theorem 14 and Corollary 5]. A sequentially regular space L ^ is constructed such 
that Lii Ф ^e(bii). 

In section 6 it is proved that each system of point sets for which the well known 
convergence of sets applies is a sequentially regular space. The study of convergence 
topological properties of systems of sets is essentially the same as the study of the 
convergence topological structure of the convergence cube vertex space [Theorem 16]. 

It should be noticed that the definition of a <0, 1> sequential envelope (j^(L) of 
a completely regular topological convergence space L (which is sequentially regular) 
is to a certain extent analogous to the definition of Stone-Cech compactification ß(L). 
The properties of Stone-Cech compactification ß{L), however, can substantially 
differ from those of the sequential envelope cr^(L). 

In this paper we call the T̂  closure space a point set P and a map и on the system 
of all subsets of P into itself fulfilling two axioms: 

(Ci) uA = A for any finite set A a P\ 

(C2) u{A и B) = uA KJ uB for A a P and В cz P. 

It will^) be denoted by (P, u) or simply^) by P. The T^ closure space (P, u) is called 
the topological T^ space if the axiom 

(F) u{uA) = uA for A Œ P 

is true. 
The map и is called the T^ closure topology. If it has the property (F), we speak of T^ 

topology. The set и A is called the w-closure or simply closure of the set A.lf A = uA, 
the set A is closed; it is open if its complement is closed. 

From (Ci) and (C2) it immediately follows that A a В implies A cz uA a uB. 
A subset U(x) of a T^ closure space (P, u) is a w-neighbourhood of a point x 

if X G P - u{P - U{x)). 
It is easy to prove that x e U{x) and that the intersection of any two м-neigh-

bourhoods of the same point x is its w-neighbourhood as well. From the definition 

^) Each Ti closure space is a gestufter Raum in the sense of F. HAUSDORFF [5]. 

^) When no confusion seems possible we shall suppress the symbols of topologies and conver­
gences. 
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of a neighbourhood of the point x it follows that x euA if and onl> if A n U{x) Ф 0 
for each neighbourhood U(x) of x. 

Let и and v be two T̂  closure topologies on the same point set P. We say that и is 
weaker than v (or that v is stronger than u) in symbols и < v, if мЛ cz vA for each 
Л с P. The binary relation < partially orders the system of all T^ closure topologies 
on the set P. The discrete topology is the weakest element in it. 

Now, we mention the definition of a continuous map ф on a J\ closure space (P, u) 
into a T| closure space (Q, v). The map cp is continuous [5] on P if 

(1) (p(uA) с V (p{A) for each A a P . 

It is easy to prove that cp is continuous on P if and only if 

(2) for each point a e P and every i;-neighbourhood V{(p{a)) of the point (p[a) e Q, 
there is a w-neighbourhood U(a) cz P such that (p{U(a)) cz F((p(a)). 

A continuous map ^ on a T̂  closure space P onto a T̂  closure space ß is a homeo-
morphism if it is one-to-one and c^"^ is also continuous. 

Let Lbe a point set. Denote by N the set o^ all naturals. A map (p on N into L 
such that (p(n) = x„ is called a (simple) sequence and denoted by {x„}^= ^ or simply 
{x„]. A map ф on N X N into Lsuch that i/̂ (m, n) = x^„ will be called a double 
sequence and denoted by {x,„J^^„=i or simply {x^„}; a (simple) sequence {x^nm}m=i 
(in this case {«„,} need not be increasing) is called a cross-sequence of {x^„}. A cross-
subsequence is a subsequence of a cross-sequence. 

Let Lbe a point set. Let 2 be a set of pairs {{x„}, x) where {x„} is a sequence of 
points x„ e L and x a point of L. We say that 2 is a convergence on L if the following 
axioms are true [3]: 

(^o) If ({^n}. ^) e S and ({x j , y) e i, then x = y. 
(j^i) If x„ = X for each natural n, then ({x„}, x) 6 2. 
(j^2) If ({ /̂i}» ^) e 2 and {x„.} is a subsequence of { x j ,then {{x„}, x) e S. 
The set L with a convergence £ on it is called the J^-space (Fréchet) and designated 

by (L, i). 
Instead of {{x„}, x) e £ we shalP) write £ — lim x„ = x and say that the sequence 

£-converges to the limit x. A sequence of points is totally £-divergent if there is no 
£-convergent subsequence of points in it. 

By means of the convergence £ on an ^-space (L, £) the closure of a set is defined 
as follows [5]: 

The closure XA of a set Л c L is the set of all points x G Lsuch that x = £ — lim x„, 
all x„ being points of A, 
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It is easy to see that Я is a Г̂  closure topology. The T, closure space (L, Я) will be 
called the convergence space and denoted by (L, 2, Я); Я will be called the convergence 
topology. 

From the definition of neighbourhoods in Tj closure spaces it follows that a set 
U(x) is a Я-neighbourhood of a point x in a convergence space (L, Î, Я) if 

(3) ? — lim x„ = X implies x„ G U(X) for nearly all n. 

Now we shall construct several convergence spaces which will be used as examples 
illustrating some convergence and closure topological properties. 

Let A be the set of points x,„„ and В the set of points x„, and XQ, m and n being 
naturals. Let {mj and {п^} denote subsequences of the sequence of all naturals. 

The convergence space (L^, Sj, Я^): L^ = В and î^ contains elements of two kinds, 
viz. all ({y,,}, x) such that y\ = x for nearly all n, where x e L^ and all {{Уп}, ̂ o) such 
that there does not exist a constant subsequence {x} of {y„} for any x ф XQ. 

The convergence space (L2, £2? ^̂ î)- L2 = В and S2 consists of elements of two 
kinds: of ((x), x) for x e L2 and of ((x„,.), XQ) for each {m.}. 

The convergence space (L3, £3, Я3): L3 = Л u ß and £3 is the set of elements 
((x), x) for each x e L3, of ((x^.), Xo) and of elements ({x„..„.}f^i, x^) for each {m,} 
and {n^ and for each m = 1, 2, .... 

The convergence space (L4, 84, Я4): L4 = У4 u (xo) and £4 is the convergence of 
elements ({x}, x) where x G L4, and of ({x„,„.}, Xo) for each {n,} and for each m = 
= 1,2,. . . . 

The convergence space (L5, £5, Я5): L5 is the set of all real numbers and £s is the 
ordinary convergence on it, i.e. ({x,,}, x) G £5 whenever jx,, — xj -> 0. 

The convergence space (L^, £б, Я^): L^ is the set of all real numbers and £^ consists 
00 

of all elements ({xJ, x) with the property: ^ jx„ - xj < 00. 

Lemma 1. Let (L, £, Я) and (L, Ш, ju) be convergence spaces. Then the two following 
statements are equivalent: 

(a) X < }x, 

(b) //({x„}, x) G £ then ({x„.}, x) еШ for a suitable subsequence {x„.} of {x„}. 

Proof. If Я < /i and £ — lim x„ = x, then xeX\Jx„ cz ß\Jx„; consequently 
there is a subsequence {x„.} of {x„} such that ?W — lim x„. = x. On the other hand 
if X € XA, then from (b) it instantly follows that x G }ЛА i.e. X < ji. 

If £ c: 9}?, then the condition (b) of Lemma 1 is obviously fulfilled so that X < /л. 
If however Я < ju, we cannot conclude that £ с 5)î. As a matter of fact, we have 
Я1 = Я2, i.e. Я1 < Я2, but the convergence i^ is not contained in the convergence £2. 
In order to find the necessary and sufficient conditions let us notice that the 
inclusion c partially orders the system 2 of all convergences defined on the same 
point set L. Let us define the equivalence relation '~ in the system 2: 
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If 2 e £ and ЗЯ e fi, then S - 5Ш if Я = /x. 
In such a way every class [S] is a partially ordered class containing all convergences 

on L which induce the same convergence topology X in L. 

Theorem 1. In every class [£] of convergences on L there is a largest element 

Proof. Denote «^ = (J 91 and prove^) that S^ = 2*. If ( { x j , x) e «^ and 

({x j , уу. e ï^ then ({x„}, x) e 91' and ({x„}, y) e 91" where 91' and 91" are suitable 
convergences in the class [2]. Denote by Я, v' and v" the respective topologies. Then 
Я = v' = v" and J G v" U-^«(= ^' U^n) so that ({л:„.}, у) e Э1' for а suitable subse­
quence {x,,.} of {x„}. By (J^2) ^^^ (^o) we have x = y. Therefore the axiom (j^o) is 
fulfilled in 2°. Evidently 2^ also satisfies the axioms (j^i) and (.^г)-

It remains to prove that 1^ = X. First notice that 2 c: 2^ so that X < X^. Now 
suppose that x e X^A; then there is a sequence {x„}, x„ e A, such that ({x„}, x) e 91"' 
for a suitable 91'" e [2]. Therefore x e v'" U^/i(^ ^''^4 = XA), v'" being a topology 
induced by 91'"; hence Я̂  < X. Therefore 2^ = 2*. 

F. HAUSDORFF [5] has defined the maximal ^-space the convergence of which 
cannot be extended without having changed its closure topology. He proved that the 
maximal J^-space satisfies the following axiom [1]: 
(о^з) If each subsequence {x„.} of a sequence {x„} contains a subsequence {x„̂  } 
converging to a point x, then the whole sequence {x„} converges to x. 
It is clear that the maximal J^-space (L, 2) is defined by the largest convergence in our 
sense, i.e. 2 = U 91. 

Now we shall prove that each convergence satisfying condition (J^g) is the largest 
one. This assertion is contained in the following 

Theorem 2. Let (L, 2, X) be a convergence space. Then the conditions I), 11), III) 
are equivalent: 

I) 2 is a largest convergence on L. 

II) ^fulfills axiom {•^3). 

