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NOTES ON MEROMORPHIC DYNAMICAL SYSTEMS, I

OTOMAR HAJEK

(Received January 9, 1964)

In the theory of dynamical systems in the plane, one naturally needs examples; the
most elementary are linear systems (and, possibly, “polar’ systems). However, it
seems a giant step from linear systems, with an entirely trivial theory in the large, to
say polynomial systems, where even the local theory is rather involved (and the theory
in the large is quite formidable; e.g., the van der Pol equation). A possible candidate
for a class intermediate in complexity are the systems

dé, ¢

- = (P1(f1, fz) > i— = (02(51, fz)

do 0
(6, &;, @; real) with f = ¢, + ip, a polynomial in z = &, + i,; and the immediate
generalisations to f holomorphic, or rational, meromorphic. (The linear systems are
not a subclass.)

The restriction of the vector-field function f to these classes naturally has as con-
sequence special properties of the dynamical system, and some of these are the
subject of the present paper. Specifically, this paper is devoted to the qualitative
theory of cycles of these systems. It appears that ‘f holomorphic’ is a rather too
strict restriction (there are then no saddle points, etc.). Now, poles of f are “saddle-
points”; but it may not be immediately apparent whether these have any connection
with the concept of saddle point customary in differential equation theory. However,
this is simple: if f has a pole of order k at 0, then

2 =1, 2 =[f) (>k

have the same trajectories (with distinct parametrisations), and the second of these
has a critical point at 0, namely a saddle point.

Let there be given a nonvoid open subset G of the 2-sphere S%; a meromorphic
system in G is determined by a meromorphic function f on G, or by the differential
equation (in a local complex coordinate z)

dz
1 ==
() S0
with 60 real.
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A solution of (1) is a mapping z : I — G of a nonvoid open interval I = E*, which
has f(z(0)) # oo for 0 €1, and which satisfies equation (1) whenever z(#) + co; if
z(0) = oo we of course require, instead of (1), that 1/z(.) be a solution of

-
do w

at 0. It seems convenient not to define solutions through poles of f, since then unicity

of solution would not be preserved.

A trajectory of (1) is the image of a nonconstant solution of (1) with a maximal
open interval as domain of definition. A cycle of (1) is the image of a solution with
a (finite positive primitive) period. From unicity it follows that we may speak of the
period (e.g., primitive) of a cycle. A singular point of (1) is a pole or zero of f in
G < S?; zeros of f are, in a more general sense than ours, often called the critical
points of f. :

As an example, consider the system in S2, defined on E* = S? — 0 by 2z’ =
= iz?|(z — 1), and described near oo by 1/z = w, w' = iw[(w — 1). Thus there are
three singular points in S2, zeros at 0 and oo, and a pole at 1. We do not introduce the
concept of “singular points at infinity”, since this would lead to difficulties (thus the
former system would then have three, and the latter two singular points). ‘

The local theory of these systems was established by Gregor [2]. Several of his
results may be summarised as follows.

Lemma 1. Let (1) be a meromorphic system. Then

1. Every pole of f is a saddle point;

2. Multiple zeros of f are nodes if res 1/f = 0;

3. A zero of multiplicity one is either a dicritical node (iff f' is real), a center
(iff f' is pure imaginary) or a focus; moreover, then, Re f* < 0 iff the critical point
is asymptotically stable;

4. If z, is a center, i.e. if f(zo) = Ref'(zo) = 0 + Im f(z,), then all cycles C
near z, have the same primitive period T,

2ni .
(2) T= ,—m lndc Zg -
(20)
In particular, since T > 0, sgn Im f'(z,) determines ind zo, the orientation of C.

The basic idea in [2] is that the trajectories of (1) are similar (in some respect at
least) locally at a singular point e.g. z, = 0, to those of *““canonic” systems of the form

(3) z' = az"

where |m| is the multiplicity of the zero (m > 0) or pole (m < 0) of f, and a =
= lim f(z) z~™. For m # 1 there are then 2|m — 1| exceptional directions, defined
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as (unit vectors) w e E2, solutions of w' ™™ = F(a/|a|) (entrant or exitant according
as F1 is the sign taken); these have the property that if a solution z(6) tends to
zo = 0, then z(60)/|z(0)| tends to an exceptional direction, entrant for increasing 0,
exitant for decreasing 6.