Ill) 2 — lim x„ = X if the following property is fulfilled: each X-neighbourhood 
of X contains nearly all x„. 

Proof. I) => II) by Hausdorff. Prove II) => III). Suppose HI) is not true; let x be 
a point and {x„} a sequence of points of L fulfilling the property mentioned in III) 
however not 2-converging to x. Then by (^^3), there is a subsequence {x„.} of {x„} 

^) The convergences will be denoted by the German capitals S, 9Л, 91, ^, X,(è,&,... and the 
respective convergence topologies usually by the Greek letters Я, /г, v, л;,т, e, y, .... The largest 
convergence and the respective topology will be usually denoted by the asterisk. 
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which is totally 2-divergent or which $-converges to y ф x and such that x ф x„. ^ 
for each /. Then from (3) it follows that L - \Jx„. is a /l-neighbourhood of x not 

i 

containing nearly all x„. It remains to prove that III) => I). Suppose III) is true. 
Denote by X the set of all elements ({x„}, x) having the property mentioned in III). 
If 91 e [i] and ({x„}, x) e 91 then, in view of (3), ({x j , x) e Ж so that U 51 c: 2;. 

S«e[£] 

On the other hand, from our supposition it follows that X cz 2. Hence 2 = (J ^ • 

and S = i* by Theorem 1. 

Let us notice that neither the convergence $2 nor Ŝ  is the largest one. On the other 
hand, Si and i^ are largest convergences and £* = ^i? ^6 = ^s so that À2 = Я̂  
and Яб = Я5. 

Corollary 1. Let (L, i, X) and (L, 3}t, //) be convergence spaces. Then À < fi if 
and only if i^ cz 2Й*. 

Proof. If Я < Д and ({x„}, x) G £*, then XGX\JX„. С fi\JXj.. for each subse­
quence {x„.} of {x„}. Therefore outside of each д-neighbourhood of x there is at most 
a finite number of x„. Hence ({x„}, x) e SPÎ*, by Theorem 2. The converse part of the 
proof follows immediately from Lemma 1. 

From Corollary 1 it can be deduced that there is a one-to-one order preserving 
correspondence between the system of all largest convergences (this system is partially 
ordered relative to the ordering c:) and the system of all convergence topologies on the 
same point set L. As a matter of fact, if S* Ф SDî*, then £* - SW* Ф 0 or SDî* - £* Ф 
Ф 0. Consequently, by Corollary 1, either À < ß or /л < À is false so that Я Ф /̂ . 
From the same Corollary it follows that this one-to-one correspondence preserves 
the order. 

Let (P, u) be a closure space. Let X be the set of all elements ({x„}, x) such that 
each M-neighbourhood of x contains nearly all x^. Then X evidently fulfills [4] 
axioms (j^^) and (=^2)- It is easy to see that (<^з) is also fulfilled. Therefore in the 
case when the axiom (^0) is also valid — for example if any two distinct points can 
be separated by w-neighbourhoods — X is the largest convergence and we get a con­
vergence space (P, X, T) such that т < u; clearly r = и whenever xeuA implies 
that ({x„}, x)eX for a suitable sequence of points x„ e A. In such a case the closure 
topology w is a convergence topology and (P, w) is a convergence space. 

Let (L, £, Я) and (M^ 20?, /1) be convergence spaces. Let Lc M, Then (L, 2, X) is 
a subspace of (M, Ш, fi) whenever XA = Ln jiA for each Л с L. If a convergence 
space (M, ЗЙ, ц) is given and if P is a subset of M, then it is possible to define a con­
vergence ^ on P in different ways to get a subspace (P, ^ , тс) of (M, SOî, fx); for 
example to define ^ as a subsystem Wlp cz 9)? consisting of all elements 
({x„}, х)еШ such that x„ e P and x e P. It is clear that SKp is largest if 20Î is the largest 
one. 
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Lemma 2. Let (L, S, A) and (M, 5Ш, //) be convergence spaces. Let La M. Then 
(L, S, Я) ÏS a subspace of{M, SW, /г) if and only if the following conditions i"" and 2° 
are satisfied: 

1° //({x„}, x) e i, then ({^„J, x) eWlfor a suitable subsequence {x„.} of {х,,}. 

'^^ If {{Уп}^У)^^^ y^^^ yn^L, then {{yj,y)ei, {yj being a suitable 
subsequence of {Уп}-

Proof. Let (L, £, Я) be a subspace of (M, Ш, ju). Let ({x„}, x) G S. Then x G Я U-̂ «̂ = 
= Ln fi \Jx„ so that Г is true. If ({j^J, j ) GSDÎ, j ; G L, }̂„ G L , then y E Ln 1л Uy« so 
that 2° is also true. 

Now, let Г and 2° be satisfied and let Л be a subset of L. From Г it follows that 
X e ÀA implies x e fiA so that lA cz Ln цЛ. On the other hand, if j ; G L n jxA, 
then у G kA, by 2°. Hence XA — Ln цА. 

F. Hausdorff [5] defined the continuity of a map у = (^(x) on an J^-space E onto 
an cJ^-space H by means of the following property 

(4) lim x„ = X implies lim <p(x„) = (p{x) for each x EE 

and proved that (4) implies (1). The following example, however, shows that (4) 
need not be implied by (1): 

Let (p{x) = X be the identical map of (L5, S5, Я5) onto (L^, Sg' ^e)- Then 
$5 — lim (Ijn) = 0 whereas {ф(1/м)}Г=1 does not S^-converge in (L^, S^, Я )̂ at all. 

For this reason the following definition"^) seems to be useful: 
A map у = (p{x) of a convergence space (L, £, Я) into a convergence space 

(M, 9};, ß) is sequentially continuous if 

(5) i — lim x„ = X implies SK — lim ф(х„.) = (p{x) for a suitable subsequence {x„.} 
of{x„}. 

From this definition it follows that the properties (1), (2) and (5) in convergence 
spaces are equivalent. (1) implies (5): if ({x„}, x) G £ then ф(х) G/i(p(Ux„), by (1), 
so that there is an element ({(p(x„.)}, ф(х)) G5W. NOW, suppose (5) is true. Then 
A cz L a n d x G ЯЛ implies that there are elements ({x„},x) G Sand({(^(x„.)}, ф(х))с9Л, 
where \Jx^ с A so that (p{x) E ß Uç)(x„.) с fi(p(A). i.e. (р(Ы) cz f.i(p{A). Consequently 
(1) is true. 

It is easy to be proved [6] that (5) can be replaced by (4) whenever 9)? is the largest 
convergence in [SDî]. 

In this paper all three equivalent definitions of continuity of a map in convergence 
spaces will be used. 

According to E. CECH [2], to any T^ closure topology v there corresponds a modified 
topology u(v). The topological modification w(i;) of Î; is characterized as the weakest T^ 

'^) See [6] p. 85 the footnote under the hne. 
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topology among all topologies which are stronger than the given T^ closure topology v. 
Now, we shall investigate the structure of the topological modification w(A) of 
a convergence topology X. First define [5], for each ordinal ^, the correspondence X^ 
on the system of all subsets Л of a convergence space (L, £, X) into itself as follows: 
X^'A = A, X'A = XA, X^A - X{X^-U) if ^ - 1 exists and X^A = \J ХЫ ïï ^ - 1 

does not exist. Using the method of transfinite induction we easily prove that the 
map X^ fulfills both axioms (C^) and (C2); consequently X^ is a T^ closure topology. 
Clearly 

(6) X^'A d X^A cz ,.. Œ X^A c: ... 

for each A cz L. Therefore rj < ^ implies that X'^ is weaker than X^. 
The Ti closure topology X^ need not be a convergence topology. As a matter of fact, 

the Ti closure topology Xl on L3 fails to be a convergence topology because 
XQ e xl \J[Jx^„, but there is no sequence of points in UU-̂ «« such that each Яз-neigh-
bourhood of XQ would contain nearly all of them. 

Theorem 3. Let (L, £, X) be a convergence space. Then X^, a ^ 2, h a convergence 
topology on L if and only if X fulfills the axiom (F). 

Proof. Let X'^, a ^ 2, be a convergence topology on L. Let Л c: L; it suffices to 
prove that X^A с XA. Let XQ e X^A. Because X"^ is a convergence topology and 
XQ 6 X^A there is a sequence {x,,} of points x^e A converging to XQ. Consequently 

00 

X^'B = Xo u ß, where В = \j x^, by (^0) and {^2)- Since X < Я^ we have В с 

CI ЯБ d XQ u Б. Hence Xo e XB\ otherwise В = XB so that В = X^'B which is not 
possible. Therefore XQ G XA, 

The converse assertion follows immediately from the fact that XA = X^A = ЯМ 
for each A cz L whenever the convergence topology X fulfills (F). 

Now, we shall show that X"^^ is^) the topological modification of X. 

Theorem 4. Let (L, Й, X) be a convergence space. Then X"^^ is the weakest T^ 
topology of all T^ topologies which are stronger than X. 

Proof. From (6) and with regard to the property of the set of all countable 
ordinals it follows that if ( {x j , x) e 2, \Jx„ cz Г 'М, then x e Я^М so that XX'^'A = 
= Я^М. Consequently Я^Ы^^4 = Я^М. Thus (L, Я^^ is a topological space^). 

If t? is a topology on Lsuch that X < v then A c: L and ЯМ с vA implies Я''^ M с: 
c= v^A(= vA) for each ordinal rj. From this it easily follows that Я'̂ Л a vA for each 
ordinal (J. Therefore Я^М cz vA and so Я"̂^ < v. 

^) w^ is the first uncountable ordinal. 

^) From this it follows that each T^ closure topology X^, I ^ co ,̂ is identical with the T^ 
topology Я'̂ !, Я being a convergence topology. Consequently there is no sense in constructing T^ 
closure topologies Я̂  for ^ > coj. 
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It is worth noting that, by Theorem 3, A Ф )? if and only if the topological modi­
fication X"^^ of X fails to be a convergence topology. 

Let (L, S, Я) be a convergence space, x a point in L and A a subset in L such that 
xe X'^^A. Then there is the least ordinal 5 with the property x e X^A. Evidently Ô is 
an isolated ordinal. It will be denoted by 5(x, A) or simply by ^ and called the order 
of the point X relative to the set A in the space L. Now, denote by ö(x) the least 
ordinal such that ^{x) ^ S(x, A) for each A cz L such that x G Я'^М and call t9(x) 
the order of the point x in the convergence space L. 

Lemma 3. Let (L, S, A) be a convergence space. Then the order of a point x 
relative to a set A a Lsuch that x e X'^^A is a topological property. 

Proof. Let /г be a homeomorphism mapping the convergence space (L, S, A) 
onto a convergence space (M, Ш, /i). Suppose /i(AM) = jjPh^A) for all ordinals 
rj < I It follows that h{X^A) = fiß^'' h{A) for isolated ^ Ф 0 and /г( (J AM) = 
= (J И^ /?(Л) for non-isolated ^. In both cases "^^^ 

(7) h{X^A) = n^ h{A) . 

Hence d(x. A) = S{h{x), h{A)) whenever x e X'^'A. 
Let (L, i, A) be a convergence space. Let us define a set Л с L to be A^-dense in 

a set ß с L whenever X^A = В. Then we have 

Corollary 2. Let (L, £, A) be a convergence space. Then X^-density is a topological 
property for each ordinal ^. 

P r o o f follows instantly from (7). 

Let (L, £, A) be a convergence space. It can happen that X^^ = Â  for a countable 
ordinal ^. For example Â ^ = Â  or A *̂ = A3. If there is a subset A с Lsuch that 
Х'^'УА Ф А̂ Л for each ^ < ш^, then the power of A'̂ M and consequently also of L 
must be uncountable. Now we are going to construct a countable convergence space 
(L7, £7, A7) such that A7̂  ф X\ for each ^ < ш^. 

The convergence space L7 consists of all rational numbers. We define the conver­
gence i-j as follows: 

Well-order the irrationals and define P^ to be a one-to-one sequence of rationals 
converging (in the usual sense) to the <̂ -th irrational, ^ < coi. For each ^ < cô  and 
Tj ^ ^ let P^j^ be subsets of P^ such that 

(1) P^o ^P^i ^ . . - c rP^^cz . . . c P ^ ^ ; 

(2) P^^ and P^^+i — P^ri ai*s infinite sets for each rj < ^; 

(3) P^^ = P^ and P^^ = и P ç̂ for non-isolated ordinal t]. 

Let (J < a>i. Define P^,_i = 0. Using the method of transfinite induction we shall 
define sequences S | of points in P^ as follows: Suppose that, for each ordinal ri < a, 
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where a < ^, we have just assigned to each point xeP^^ + i — P^,, a one-to-one 
sequence S^ of points of P^^ such that 

( + ) ye P^,n+1 ~ Р^ц ^^^ л; Ф J implies that S | and S^ have no points in common. 

If a is an isolated ordinal, then assign to each point x e P^^+i — P^« a one-to-one 
sequence 5 | of points of P^^ — P^^-i with the property ( + ), for ?7 = a. If a is 
a limiting ordinal, then choose a sequence of isolated ordinals â  < a2 < ... such 
that lim a„ = a and assign to each point xeP^^^^ — P^^ a one-to-one sequence 
-̂ 1 = {̂ «} such that x„ e P^^^ — P^otn-i ^^^ such that ( + ) holds for rj = cc. 

In such a way to each point x E P^^ — P^Q there corresponds a sequence Sl of 
points such that 

( + + ) у e P^p — P^o and X Ф у implies that Sl and S^ have at most a finite number 
of points in common. 

The convergence ij consists of all elements ({x}; x), where xeL-j, and of all 
elements (S^^, x) where xeP^^ - P^Q, ^ < CO^, S'J being a subsequence of S|. The 
axioms {^^) and (if2) evidently hold true. Now, if ( {x j , x) e £7, ({x„}, y) e i^ and 
if {x„} is a constant sequence, then evidently x = y. If {x„} is not constant, then Ŝ ^ = 
= {x„} = Sy^ for suitable ordinals ^ and C- Since ß < у < co^ implies that Pßß n P^^ 
contains at most a finite number of points, we have ^ = {. Therefore x = у,Ъу{++), 

The convergence space (L7, ^7, Я7) has the following property: If (x < ß < co^ 

then yl7P^o = Pßa Ф ^/î/j = Ат'̂ /^о- Consequently Я^̂  Ф 4 for each ^ < coj,. 
Now, we are going to construct a countable convergence space containing a point 

of order cOi. For this purpose add to the set L7 a new element x* and denote Lg = 
= Lg '-' (x*). Define the convergence Sg on Lg : ({x„}, x) e Sg whenever ({x„}, x) e £7 
or X = x„ = л;* for all n s N, or x = x* and {x„} is a one-to-one sequence of points 
such that Ux„ cz P^^ ^ -^^.^-i where ^ denotes isolated countable ordinals. It is easy 
to show that (Lg, Sg, Ag) is a convergence space such that х*еЯ|^^Р^о - 4^^o . 
i.e. ,9(x*, P^o) = <? + 1 for each isolated ordinal ^ < œ^. Consequently S(x*) = coj. 

Let / be a non-void set of indexes and (L^, X.^, Я̂ )? a e / , convergence spaces. Let 
L = X{L^ : a e /} be the Cartesian product of the sets L„. The Cartesian Tj closure 
topology in Lis defined by Cartesian neighbourhoods as follows: U(x^ is a Cartesian 
neighbourhood of a point (x^) G L if it is a Cartesian product of ^^-neighbourhoods 
U(x^ с L«, where U(x^) = L^ except for at most a finite number of indexes a G L 
Now we shall define a convergence 2 in the Cartesian product in the following 
manner: 

(8) ({(^«)}' (^a)) ^ ^ whenever ({x;;}, x^) e i^ for each a G i . 
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It is easy to see that all three axioms (^o)? (=^i) and {^^ are fulfilled. The conver­
gence S will be called the Cartesian convergence; it induces a Cartesian convergence 
topology X. The space (L, S, A) will be called convergence Cartesian space or conver­
gence Cartesian product and denoted by X{(L^, î^, X^ : a G / } . 

From (3) and (8) it follows that the Cartesian convergence topology is weaker 
than the Cartesian T^ closure topology [7]. 

Theorem 5. The Cartesian convergence £ in a convergence Cartesian space 
(L, £, A) = X{(La, i^, X^ : a G / } is largest if and only if each convergence £̂  /5 
largest on L^, a el. 

Proof. Let S = £* and y el. Let {x''}^=i be a sequence of points x" e Ц and x 
a point of Ly. Choose a point ( x j e L such that x^ = x and suppose that each 
subsequence of {x"} contains a subsequence S^-converging to x. Then the same 
property holds for the sequence of points (x") G L and the point (x^) G L where x^ == x« 
for a Ф y and x" = x". Consequently £ - lim (x^) = (x^) by (j^a). Now from (8) 
it follows that Sy — lim x" = Xy, i.e. £y — lim x" = x. Hence £.. = £*, by Theorem 2. 

Now let 2^ = £* for each a e I. Let {(x^)}Д ^ be any sequence of points (x^) e L 
and {x^ a point of L such that in each subsequence there is a sequence £-converging 
to (хд). In view of (8) the same property holds for the sequence {x"}„°l ̂  and the point 
Хд G Ьд for each a el. Then £̂  = £* implies that £̂  — lim x" = x^, a G / , so that 
£ — lim (x^) = (хд), by (8). Consequently, according to Theorem 2, we have £ = £*. 

Remark . In each convergence space (Z., £, Я) both convergences £ and £* induce 
the same topology Я, so that X = Я*. If (L, £, X) = X{(L^, £ ,̂ X^) : oc = 1, 2 , . . . , /c} 
and (L, £', Я') = X{(L^, £*, X^) : oc = 1,2,..., к}Л being a natural, then Я = A' = Я* 
as well. As a matter of fact, let Л c: L and (z^) G ЯЛ; then £ — lim (z") = (z^) for 
a suitable sequence of points (z") G Ä and £̂  ~ lim z" = z^ for each a = 1, 2 , . . . , /c. 
Since £̂  с £*, we have £* - lim zj = z*" for each a = 1, 2, ..., /c; consequently 
(z^) G Я'Л and so ЯЛ cz X'A. On the other hand, if (f J G Я'Л then £* - lim Г" = t^ 
for each a = 1, 2, . . . , /c, where {(̂ а)}Г=1 is a suitable sequence of points of A. 
From {^2), {^2) and because a ^ /c, it follows that there is a subsequence {(t^')}i^i 
which £-converges to the point {t^. Consequently {t^ e XA and we have XA ZD X ' A . 
Therefore X = X' = X^. 

If (L, £, Я) = X{(L„ £„ Я,): a G / } and (L, £', Я') - X{(L„ £*, Я,): a G / } , where / 
is infinite, then it might happen that Я Ф X'. This is shown by the following example^): 

Let I = N. Let each L^, осе N, consist of numbers 0 and 1/n, where ne N. Let £„ 
be the set of elements ({y„}, y) such that y e L^ and y„ = }̂  for each ne N or y = 0 
and {;;„} is a subsequence of {l/n}^=^. In such a way we get convergences £̂  and £* 
on L«. Let (L, £, Я) = X{(L„ £«, Я,): a G iV} and (L, £', Я') = X{(L,, £*, Я,): a G N}. 