Example 1. Consider again the system (1) with

f(z) = 1 G =85

Then we have the following information about the singular points of this system

singular entrant  exitant
point m type ex. dir.  ex. dir. res 1/f
0 2 node —i . i —i
1 1 saddle +eTiMt 4o/t 0
oo 1 center none none i

This example will be examined further later.

Shortly later, the present author announced [3] that there exists a homeomorphism
mapping the field of trajectories of (1) into that of (3), locally at the singular point 0
(in fact, the homeomorphism is piecewise conformal), thus removing the restriction
res 1/f = 0 assertion in 2 of lemma 1. It is intended to give detailed proofs in a sub-
sequent paper.

We will need two further results; both are trivial consequences of this local
homeomorphism of (1) and (3).

Lemma 2. Let 0 be a singular point of (1) Then there exist arbitrarily small
neighbourhoods U of 0 such that:

1. If 0 is a zero of f, then separately for each solution z(.) of (1) with z(0)e U,
z(0) e U either for all 8 = 0 or for all 6 < 0;

2. IfOis a pole of f, then in U, the set of trajectories which have 0 as accumulation
point is finite nonempty.

Two “indices” will be used. The first is the notion familiar from complex variable
theory: the index of a point z, € E* with respect to a closed rectifiable parametric

curve C < E? — z,is
. 1 dz
ind¢c zg = — -
2ni ), z — z,

If, furthermore, C is simple closed, then let int C be the bounded component
of E? — C, and set ind C = ind, z, for any z, €int C.

The second is a generalisation of this notion, the Kronecker index of a point in
a vector field. For our purposes it may be defined as follows. Given a meromorphic
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function fin G, define m(z) or m(z) for z € G thus: if z is a zero of f of multiplicity k,
set m(z) = k; if z is a pole of f of multiplicity k, set m(z) = —k; in the remaining
cases, set m(z) = 0. Thus |m(z)|, if nonzero, is the multiplicity of z in the usual
sense. Obviously

Mg, = My + My,
for meromorphic f, g in G; also (if C, = {z + re” : 6 £ 0 < 2n})

my(z) = reszji -1 fim Ldz =
f 27l r>0+ " f

= L limlmf }idz _ L limj dargf
o f .

2n r-o+ 27 r>0+

and thus m(z) is indeed the Kronecker index of z in f [1, XVI, § 4].

A general theorem going back to Poincaré (and with well known topological
generalisations) states that the (Kronecker) index of a cycle is 1. For meromorphic
systems this specialises to the

Lemma 3. Let C be a cycle of (1) with int C = G. Then
Y m(z)|indcz| = 1.
z¢C

Proof. The Kronecker index of C in the vector field of (1) is defined [1, XVI, § 4],
essentially, as the number

indC.—l— darg f
2n J ¢

where arg f is any branch of arg f (z), single-valued and piecewise continuous along C.
In the usual definition (/.c.) there is a convention on the orientation of C. However C
may be oriented otherwise, e.g. by the solution of (1) which parametrises C; the ind
factor corrects for this effect on the |.

Now for meromorphic functions f,

fdargf=fdlmlogf= Im'[ ﬁdz =21y m(z)indcz .
C C Cf .,

‘When multiplying through by the ind factor, notice that ind C .ind¢cz = ljndc zl,
since ind¢ z = 0 outside C, and in int C both factors coincide.

Our second result states that the primitive period of a cycle is completely determined
by the behaviour of f at its zeros inside the cycle.
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Lemma 4. If C is a cycle of (1) with int C < G, then its primitive period T
satisfies
T=2niYy res, (1/f)indcz = 27i.ind C. ). res, 1/f.
z¢C

zeintC

Proof. This is almost trivial: from z' = f(z) it follows that

IR f dz _
/(=(0) c /()
and the residue theorem yields our formula immediately.

Notice that formula (2) is a special case. The results of lemmas 3 and 4 may be put
in another — possibly more convenient — form.

Theorem 1. Let C be a cycle of the meromorphic system z' = f(z), int C = G.

Then
YAm(z)| = XF|m(z)] =1,
Y#Reres, 1/f =0, YFImres 1/f +0;

here Y% and ¥ denote summation over all zeros and poles, respectively, of f
in int C.
Obviously sgn Y Im res, 1/f determines the orientation of C.