)̂ Another example was given by V. KOUTNIK: Let each L^, oc G TV, consist of two numbers 0 
and 1. Let ({y„}, y) e £« whenever y e L^ and y„ - ;̂  for each n e N. Then (0) e Я'^ — Я^ 
where В is the set of all (zj) e Z. such that z" = 1 for w -- л and zj -- 0 for n фа. 
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Denote A the set of points (z^) e L where z" = l/n, a e iV, n e iV; let (0) be the 
point ( z j G L where ẑ  = 0 for each a e iV. It is clear that (0) G À'A — XA, 

It is worth noting that in this example 2 с £* cz £' = £'* and that £ ф £* Ф £'. 
Hence A < Я' Ф Я. From this it follows that the convergence topology in the Cartesian 
product can depend on whether or not the convergences i^ on the spaces L„ are 
largest or not. 

Let (L, £, Я) be a convergence space. Let us classify all elements of the largest 
convergence £* (with regard to S) into three classes as follows: 

Each element ({x„}^=i,x) of £* — £ such that ({x„}^=„o, л;) G £ for a suitable 
natural UQ will be called the element of the first kind. Each element of Î* — £ which 
is not of the first kind will be called the element of the second kind and each element 
of S the element of the third kind. 

Let ({x„}, x) be an element of the first kind. Let Шо be the smallest natural such 
that ({xJ^^^Q, X)G £. Evidently YYIQ > L We call ({x„}, x) the element of the first 
kind in the strict sense if each subsequence {x„.} of {x^} such that n^ < MQ, is of the 
first kind. 

Notice that £* ~ ^2 contains elements of the first kind in the strict sense whereas 
£* — £5 contains only elements of the second kind. 

Theorem 6. Let 

(L, «, A) = X{(L„ «,, Я,) : a e /} and (L, Г, Я') = X{(L„, S,*, Я,) : « e /} 

be convergence Cartesian spaces. If there is at most a countable number 
of a el such that £„ Ф i^ and at most a finite number of ael such that £* contains 
elements of the first kind, then X — X. If there is an infinite number of ael such 
that £* contains elements of the first kind in the strict sense or if there is a subset 
/Q с / of power ^ 2^° such that £̂  Ф £* for each a G/Q, then À Ф Я'. 

Proof. Denote by /^ a subset of / containing all a for which £̂  Ф £j and by /Q 
a subset of / consisting of all a such that £* contains elements of the first kind. Evi­
dently IQ cz I^. If/^ is finite, then the proof of the first assertion follows instantly 
from what has just been proved above in the Remark. Consequently we can put 
l,=N. 

Let A c: Land let ( x j be a point of XA; then there is a sequence {(^xJJ)]^=i of 
points in A which £'-converges to (x^). 

In order to prove that (x^) e ÀA let us suppose (mathematical induction) that for 
each natural i < /c, where /c > 1 is a natural, we have just chosen subsequences 
{С'^^^Ж=1 of {С'хЭЬг, such that 

(+ + + ) ( {^^^X^},X, . )E£, . 

For i = k - l we have the subsequence {(^0}Г=1 of {('^"^x3}„°li which 
£'- converges to the point ( x j . Consequently, by (8), £* — lim 4 ^ == Xj^. In view of (j^3), 

n 
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there is a subsequence {(^""^x^)}«"!! of {{^x^)}^^^ such that Ŝ  - lim^^^i^« = x so 
that ( + + + ) also holds for i = k. " 

In such a way we get a sequence {("-̂  'x^)}^^ i such that {("'" '0}„°1^ is a subsequence 
of the sequence {(^•^^x")}^=i consequently {"^^xl}^=]^is a subsequence of V'^^xl}^^ 
/c = 1, 2 , . . . . Denote by IQ the set of all indexes a e / such that ({""^ ^^a}^= i, хЛ is the 
element of the first kind. Then /Q CZ /Q is finite so that there is a natural mçy such 
that/ce/^implies({"+ix^}„«L,^,xj e «,. Sincefor a e / - /^ no element ({«+ixy^i ,x , ) 
of S: is of the first kind, we have ({("^^x^ln" mo. W ) e t Therefore (x,) G ЯЛ. 
Consequently Я'Л = Ы. 

Now, suppose that there is an infinite countable set /2 c: / such that each S*, a e /2, 
contains an element ({x"}^=i, x j of the first kind in the strict sense. Denote 12 = N, 
Since £« Ф 2* for each a e iV, there is a point j ^ e L^, j^^ ф x^, a G iV. Choose a point 
(f^) G L such that f̂  = x^ for a e N. Let (̂ ") be points of L such that for 
a EI — N : t^ = t^ for each natural n whereas, for ae N : î^ = y^ whenever n ^ a 

GO 00 

and tl = xl'"" if n > ОС. It is easy to show that (г,) e À' \J (r^) - Я (J (O-
и = 1 n = l 

Now, let /1 be the set of all indexes ael such that i^ Ф £*. Suppose that P(/i) ^ 
^ 2̂ **. Then there is a one-to-one map (̂  on the system of all subsequences {п^} 
of the sequence of all naturals onto I[ с / j . For each осеГ^ choose an element 
( { X " } ^ ^ I , X „ ) G 2 * - £̂  and define the element {{y'!}^=.i,x^) as follows: Let ael[. 
If (p({ni}) = a then put y" = x^if n = n^andj" = x^if n Ф n̂  for each i. If a c / -- / i , 
then choose x^ e L^ and put yl = x^, for each natural n. From axiom (Jèf3) it 
easily follows that {{y"o,}^=t, x^) e S* for each a G / . 

00 

Denote Б = (J (>^̂ ). Since ({>'"}^=:i, x«) G £*, a G / , the point (x^) belongs to Л'В. 
n=l 

On the other hand, let {(у^0}Г=1 be a subsequence of {(y")}^=i- E>enote ф({п,.}) = )S. 
Since ({л:^}Г=1, x̂ j) does not belong to iß and because x^ = y"/, it follows that {ĵ Ĵ } 
does not Jî^j-converge to x^. Therefore (x^) e X'B — ÀB. 

In [13] I called a ^-point any point x of a convergence space (L, S, X) having the 
following property: there is a one-to-one double sequence of points x̂J* G Lsuch that 
S — lim x^ = X for each natural m, but there is no cross-subsequence ^-converging 

n 

to X, For example the point XQ is a ^-point in the space (L4, £4, Я4). It is easy to see 
that both convergence spaces (L2, £2? ^2) ^^^ (̂ 4> 4̂» ^4) ^̂ "̂  topological spaces 
although their convergence Cartesian product L2 x L4 fails to be a topological 
space*). As a matter of fact, if we denote by X the convergence topology in L2 x L4, 

00 00 

then (xo, x^)) G ÀXA — Ы where Л = \J \J (x^, x^„). The following problem arises: 
m = 1 и = 1 

Does the assumption that X{(L^, 2^, Я )̂ : a = 1, 2} is not whereas (L^, S«, A )̂, a = 
= 1,2, are topological spaces imply the existence of a ^-point in L^ or in L2? 

^) СГ. the example in [7] p. 22. 
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The convergence Cartesian product (£, g, e) = X{(L^, i^, Я5) : L^ = L5, a el} 
will be called the convergence Euclidean space of the dimension P(l), P denoting the 
power of/. Since S5 = S* from Theorem 5 it follows that Ê = 2*. If/ is the set of 
real numbers (i.e. / = L5), then the elements of E are real valued functions of the 
real argument xel and the convergence g is the convergence of functions at each 
point xel. If we denote by D the set of all continuous functions on (L5, i^,À^), 
then s^^^D is the set of all Baire functions. Consequently the convergence Cartesian 
space (£", @, e) of dimension ^ 2̂ *° does not fulfill the axiom of closed closure (F), 
i.e. 8 Ф £^\ 

Let (£, S, г) be a convergence Euclidean space. Let С be the set of all points 
( x j e E such that x^ G <0, 1> and Co the set of all points ( x j e E such that x̂^ = 0 
or = 1, a e /. Put e = ^c and Q^ = ^Co (see p. 79). Then (C, S, r) and (Co, So, Го) 
are subspaces of (£, Ê, e). We call (C, 2, y) the convergence cube space and 
(Co, So? To) the convergence cube vertex space. 

The relation between the convergence topology JQ of the convergence cube vertex 
space (Co, £0? To) of the dimension P(l) and the usual Cartesian topology и on Co 
is described in the following: 

Statement, и = y^ if and only if P{l) й ^̂ o-

Proof. It is well known [6] that in the case when P(/) = Ко the spaces (CQ, Уо), 
(Co, M) and the Cantor discontinuum are homeomorphic. 

Now, let P(l) > KQ. Let A be the set of all points ( z j of Co such that z^ = 1 for 
at most countable number of a. Denote by l(z^), where ( z j e A, the set of all a G / 
such that z^ = 1. If (z^) e A, n = 1,2, ..., and go - Hm {z^) = ( y j , then z^ = 0 

00 

for each осе I — \J I^z'^ and each n. Consequently (y^ e A so that A = ус^А. Since 
« = i 

P(/) > Ко, the point (̂ )̂ of Co, where t^= 1 for a G /, is not contained in A. On the 
other hand, each ^-neighbourhood of [t^) contains points of A so that 

(t^) euA - уоА. 

We have just proved that A = yQA = y^'A Ф и A. From this and since e Ф e'"̂  
it can be deduced that in convergence Euclidean space E of the dimension ^ 2*"'° 
we have e Ф s'"^ ф w Ф e, и being the usual Cartesian topology on E. 

A convergence space is said to be separated if any two distinct points of it can be 
separated by two disjoint neighbourhoods. A convergence space (L, 8, X) is regular 
if for each point xe L and each Я-neighbourhood U(x) of x there is a Я-neighbourhood 
F(x) of X such that A F(x) с (7(x). It is not difficult to construct topological conver­
gence spaces which are not separated and those which are separated but not regular. 
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The usual definition of completely regular space is not suitable for spaces in which 
axiom (F) is not fulfilled. This is shown by the following consideration: Let (P, v) 
be a Ti closure space not fulfilling axiom (F). Then there is a set Л c: P and a point 
XQ 6 vvA — vA. I f / i s any real valued function continuous on P such that / (x) = 0 
for each x evA, then also /(XQ) = 0 because every i;-neighbourhood of XQ contains 
points of vA. In particular, if / is a continuous function on a convergence space 
(L, Ï, X) such that f{x) = 0 for each xeB, В cz L, then f{x) = 0 for each x e X'^'B, 

Instead of complete regularity we are going to introduce the notions of sequential 
and a sequential regularity in convergence spaces as follows: 

Let (L, S, X) be a convergence space. Denote by a a property such that it can be 
decided whether or not any real valued continuous function / o n L has the property a 
or not. 

A convergence space (L, S, X) is called a sequentially regular [a sequentially regular] 
space if for each point XQE L and each sequence of points x„ G L no subsequence of 
which £-converges to XQ, there is a real valued continuous function / on L [having 
the property a] such that the sequence {f(x„)] does not converge to /(XQ). 

If 2* is a largest convergence, then the definition of sequential regularity can be 
simplified; this is shown in the following 

Lemma 4. A convergence space (L, S, X) is sequentially [a sequentially]^ regular 
if and only if for each point XQ e L and each sequence of points x„ e L not 
i'^-converging to XQ there is a real valued continuous function f on L \having 
the property a] such that {/(^„)} does not converge to fixo). 

As a matter of fact, if (L, £, X) is sequentially [a sequentially] regular, 2* the largest 
convergence in [ Ï ] , XQE L and {x„} a sequence not 2*-converging to XQ then, by 
Theorem 2, there is a subsequence {x„.} no subsequence of which 2-converges to Xo 
so that, by the definition above there is a continuous function / on L [having the 
property a] such that {/(^„J} and consequently {f{x„)} does not converge to / (XQ). 
The proof of the converse is evident. 

In the sequel we shall consider two special properties a' : 0 ^ /(x) ^ 1 for each 
X e L and : / (x) = 0 or = 1 for each x G L. In this case instead of a' we shall sometimes^) 
write <0, 1> and {0, 1}. From the definition it immediately follows that each a 
sequentially regular space is sequentially regular as well. Notice that the convergence 
space (L3, Î3, A3) is {0, 1} sequentially regular. 

Now, we are going to determine the location of sequentially regular and {0, 1} 
sequentially regular spaces in the classification of the convergence spaces. First of all 
we shall prove the following 

Theorem 7. Each sequentially regular space is separated; its topological modific­
ation is also separated. 

^) In [9] <(0, 1)> sequential regularity is called ,,halbe Regularität". See also [10]. 



Proof. Let a and b be two distinct points of a sequentially regular space (L, S:, X). 
In view of (o^o) the constant sequence {b} does not 2-converge to the point a. 
Consequently there is a continuous function f on L such that f{a) ф /(b). Hence 
{XEL: \f{x) - f{a)\ < 3} and {XEL: \f{x) - f{b)\ < ô}, where Ô = | | / ( a ) -
— f{b)\, are two disjoint Я-neighbourhoods of the points a and b. Moreover, both 
neighbourhoods are Я-ореп in L so that they are also Я^^-neighbourhoods of the 
points a and b in the topological space (L, Г""'). 

Theorem 8. Let (L, i, X) be a sequentially regular space fulfilling the first axiom 
of countability. Then it is regular. 

Proof. Suppose, on the contrary, that there is a point XQE L and a Я-neighbourhood 
l7(xo) such that the Я-closure of each Я-neighbourhood of XQ has points common 
with L — U{XQ). Denote by V„ the elements of a countable strictly monotone complete 
system of Я-neighbourhoods of the point XQ and choose points x„ e 1V„ — U(xo)-
Then, by Theorem 2, the sequence {x„} does not £*-converge to XQ. Since each 
Я-neighbourhood of x„ contains points of V„, it is easy to deduce that lim f{x„) == /(XQ) 
for each continuous function / o n L. By Lemma 4 this is a contradiction. 

Let us notice that the convergence 2^° dimensional Euclidean space £2^0 fails 
to be regular [15]. Nevertheless £2̂ *0 is sequentially regular. As a matter of fact, 
let /0 and /„, n e iV, be elements of £2^0 such that no subsequence of {/„} converges 
to /0. Then there is a real number a such that {/„(0)} does not converge to fo{a). 
The function cp such that (p{f) = / (a ) for each feE2^o is sequentially continuous 
on £2^0 and such that the sequence {(p(fn)} does not converge to (p{fo)-

In [8] I constructed a regular convergence space Q such that each sequentially 
continuous function / on Q is constant. Therefore every regular convergence space 
need not be sequentially regular. In [ U ] it is proved that a sequentially regular space 
need not be {0, 1} sequentially regular. 

Denoting by ^, 5, R, sR, {0, 1} sR the general, separated, regular, sequentially 
regular, (0, 1} sequentially regular convergence space and by -> the direction of the 
specialization then we get the scheme of the classification of convergence spaces as 
follows: 

"^ ^\sR-^{OA}sR. 

Remark . We have shown that the sequentially regular space £2^0 is neither regular 
nor topological space. Under the supposition that 2^° = K^ I constructed the 
topological {0, 1} sequentially regular space Lg which is not regular. 

Let {x^„} be a one-to-one double sequence of points. Denote by 21 the system of 
all cross-sequences {x^„^}^=i of {x,„„}. Define a binary relation -< in 21 as follows: 
{^mttm} ^ {^mp,n} whenever n^ < p„, for nearly all n. Then the ordering < directs 
the system 21 so that 2i is partially ordered. 
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Suppose that 2^^ = К^. Then from a result of W. SIERPINSKI [14] it follows that 
there is a completely ordered subsystem %Q cz % of elements 

Äo<At<...A^<.., 

^ < (Jul, which is cofinal in 21. 
Now, let L9 be the set of all points x„,„, XQ and of points y^, ^ < œ^. Define a con­

vergence S9 on Lg: each constant sequence {x} Sg-converges to x, x e Lg; each sub­
sequence of {̂ ш«}/Г=1 ?9-converges to XQ for every m = I, 2, ...; each subsequence 
of A^ ^9-сопverges to y^, ^ < со^. 

The convergence space (Lg, ig, Я9) is a topological space. As a matter of fact, 
each point x^„ is isolated and its order B(x^„) = 0 whereas each point z E Lg, z ф x^„, 
has order S(z) = 1. Hence A с Lg implies Àg?.gA = XgA. 

00 00 

The space Lg is not regular: The set U{x^ = (XQ) U (J IJ x^^ is a neighbourhood 
Ш = 1 n = 1 

of XQ, by (3). Now, let V{XQ) be any neighbourhood of XQ such that V{x^ с U{XQ). 
Since £9 — lim x„„, = XQ, then, by (3), there is a sequence {p^} of naturals such that 

n 

^mn ^ K-̂ o)» n > p^, m = 1,2, .... Since 2to is cofinal in 21 there is a cross-sequence 

The space L9 is {0, 1} sequentially regular: Let z be a point and {z„] a sequence of 
points of Lg not containing z such that no subsequence of {z„] Sg-converges to z. 
It suffices to prove that there is a closed-open set Л с L containing z and not con-

00 

taining any z„. If S{z) = 0, we put В = (z). If z = y^, then we put В = ЯдЛ^ — \J z„. 
0 = 1 

Now, let z = XQ. Since no subsequence of {z„} converges to XQ, there are naturals 
00 

p^, m = 1,2,..., such that U^« '^ U U ^mn = 0- Denote by ^ a countable ordinal 
m=l n^ptn 

such that i < g for each point y^ of Uz„ and such that {x^p^} -< Л^. Denote A^ = 
00 

= {xmrjm=i and put s^ = iTiax {p,„, r^}); then the set В = (XQ) U IJ 3̂ ^ '-' U U m̂n 
e^(* m=l n^Sm 

. is open by (3). In order to prove that В is closed, suppose {t„} is a one-to-one sequence 
of points in В converging to a point t E Lg. Then either ^ = JCQ so that t E B, or 
t = y^^ for a suitable ^o- If ^0 < ^ then A^^< A^ which would contradict the fact 
t^ e A^^ and t„ E В for nearly all n. Consequently Q S io ^^^ ^ ^ ^• 

Theorem 9. Sequential regularity is a topological and hereditary property. 
Proof. Let (L, S, Я) be a sequentially regular space; let h be a homeomorphism 

on L onto a convergence space (M, SDÎ, //). Let ĵ o ̂ î î Ую ПЕ N,bQ points of M such 
that no subsequence of {y^} SW-converges to Уо- Then no subsequence of {h~^{y^} 
£-converges to /i~^(jo)j since Lis sequentially regular, there is a continuous function/ 
on Lsuch that {f(h~^(y„))} does not converge to f(h~'^{yo)). Then //i""Ms a conti­
nuous function on M such that {fh~^(y„)} does not converge to /й~^(Уо)- Conse­
quently (M, 5Ш, /i) is a sequentially regular space. 
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Now, let (P, ^ , ж) be a convergence subspace of a sequentially regular space 
(L, S, Я). Let Zo be a point of P and {z„} a sequence of points Z„E P no subsequence 
of which ^-converges to ZQ. By Lemma 2 no subsequence of {z„} 2-converges to ZQ; 
consequently there is a continuous function / o n L such that {f{z„)} does not converge 
to /(zo). Hence (P, ^ , тг) is a sequentially regular space, the partial function fp being 
continuous on P. 

Theorem 10. The convergence Cartesian product (L, Î , Д) o/ convergence spaces 
(L^, S*,/Ij, a G/, is sequentially regular if and only if each space L^, a e /, I's 
sequentially regular. 