Corollary. Under the same assumptions,

1. int C contains at least one zero; if it contains more than one zero, it must also
contain a pole;

2. If int C contains at most one singular point, then it must be a center;

3. If f is holomorphic in int C (e.g. a polynomial), then the case described in 2
obtains;

Example 1 (contd.). We may apply theorem 1 to the case f(z) = iz*/(z — 1)
considered previously. Since co is a center, there do exist cycles C in E?; for every
such cycle, int C must contain the unique zero 0 (corollary, 1); since m(0) = 2,
int C must also contain a pole, i.e. the pole 1. (Since oo is a center, this is obvious for
cycles sufficiently near co; however, we have proved it for all cycles of the system.)
The formula of lemma 4 then yields, for the period T of every cycle, T = 2ni. 1.
.(—i + 0) = 2m.

Theorem 1 then suggests, as most theorems do, several further questions.

In the situation described in 2 above, is int C completely filled by cycles encircling
the singular point? (An affirmative answer follows from theorem 2 or 3.)
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Problem 1. Do there exist other types of cycles except these?

If the statement of theorem 1 is interpreted as a necessary condition, is it suf-
ficient? This is vaguely put, and the answer is negative; however, we may formulate
a less ambitions problem:

Problem 2. Given a meromorphic system (1), and some zeros and poles z, of f
with Y m(z,) = 1, res,, 1/f = ia, o + 0 real. Find effective conditions for existence
of cycles C with ind¢ z, # 0. '

Now we will notice the neighbourhood of a cycle. Given the meromorphic system
(1), take a point z € G (not a pole) and consider the solution z(.) of (1) with z(0) = z.
This solution may be prolonged, either indefinitely, or until it meets a pole of f or
approaches the boundary of G. In any case we may define a function X on a subset
of E! x G such that

) SX(0.2) = f(X(0.2), X(0.2) =z, X(0,9)<G;

X is defined for all z € G not poles of f, and for all # in some open interval I, < E*
containing 0. (Then ¢(6, 0y; &, 7) = X(0 — 0o, & + in) is the familiar “characteristic
function”). ;

Lemma 5. If X(0,, zo) is defined for given 0, z,, then X(6,, z) is holomorphic
in z near z.

The proof may be carried out directly; however, the assertion is a special case of
a theorem on the analytic dependence on initial data, e.g. [1, chap. I, th. 8.2].

Theorem 2. Let C be a cycle of the meromorphic system (1). Then there is an
annular neighbourhood U of C consisting of complete cycles of (1), with the same
primitive period.

Proof. By definition, C = G and there is no pole on C. Let T be the primitive
period of C; then '

(5) X(T,z)=z for zeC.

Both sides of this equation are holomorphic in z near C (lemma 5), so that (5) must
hold in a neighbourhood U of C. Thus each z € U is on a cycle of (1) with period T.

It remains to prove that T'is the primitive period, at least for small U = C. Assume
the contrary; then there are z arbitrarily near C and cycles C(z) passing through z
with primitive periods T(z) =+ T, however, since T is at least some period of C(z),
we have T = n(z) T(z), 2 < n(z)integral. There are then two possibilities (and both
lead to contradictions).

Either the n(z) are bounded; then we may take convergent subsequences n(z) — n;
T(z) - T, (since 0 < T(z) < n(z) T(z) = T), whereupon ny = 2, T = n,T,, hencé
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T > T, > 0; also, by continuity, Ty, is a period of C; however T is the primitive period,
a contradiction.

The second possibility is that some subsequence n(z) — +o0. Now, for any two
points z(6,), z(6,) on C(z),

|2(0,) — =(6,)| =

< MT(z) = MTn(z) > 0,

f :f(z(())) d0

where M = supy | f l < + oo for small U o C. Therefore there is a point z, on C
such that any disc neighbourhood of z, contains complete trajectories (the cycles
C(z2)); in particular, there are zeros of f arbitrarily near z,, a contradiction.

This completes the proof of theorem 2.
More information may be had concerning the neighbourhood U:

Theorem 3. Let C be a cycle of the meromorphic system (1) Then there is
a (maximal) neighbourhood U of C consisting of complete cycles of (1), such
that U is a region, the boundary U consists of two components K, K, separated
by C; furthermore, each K; is a closed parametric curve consisting of complete
trajectories, singular points and boundary points of G; and either

1. K; is a single point, a center; or
2. K; consists of a finite set of complete trajectories and poles of f, at least one of
each; or

3. K; contains no zeros of f and intersects the boundary of G.

Sketch of proof. Assume z, € K; n G is a zero of f. Since every neighbourhood
of z, intersects U, from 1 of lemma 2 it follows that arbitrarily small neighbourhood
of z, contain cycles. Hence z, is a center (cf. lemma 1), and as K; is connected,
K; = z,. Thus the only zeros on K are centers, whereupon K ; degenerates.