Proof. Suppose that each (L^, S*, Я̂ ) is sequentially regular. By Theorem 5 we 
have £ = £*. If {(z^},^^! is a sequence of points of L not £*-converging to a point 
(zJ e L then, by (8), there is an index у el such that the sequence {z"}^=:i does not 
S*-converge to ẑ  in L .̂ Since L^ is sequentially regular, there exists a continuous 
function of on Ly such that {öf(z")}^=i does not converge to g{zy)^ Therefore the 
function / such that /((x^)) = g{x^ is sequentially continuous on L and such that 
{/((^"))}"=i ^^es not converge to /((z,)). 

The proof of the converse follows immediately from Theorem 9. 

Theorem 11. The convergence space (L, S, A) is sequentially regular if and only 
if it is homeomorphic to a subspace of a convergence Euclidean space of the 
dimension ^ 2^°^^^\ 

Proof. The sufficiency of the condition follows instantly from^^) Theorems 9 
and 10. 

Now, suppose that (L, £, Я) is a sequentially regular space. Denote by g(L) the family 
of all continuous functions / , , a el, on L. Let (£, g, e) = X{(L^, $5, Я5) : L^ = 
= L5, a el} be the P(/)-dimensional convergence Euclidean space, where P(l) = 
= P(S(b)). Since P(S(L)) ^ (2^°)^(^\ we have P(l) ^ 2^°^^^^ Prove that the map 

(9) Ф) = (/Xx)) where x e L, (Л(х)) e E and / , e S(L) 

is a homeomorphism^^) on Lonto the subspace (p{L) cz E. As a matter of fact, if x 
and у are two distinct points of L, then fy{x) ф /^(j;) for a suitable index у el, Lbeing 
sequentially regular. Hence (p is one-to-one map of L onto ^(L). Now, if £ — lim x„ = x 
in L, then lim /«(x«) = fj^x) for each a G / , /« being continuous on L and S5 = £*. 
Hence Q — lim < (̂x„) = (p{x); thus <̂  is continuous on L. 

On the other hand, if 2 ~ lim (z") = (z^), where (z<,) G (p(L) and (z^) G ^ ( L ) , ne N, 
then there is a subsequence {(z"')}^=i of {(z")} such that {(]o~^((z '̂))} ^-converges to 

^^) Notice that (L5, ^5,^5) is a sequentially regular space such that ^5 = £* and that the 
convergence space containing only two distinct points a and h with the usual largest convergence is 
{0, 1} sequentially regular. 

^ ^) The map defined in (9) will be called a special homeomorphism on L and will be denoted 
by the thick letter q>. 
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the point (p~\(z^) in L; otherwise there would be a continuous function /^e§(L) 
on L such that the sequence of real numbers {f^((p~^[(zl)))}^^^ would not converge 
to the real number/^(<p~ 4(^a)))' ^ being sequentially regular. Since /Д<^~ ̂ ((z"))) = z^ 
and fg[(p~^((z^) = Zg, the sequence {z^j^^j would not converge to z^; this would 
contradict the assumption that 2 — lim (z^) = ( z j . Consequently, the inverse 
map </)"Ms also continuous, by (5). 

Remark . If we replace the postulate of sequential regularity by the assumption 
that the space is a' sequentially regular, then Theorems 9 and 10 remain true and 
Theorem 11 can^^) be formulated as follows [10]: 

The convergence space (L, i, X) is <0, 1> sequentially [{0, 1} sequentially] regular 
if and only if it is homeomorphic to a subspace of the convergence cube space 
[convergence cube vertex space] of the dimension ^ 2^^^^^\ 

The proofs of the theorems are analogous to the proof above and involve no 
difficulties; therefore they may be omitted. 

Let (L, S, X) and (M, SW, /i) be convergence spaces. Let (L, S, X) be a subspace of 
(M, 5Ш, ß). Let / be a continuous function on (L, 2, X) and g a continuous function 
on (M, 5Ш, fi), И X E L implies / (x) = g(x), then g is called the continuous extension 
of/. 

Lemma 5. Let (L, S, Я) an^ (M, SK, fi) be convergence spaces. Let (L, i, Я) b^ 
a subspace of(M, Wl, /x) swc/i that jx^^L = M. Then each continuous function f on L 
has at most one continuous extension g on M. 

Proof. Suppose, on the contrary, that there are two different continuous exten­
sions g and g' of a continuous function f on L onto M. Then there exists a point 
Xo e M of the least possible order 5 = ^(^o, L) in M such that g{x^ Ф g'{^o)-
Since/(x) = g{x) = g'{x), x e L, then ^ > 0. Consequently, there is a sequence {x„} 
of points x„ e/x^~^L which SDî-converges to XQ. Since ^̂  and g' are real valued conti­
nuous functions on M and S5 = £*, it follows that д{хо) = lim é̂ (x„) = lim g'{x^ = 
= g'{xf^\ this is a contradiction. 

Définition. Let (L, S, Я) and (S, @, a) be sequentially regular spaces. Denote by a 
a property such that for each real valued continuous function / o n L it can be decided 
whether it has property a or not. Then (S, ©, a) is called the sequential [a sequential] 
envelope (abbr. cr-envelope) of (L, S, Я) if the following conditions are satisfied: 

aO) (L, $, Я) is a subspace of (S, ®, cr). 

a l ) L is (7^^-dense in S. 



<т2) Each continuous function / o n (L, Î, X) [with the property a] has a continuous 

extension / onto (5, @, (J). 

аЗ) There is no sequentially regular space (S', ®', d') containing (S, @, a) as 
a proper subspace and fulfilHng a l ) and a2) relative to L and S\ 

Theorem 12. Le^ (L, i, X) and (M, SW, f.i) be sequentially regular spaces. Let Lbe 
a subspace of M such that if^^L = M. Let <p be a special homeomorphism on Linto 
the convergence Euclidean space (£, (i, e) of dimension P(^(L)). Then each conti­
nuous function on L can be extended to a continuous function on M if and only if 
there is a homeomorphism h on M into 8"^^(p(^L) such that /г(х) = (p{x), ^ e L. 

Proof. Let ç> be a special homeomorphism on L onto the subset of E: 

(p(L) = {(fXx)) EE:f^e g(L), x G L, a G /} . 

Suppose that each continuous function / e g ( L ) can be extended to a continuous 
function g e ^{M). According to Lemma 5 there is a one-to-one correspondence 
on § ( L ) onto '^(M). Denote by g^ the corresponding continuous extension of / , , 
a e / . Consequently there is a special homeomorphism ф on M onto the subset of £ : 

ф{М) = {{g^x)) eE:g,e ^(M), x E M, a E /} 

such that ф(х) = (p[x), x e L. 
Now, assume that for all ordinals ^ < r], where 0 ^ ^, ц ^ o)^, we have just 

proved that ф{^^Е) с e^(p(L). If г] is isolated, then ij/ifi'^L) с 8il/(i£^~^L) a s'^ip^L), 
by (1). If rj is not isolated, then lAf̂ ^b) = il/{(J /a^L) a \J s^(p{L) = е > ( 4 - Thus, by 

transfinite induction we have proved that 

(10) \1/{M) с e '̂̂ V(L) 

With respect to (10) it is sufficient to put h{x) = i^(x), xeM. 
Now, let (̂  be a special homeomorphism on L onto (p{L) a E. Let /i be a homeo­

morphism on M into s"^' (p{L) such that h{x) = (p{x), x e L. L e t / b e any continuous 
function on L. Then there is an index OCQEI such that / = Л^. Define a projection 
mapping: p{{z^)) = z^^ for each (z^) e e'"^ (p{L). The function p/z is continuous on M, 
by (4), and h{x) = (p{x), x e L, implies ph{x) = / (x) , x e L. Consequently ph is 
a continuous extension o f / 

Corollary 3. Let (L, S, Я) and (M, 5Ш,/i) be sequentially regular spaces. Let L 
be a subspace of M such that fi^^L = M. Let (p be a special homeomorphism on L 
into the convergence Euclidean space (E, @, e) of dimension P@(L)). Then each conti­
nuous function on Lean be extended to a continuous function on M if and only if 
there is a special homeomorphism ф on M into e^'^^ <^(^) such that ф(х) = (p{x), 
xe L. 

The proof follows instantly from Theorem 12 and from (10) by putting /Î(X) == ф{х); 
xe M. 
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Theorem 13. Let (L, £, X) be a sequentially regular space and (S, @, a) a conver­
gence space. Let L be a subspace of S. Let (p be a special homeomorphism on L into 
the convergence Euclidean space {E, (5, s) of dimension P{%(L)). Then (S, @, a) is 
a sequential envelope of (L, 2, X) if and only if there is a homeomorphism h on S 
onto s"^^ (p(L) such that h[x) = (p{x), x e L. 

Proof. Let (S, @, a) be a (т-envelope of (L, Й, Я). Let (p be a special homeomorphism 
on L onto the subset of E: 

q>{L) = {(Л(х)) 6 £ : Л e §(L), xeL,ael}. 