If a nondegenerate K; — G were to contain no poles, then the function X(0, z)
would be holomorphic on K;, and thus K; would itself be a cycle (theorem 2);
application of theorem 2 to K then yields a contradiction.

If a K; ¢ G were to contain infinitely many poles or trajectories, then it would
also contain an essential singularity of f (K closed in compact S?).

Example 1 (contd.) We now have that cycles fill out region H in S* with oo as the
“outer”” boundary, and with a closed parametric curve S through the saddle point 1
as “inner” boundary. Since 0 is a zero of f, it is not in H, nor on S. Finally S can
enter 1 only with direction e™™/* ~in/4 and exit from 1 only with directions
+ ein/4'

The last group of results concerns separatrices, by which we shall understand
parametric curves consisting of a finite set of complete trajectories and singular
points of (1), containing at least one of each and oriented in agreement with the

or —e
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constituent trajectories. The components K; of theorem 3 are an instance of these,
at least if K; = G and K; contains at least two points. The following lemma is
immediate.

Lemma 6. Assume that z(.) is a solution of (1) and
z(0) > zo as 0 - 0,,
with zq a singular point and |60| = + o0 not excluded. Then

1. z, is not a center;
2. If z, is not a focus, then
z(0) — z,
i|2(60) — zo|
tends to an exceptional direction as 0 — 0,;

3. If zq is a zero of f, then |6y| = + o0; however, if z, is not a focus, then the
trajectory determined by z(.) at least has finite arc-length near z,

r

4. If zy is a pole of f, then |0,| < + c0.

dz(@)

do < +o0;

Lemma 7. A closed separatrix cannot contain simple zeros of f. '

Proof. A simple zero z, of f, not a center, is either stable or unstable, according
as Re f'(zo) < 0 or >0. Thus a separatrix cannot both enter and exit from z,.

Now we shall attempt to extend the formulas of theorem 1 to closed separatrices.
First, we have as trivial generalisation of lemma 4,

Theorem 4. Let S be a closed parametric curve in G (not necessarily simple),
consisting of a finite set of complete trajectories and poles of f, and assume that all
points z with indg z # 0 belong to G. Then there is a real « > 0 with 2ni Z res (1/f) .

.indg z = a.

Proof. From 4 of lemma 6 it follows that C may be parametrised using solutions
of (1), with the parameter varying from 0 to a finite & > 0. Then, except at a finite
number of points on S,

2miYres, L indgz = | 9 = J' 20) 4 - rda =a.
@ f sf(2) o £(2(0)) 0

Problem 3. Let S be a simple closed curve consisting of complete trajectories and
singular points of (1) (and containing at least one zero of f). Prove that Re 2 res, (1/f).
.indgz = 0.
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In this connection, it is not true that Im Y res, (1/f).inds z + 0; a counter-
example is provided by the system with f(z) = iz?/(z — 1) treated in example 1
(cf. fig. 1). '

Corollary. With the assumptions of theorem 4, in each component of E* — S
relatively to which S has non-zero index, there is at least one zero of f.

We cannot conclude, in analogy with the corollary to theorem 1, that if there is
precisely one singular point in a component of E? — S, then it must be a center.
The example mentioned again affords a counter-example. The reason why the
analogy fails may be traced to that closed separatrices need not (though cycles must)
have unity Kronecker index.

Nevertheless, it is natural to inquire about the sum of Kronecker indices of singular
points in the bounded component of a simple closed separatrix. The remaining part
of the paper is devoted to this question.

Assume there is given a system (1), and a simple closed curve S consisting of
a finite set of complete trajectories and singular points of (1); in particular, then, we
have the results of lemma 7 and 6.

Lemma 8. Let {z;}] be the singular points on S. Then
(6) Y m(z)|indsz| =1 +ind S Y ((m; — 1) v; + (3 — m;5;) sgn v)),
z¢S
with the following notation:

1 w
m; =m(z;); v;=— Arg=;

2n w;
Wo, W; are the exceptional directions (entrant, resp. exitant) of S at z;; 8; is defined
as follows: S separates sufficiently small disc neighbourhoods of z; into two curvili-
near sectors; then 6; = 0 or 1 according as int S is or not within the sector with

convex angle at vertex (within (—=, n)), locally at z;.

Proof. Please refer to Hopf’s proof [1, chap. XVI, th. 4,3] of the “cycle index
is 17 theorem.

Given a simple closed positively oriented parametric curve C = {z(c) : 0 < ¢ < 1};
omit the hypothesis that C have a smoothly varying tangent, and assume only that
z'(0) # 0 exists. Then the proof yields, at least, that the variation of argument of the
vector u(c, ) = z(t) — z(0) is 2n along any simple curve Q in the o — ¢ plane
leading from (0, 0) to (1, 1), and except for these end-points, entirely within the
triangle 0 < o < v < 1. However, if a continuous z'(s) exists for ¢, < 0 < 0,
(some 0 < g, <0, < 1), then we may also admit simple curves Q which touch the
diagonal ¢ = 7 along o; < o < ¢,. (The original proof in [1] consists in taking
for Q the whole diagonal 0 < o = 7 < 1.)
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Returning to our case, we have that the variation along Q is 27 ind S (since S may
well be negatively oriented). Also, a continuous z'(¢) exists except at a finite set
of ¢;’s with z(o;) = z;, the singular points on S. Thus, for sufficiently small positive
Ajy B s

2rnind S = Y {Varargz'(0):0,_y + o¢;_; S0 < 0; — B;} +
J
+ Y{Vararg(z(r) — z(0)) :0; — B; S 6 < 0; + a;, (0,7)€ Q}
J

(with obvious changes in the first and last summands near ¢ = 0 or ¢ = 1.) The first
sum then constitutes a curvilinear integral over a finite set-join S’ of disjoint subarcs
of S missing the singular z;; thus

) 2nindS=Imf f—dz+2Var,
s f j

where Var; has the obvious meaning.

Next, describe a circle K; around each z; with radius sufficiently small to have K ;
intersect S at exactly two points (cf. assertion 2 in lemma 6); these then separate K ;
into two arcs, of which precisely one, say 4;, has 4; < int S. Obviously S — {J int K;
is a curve S’ of the type described above, and S” = S’ U {J4; is a piecewise smooth
closed curve; if the radii of K; are taken sufficiently small, int S” contains all the
singular points in int S and none other. Thus by the residue theorem,

J ? dz = 2miy. m(z) indg z = 2mi Y. m(z) indg z
o f
and therefore

(8) Zan(z)indsz=Imf f~,dz+ZImJ‘ tdz.
s f a; f

z¢S

From (7) and (8) (on multiplying by 1/27 ind S),

) Y m(z) |indsz| =1 +ind Sy, (i ImJ‘ Fg.- L Varj).
¢S 7 \27 4; f 2n
Here the left side is independent of choice of the a;, f;, 4;; and a j-th summand on
the right depends only on «j, f;, A4;. In particular, we may take a; - 0, f; = 0,
radius 4; — O for each j separately.
Now consider any j; for simplicity assume z; = 0, and set m(z;) = m. Then,
near z; = 0,

FE _m o
P8 =2 1+ o).
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so that, as radius 4 — 0,

J‘Ag dz - Im ((Pu - ‘Pi) 5

here obviously

w,
@, — @; = Arg — — 276 sgn Arglv—o
where w;, w, are the exceptional directions under which S enters (exits from) 0, and

8 = 0 or 1 according as int S is or not within the convex sector (with apex angle within
(==, 7). Thus, for each j,

(10 llmf f—,dz—-vm( — 3, sgn v;)

2n

where m;, v;, 6; are as in the statement of the lemma.
Fmally we are to consider Var;. Quite obviously, as a; - 0, f; = 0 with radius
A; -0, w
Var; - Arg —,

w;

where w,, w; have the previous meaning, so that (since w, % w,)
Var; —» 2nv; — mwsgnv;.

This and (10) in (9) yield (6), which was to be proved.
Formula (6) may be simplified further. By definition of exceptional directions, we

have, at the singular point z;, w; ™™ = —(af|a|), wi ™" = af|a| where a = lim f(z) .
(z — z;)"" and m = m; = m(z;). Then e
1 w 1 k;
Vv, = — Arg 2% = — S
Y gw, 2 |m; — 1]

with k; an odd integer, —|m; — 1| < k; < |m; — 1|. It is easily seen that |k;| is the
smaller number of sectors (bounded by consecutive exceptional directions at z;),
counted from the subarc of S entering z, to that exiting from z;; and k; > 0 iff this
order is in the positive direction. Obv10usly sgn v; = sgn k;. Since 0 +mj*1
(lemma 7), sgn m; = sgn (m; — 1).