By a l ) , G2) and Corollary 3 there is a special homeomorphism ф on S into s^^ (p(L) 
such that ф{х) = (p{x), x e L. Suppose, on the contrary, that there is a point 
b e s"^' (p{L) - il/{S) with the least possible order 9 = S{b, (p(L)) in E. Add a new 
element a to the set S, put h'(x) = \l/{x) for x e S, /г'(а) = b and define a conver­
gence & on the set 5" = S u (a) as follows: 

If X is a point and {x„} a sequence of points of S\ then {{x„}, x) e ©' whenever 
S — lim /г'(х„) = /г'(х). In such а way we get a convergence space (S\ @', a'). 
Evidently h'(x), x e S', is a homeomorphism on S" onto the convergence subspace 
/i'(S') с ê"̂^ <р(Е). Hence, from Theorem 11 it follows that (S', @', a') is a sequen­
tially regular space. It is easy to see that ({x,,}, x) G @ implies ({x„}, x) e ©' and 
({y j , y) e®\yeS, y„eS implies ({y„,}, }̂ ) G @, {з;„.} being a suitable subsequence 
of {};„}. Therefore, by Lemma 2, (S, @, a) and consequently also (L, 2, A), are subspaces 
of (S\ ©', Ö-'). From Lemma 3 it follows that the order S(a, L) in (5", @', a') equals 
the order ^ = S{b, /z'(L)) in (£, g, e). Hence a e a'^L. and so S' = d'^^L. Since h\x) = 
= i^(x) = (p{x), X e L, then in view of Theorem 12, each continuous function on L 
can be continuously extended onto S'. Consequently all conditions aO), a l ) and G2) 
are satisfied with respect to the spaces L and S', This contradicts the property аЗ). 
Therefore there is a special homeomorphism ф on S onto 

(11) ^(S) = 8 - > ( L ) . 

Consequently we can put h(x) = ф{х), xe S, 
Now, suppose that a special homeomorphism (p on L onto ^(L) cz £ is given and 

that there is a homeomorphism h on S onto e"̂ ^ ç>(L) with properties mentioned in 
Theorem 13. Since h{S) = e"̂  (p{L) and < (̂L) = /z(L), then S = cr'̂ ^L by Corollary 2. 
Consequently, a l ) is true. In view of Theorems 11 and 12 the property a2) is also 
satisfied. The validity of аЗ) remains to be proved. 

Suppose, on the contrary, that there is a sequentially regular space (S, @, ä) 
containing (S, @, a) as a proper subspace and fulfilling a l ) and a2) with regard to 
the spaces L and S. Then there is a least ordinal S such that ä^L — S ф 0; choose 
a point ä e d^L - S. Then ^ = ^(ä, L) in S and L c: S imphes that ^ > 0 and 
ö" ~ ^L — S = 0. By a2) and Theorem 12 there is a homeomorphism й on S into 
г"^ ^(L) such that Я(х) = ^(x), xeL, We shall prove that й(х) = /i(x) for each. 
xea^-^L. 
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Assume that h{x) = h(x) for each x e a^Lând each ^ < С? where О < С й ^ — 1-
If С is а limiting ordinal there is nothing to be proved. If С is an isolated ordinal and XQ 
a point of cr̂ L, then there is a sequence {x„} of points x„ea^~ ^L which ©-converges 
to XQ. Then h(xo) = 2 — lim /z(x„) = @ — lim h(x„) = h(xo). 

Now, choose a sequence {?„} of points t^e S n ö^'^L which ©-converges to the 
point a. Then g - lim й(г„) = Щ)Ег''' (p{L). Since â ^ " ^ L - S = 0, we have 
(T^-^L= S n д^-'и consequently g - lim h{Q = h{â). Since h{S) = s'"' (p{L) 
then h{ä)eh{S), h~'^(h{ä))eS and © - lim ?„ = h~\h{ä)). By Lemma 2 there 
is a subsequence {f„.} of {t„} which ©-converges to the point h~'^(h(ä)). Since 
h~^{h(ä)) Ф fl and because the axiom (^o) î  true, we have a contradiction. 

Corollary 4. Let (L, S, Я) and (S, ©, Ö") be sequentially regular spaces. Let L be 
a subspace of S. Let (p be a special homeomorphism on L into the convergence 
Euclidean space (E, g, г) of dimension P(^(L)). Then S is a sequential envelope 
of L if and only if there is a special homeomorphism \j/ on S onto e^^ ^{^) such that 
ф(х) = (p(x), X e L. 

The proof follows immediately from (11) and Theorem 13 by putting h(x) = ф(х), 
xeS. 

Theorem 14. Let (L, £, X) be a sequentially regular space. Then there exists 
a sequential envelope (S, ©, a) of (L, S, Я). 

Proof. Let <p be a special homeomorphism on Lonto (p[L) a E. Choose a set S 
containing L as a subset such that S — L and e"^' (p(L) — <^(L)have the same power. 
Then there is a one-to-one map 5 on S onto e"̂ * (p(L) such that s(x) = (p(x) for each 
XEL. Define the convergence © on S as follows: ({X„},X)G© whenever ({s(x„)}, 
s(x)) e Q, where XE S and x„ E S. In such a way we get a convergence space (S, ©, a). 
The map s is a homeomorphism on (5, ©, a) and (L, S, X) is a subspace of (S, ©, a). 
Consequently (S, ©, cr) is a (j-envelope of (L, £, Я), by Theorem 13. 

Theorem 15. Let (S^^\ &'\ a^'^) be a sequential envelope of a sequentially regular 
space (Li^\ i^'\ Я '̂̂ ), i = 1, 2. Let ho be a homeormorphism on ß^^ onto iS^K Then 
there is a homeomorphism h on S^^^ onto Ŝ ^̂  such that h(x) = ho^x) for each x E li^\ 

Proof. Let (pi be a special homeomorphism on li^^ onto 

<p,{ß'>) = Шх)) eE:f^e %{и% x e li'\ « e /} . 

Since g e 5(L'^') if and only if g = ßö ^ where fe ^(L^i'), then there is a one-to-one 
correspondence on Ж^'") onto g(L< '̂) such that gr, = fji^\ a el. Consequently 
(P2{y) = (gjy)^, у e li^\ is a special homeomorphism onto 

Since Лйо"Ч>') = ^ « W f̂*" ^^''^ \ r ''"^''^' ' ' ^ ^ " * ' we have <p,{x) = 9>2(йо(х)), 
X 6 L<'); therefore ç>.(L<̂ >) = </>2fL<̂ ') and a - ^,(LU)) ^ ^. . ^^^^,,,J ^^^ «̂  ^^ 
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According to Theorem 13 there is a homeomorphism h^ on S '̂̂  onto e"̂ ^ (pi{li'^) 
such that hi(x) = (pi(x), x e li^\ i = 1, 2. Then h = /ij^/^i is a homeomorphism 
on S^^^ onto Ŝ ^̂  such that h{x) = ho(x) for each x e ß^\ 

Corollary 5. Let (5^, @i, сг̂ ) anJ (S2, @2? ^2) ^^ sequential envelopes of a sequen­
tially regular space (L, £, X). Then there is a homeomorphism h on S^ onto S2 such 
that h(x) = X for each x e L. 

Proof. If suffices to be put in Theorem 15: L^^^ = L, £̂ '̂  = Î, À^'^ = À, i = 1, 2, 
and ho^x) = X for each x e L. 

Now, let us show that there exists a sequentially regular space (L, ?, Я) such that 
a(L) Ф L. We are going to construct such a space. 

Let Lio be the set of all pairs (a, /c), a being an ordinal ^ ш^ and /c a natural. 
Define the convergence S ^ ^̂ ^ ^10 ^s follows: ({z},z)eSio f̂ ^ ^^^h Z G L ^ J 
({(a,„ 1)}, (a, 1)) G Sio whenever lim a„ = a. ({(a,„ /c)}^=i, (coi, /c)) G S ^ whenever 
/c > 1 and a„ ф a,„ for n Ф m. ({(a, /cy)}JLi, (oî:, 1)) G S ^ for each a ^ coj and each 
/ĉ  < /c2 < .... In such a way we get a convergence space (L^Q, S ^ , ЯЮ)- Notice 
that each point (a, k), a ф co^, к Ф 1, is isolated in L^Q and that the set U (a, /c), 

where /c ф 1, is closed-open. Now, let a < co^; arrange all ordinals (̂  ^ a in a one-
-to-one sequence {<̂ „}„°li and then choose any sequence of naturals Pt < P2 < •••• 

00 

Evidently, the set \J \J ((̂ „, k) is closed-open in L^. It will be denoted by 

[«;R.;p„}]-
Prove that (L^ , Sio? ^10) is sequentially regular. Suppose that («o, /CQ) is a point 

and {(a„, /c„)}^=i a sequence of points of L ^ such that no subsequence of it 
Sio-converges to («o, ко). It suffices to find a closed-open set G such that (a„, /c„) G G for 
infinitely many naturals n whereas (ao, ^0) ^ ^10 — ^- If there is a natural /c' > 1 
such that k„ = /c" for each n e N' where iV' is an infinite subset of naturals, then put 
G = и (a„, /с') — (ao, ко) if(oco, ко) = (со^, к') (in this case G is a finite set of isolated 

neN' 
points) or G = и (a, к') — (ao, ко) if (a^, ^̂ o) Ф (co^, k'). Hence we may suppose 

that either k„ = 1 for all n от k„ Ф к„, for n Ф m. 
First suppose that ко > 1. Then we put G = Цо ~ {'^o^ ^0) if ao Ф cô  or G = 

= Lio — [J {^^ ^0) if ^0 — ^i- Now assume that /co = 1. Denote by jö the least 

ordinal such that oc„ ^ ß for each n G iV'' where Л '̂' is an infinite subset of naturals. 
If ao < î  then put G = L^o - K ; {<?«, Pr}]- If ^0 > ß then put G = (J (a„, fe„) u 

u [jö; {(̂ „, p„}]. In the remaining case OCQ = ß there is a subsequence {(a„., /c„J} of 
00 

{(a„, A:„)} such that a„. < ß and /c„. > 1 for all i so that G = \J (a„., /c„.) is a closed-
-open set not containing the point (ao, l). ^" ^ 

Now, prove that each continuous function / on the subset Ь ц = L^o ~" (< î» 1) 
can be extended to a continuous function on Ью- Define the convergence Йц on L^^ 



as follows: {{x„}, x)e i^^ whenever [Jx„ a L^^, xeL^^ and ([x„}, x)e i^Q. Then 
(Lii, Sji, Яц) is a sequentially regular subspace of ( Ь ^ , Sio> ^lo)» by Theorem 9, 
and Яю^п = Ью- L e t / b e a continuous function on Lĵ .̂ Let /c > 1 be a natural. 
Since Sj 1 — lim (a„, k) = [œ^, /с) if aj < a2 < ..., then there is a countable ordinal y^ 
such that 7;̂  ^ a < cô  implies / (a , /c) = Дш^, /с). From the property of the set of 
all countable ordinals it follows that there exists a countable ordinal у exceeding all y,̂ , 
к = 2, 3, ..., and a real number с such that 7 ^ a < ш^ implies Да, 1) = с. Since 
£ji — lim (у, /с) = (у, 1), then lim Д7, /с) = с. Consequently f(y, к) = Дш^, к), 

к к _ 
/с = 1, 2, ..., implies lim Дш^, к) = с. Now, define Дх) = Дх), х е L^^ andДшl, 1) = 

к 
= С. Then / i s а continuous extension onto (L^o, ^ю, ^ю) of the function / From 
property аЗ) it follows that (7e{Li^) Ф Ь^^. 

Remark . If we replace the assumption that the sequential en s^elope S is sequentially 
regular by the postulate that it is a convergence space, then Theorem 13 need not be 
true. This is shown by the following example: 

Add a new element (co^, O) to the set L^Q, denote L12 = Lio u (co ,̂ 0) and define 
the convergence ^^2 ^^ A2 ^s folows: ({x}, x) e £^2 ^^^ ^^^h x G Li2-

If (ш^, 0) Ф X Ф (coi, 1), then ({x„}, x) G £12 whenever ({x„}, x) G ï ^ -

If (coi, 0) = x, then ({x„}, x) G £12 if {^n} is a subsequence of {(coj, 2^/)}^Li. 

If (û>i, 1) = X, then ({x„}, x) G ?i2 if {^n} is a subsequence of {(co ,̂ 2n — l)}^=i. 

The convergence space (L125 ^12? ̂ 1̂2) is not sequentially regular^ ^). The sequentially 
regular space (Ьц, ^ ц , Я^) is a subspace of (L12, £12? '^ii) such that Я12Ь11 = Li2 
and that each continuous function on L^i has a continuous extension^^) on L^2' 
From Theorem 11 it follows that the space L12 is not homeomorphic to any subspace 
of a convergence Euclidean space (E, (i, e). 

Let X be an abstract point set and X the system of all its subsets. The following 
definition of the convergence 96 on the system X is well-known: ({^„}, Л) G 3£ whenever 

00 00 00 00 

^ = и Г\ ^n ^^ Г\ П ^л- The convergence dc fulfills [12] all four axioms of conver-
fc=l n=k fc=ln=k 

gence (<^o) ~ (-^з)' Consequently (X, 3£, ^) is a convergence space; it will be called 
the convergence system of sets. 

Theorem 16. Let X be a set and X the system of all subsets of X. Then the conver­
gence system (X, 3£, <̂) (5 homeomorphic to the convergence cube vertex space 
(Co, ^0 ' Уо) ö/ dimension P{X). 

^ ^) The easy proof may be omitted. 
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Proof. Put / = X and define (p{Ä) = (/,(^4)), xel, ÄeX, whereby f^{Ä) = 0 
or = 1 according to whether xeX — AovxeA. Then cp is a one-to-one map on 
X onto CQ. 

Now, let 36 ~ lim A„ = A and XE X; then x G Л if and only if lim /Х{А„) = 1 and 
xe{X - A) if and only if Um fx{A„) = 0. Consequently QQ - lim (p{A„) = (р(Л). 

Conversely, suppose that So "" ^"^ (^") = (^x) iii Q ^^^^ denote B„ = (/)~^((z")) 
00 00 

and В = (/}"^((z^)). If X e ß, then z^ = 1 and Hm z" = z^ implies x G (J f) ß^ and 

00 CO 00 00 

so X G П и ^nl ^^ the other hand, if x G П U n̂» then z" = 1 for infinitely many n 
k=ln=k k=l n=k 

OD 00 

and since lim z^ = z^, we have z^ = 1 so that x G В. Therefore В = f) \J B„ = 
k=ln=k 

00 00 

= и n B„. Hence *' - lim (p-'({z:)) = <p-i((z,)). 
k=in=k 

Let (X, 36, ^) be a convergence system of all subsets of a set X. Let Д be a conver­
gence subsystem of (X, 3:, i;). From Theorems 16 and 11 it follows that (4, ЭЕд, ^^) 
is a {0, 1} sequentially regular space. Since Â is homeomorphic to a subset of the 
convergence cube vertex space, it follows that the study of convergence topological 
properties of convergence systems of sets is essentially the same as the study of the 
convergence structure of the convergence cube vertex space. 

From this consideration it can be deduced that each {0, 1} sequentially regular 
space is homeomorphic to a subspace of a convergence system of all subsets of 
a point set X of a suitable cardinal. For example the convergence space (L^, S*, Я )̂, 
/ = 1, 2, 3, 4, 9, 10, 11, may be realized by convergence systems of sets. 

The following questions might be of interest: What is the relation between the 
sigma ring a(E) of a ring £ of sets and a sequential envelopes Ö" (̂H) of the ring £? 
What is the relation between the system of all Baire functions and a sequential 
envelopes of the system of all real-valued continuous functions? 

Remark . In [10] I used the notion of <0, 1> sequential regularity instead of 
sequential regularity. It is worth noting that both notions are the same. As a matter 
of fact, a convergence space (L, £, X) is sequentially regular if and only if it is <0, 1> 
sequentially regular. It is clear that <0, 1> sequentional regularity implies the sequen­
tial regularity. On the other hand, suppose that Lis sequentially regular; let {x„} be 
a sequence of points and XQ a point of L such that no subsequence of it converges.to XQ. 
Then there is a continuous function f on L such that {/(x„)} does not converge to 
/(xo) so that |/(x„) — /(^o)| > ^ ^^^ ^ suitable с > 0 and for infinitely many n. 
Now, it suffices to put g(x) = (1/c) |/(x) — /(xo)| for all x e L such that 
|/(x) - /(xo)| й с and g{x) = 1, if |/(x) - /(xo)| > с Consequently, L is <0, 1> 
sequentially regular. 

It should be noticed that the definition of a <0,1> sequential envelope ö-g(L) of 
a topological space L which is a completely regular convergence space is to a certain 
extent analogous to the definition of Stone-Cech compactification j5(L), viz. as to the 
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conditions aO), al) and a2). However, both envelopes ß(L) and (J^{L) can differ 
substantially from each other. For instance, let P be an infinite isolated space. Since 
ß(P) is compact, we have P Ф ß{P). On the other hand, it is easy to see that ö-g(P) = P. 
From this example it follows that the sequential envelope of a topological space need 
not be compact, not even countably compact. 
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Резюме 

О ПРОСТРАНСТВАХ СХОДИМОСТИ 
И ИХ СЕКВЕНЦИОНАЛЬНЫХ ОБОЛОЧКАХ 

ЙОСЕФ НОВАК (Josef Novak), Прага 

Сходимостью £ на множестве L мы разумеем подмножество декартова про­
изведения Ц X L, где Ц — система всех последовательностей {x„} точек х„ е L 
удовлетворяющих аксиомам Фреше (с̂ о)? (^ i ) и {^i)- Замыкание ХА множества 
Л а L— это множество всех точек х G L, к которым существует такая последо-
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вательность точек х„ е Ä, что ({х„}, х) е £. Отображение Д является секвенцио-
нальной топологией, удовлетворяющей аксиомам (Cj) и (С2). Сходимости ^ 
и 9Й на множестве L эквивалентны, если соответствующие секвенциональные 
топологии тождественны. Доказывается, что в каждом классе взаимно экви­
валентных сходимостей на L существует самая большая сходимость, характери­
зованная аксиомой (^з) ?3ыть наибольшей сходимостью" — это топологическое 
и продуктивное свойство (т.е. свойство декартова произведения, в котором 
сходимость определена по компонентам). На примерах показано, что в случае, 
когда сходимость в компонентах декартова произведения заменена эквива­
лентными сходимостями, может измениться и декартова топология сходи­
мости. 

Понятию вполне регулярного топологического пространства соответствует 
следующее понятие секвенционально регулярного пространства сходимости: 

Пространство сходимости L является секвенционально регулярным, если 
к каждой точке XQGL ж к каждой последовательности точек х„еL, причем 
никакая выбранная из нее последовательность не сходится к точке Хо, существует 
действительная непрерывная функция / такая, что последовательность чисел 
/(х„) не сходится к /{XQ). Пространство сходимости L является секвенциально 
регулярным тогда и только тогда, когда существует гомеоморфное отображе­
ние пространства L в евклидово пространство сходимости (т.е. декартово про­
изведение сходимости, каждая компонента которого представляет множество 
действительных чисел с обыкновенной сходимостью). 

Произведена классификации пространств сходимости. 
Секвенционально регулярное пространство S является секвенциональной 

оболочкой секвенционально регулярного пространства Lez S, если S — наи­
меньшее замкнутое множество в S, содержащее L, и одновременно наибольшее-
секвенционально регулярное пространство, обладающее тем свойством, что 
каждую непрерывную функцию / на L можно непрерывно расширить на S. 
Доказано, что к каждому секвенционально регулярному пространству L су­
ществует секвенциональная оболочка (Te{L). Приведены критерии, по которым 
можно установить, если S = (Те{Ь). Построен пример секвенционально регуляр­
ного пространства L Ф сг̂ (Ь). 

В заключение работы внимание обращено на системы множеств с обыкно­
венной сходимостью множеств. Каждая такая система является секвенциональ­
но регулярным пространством сходимости и, следовательно, существует к ней 
секвенциональная оболочка. 

100 


		webmaster@dml.cz
	2020-07-02T19:56:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