Furthermore, there is a connection between J; and sgn v;. It is easily seen that if
ind S = 1, then

v;<0 if 6;=0, v; >0 if o;=

ie 20; —1=sgnv; If indS = —1, then the v;’s change sign, and d,’s remain
unchanged; thus in every case,

26; — 1 =sgnv;ind §.

These results are formulated below.
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Theorem 5. Let S be a simple closed curve, consisting of a finite set of complete
trajectories and singular points z;; assume int S = G. Then

(11) gsm(z) lindgz| =1 + Y1+ |k;| sgn m; — 28,m}) (26; — 1),
z J

where k; is an odd integer, ——|mj — 1] <k;= |mj - 1], and m;, 6; are as described
in lemma 8. Furthermore, 20; — 1 = sgn k; ind S.

Some rough estimates may be obtained from (11). For convenience, set N, = Y 1,

m;>0
the number of zeros on S; and M, =Y m;, Mp = Y |mj|, the sums of (positive)
mj> m;<0

multiplicities of zeros and poles, respectively, of f on S. For poles one has m; < 0
and 1 < |k,| < |m; — 1| = |my| + 1; the corresponding terms in (11) are

Y = %‘qukil -1+ %6;(1 = [kj| + 2[my]);

m;<0

and one obtains the following estimates

Similarly, for zeros one has m; > 0and 1 < |k;|
2 < mj, ¢f. lemma 7); then from

Y = —%6;0(“‘1[ +1) + %6;(1 + [kj| = 2|my)

mj>0

< |m; — 1| = m; — 1(in particular,

there follow the estimates
Mz =3y ml+ Y (1= |m)) S Y = -31y2—-4) [m| < —IN,.
=0 o=1 m;>0 =0 =1

Using these, one obtains the following corollaries (the assumptions of theorem 5 and
the preceding notation are preserved).

Corollary 1. 1 — M, £ ) m(z) |indg z| < 1 + M, — 4N,

Corollary 2. If there are no zeros on S, then int S contains at least one zero. If,
furthermore, there are no poles in int S, then the sum M of multiplicities of zeros
in int S satisfies 1 £ M <1 + Mp.

Corollary 3. If there are no poles and at least three zeros on S, then int S contains
at least one pole.

Sharper results may be obtained on restricting the separatrices S by requiring
all §; to be equal. '
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Example 1 (contd.). Now we may complete our examination of the case f (2) =
= iz%/(z — 1), G = S%. The existence of a closed separatrix S < E? with 1€ 530
has already been established. From the corollary to theorem 4, each component of
E? — S must contain a zero of f; thus there is a unique component and hence S is
simple closed, and O is the unique singular point in int S. In particular, we may apply
theorem 5; here m; = —1, so that —2 < k; < 2, i.e. |k;| = 1; and thus from (11)

=1+31—-1+20,)(26, —1), 6,=1.

Fig. 1.

From symmetry, if z(0) is a solution of (1), then z(—0) is also a solution, so that S
must be symmetric about the x-axis. Thus the exceptional directions of S at 1 are
either e /4 or —e* /4, If it were the latter, then necessarily 6, = O (cf. the definition
of ¢; in lemma 8), a contradiction. This establishes how S is situated.

All trajectories in int S tend towards and from 0, with the exception of the two
trajectories which have exceptional directions ¢™* and —e~™* at 1. Thus, finally,
we have fig. 1.

Given a rational function f, we may define the zype of the dynamical system (1)

_associated with f as the system of integers {m(z)}, with z varying over all the
singular points of (1).

26



Thus the canonic systems z’ = az™ (m integer, a = 0) have type (m, 2 — m) for
0 + m = 2, type (2) for m = 2, and empty type for m = 0. The system of example 1
has type (2,—1, 1). (Obviously the sum of multiplicities is 2 except for empty type.)

Example 2. Any rational system (1) of type (2, —1, 1) is of the form

2
, z

12 z'=a
(12) —

(a#0),

up to a homographic mapping taking the singular points to 0, 1, co respectively.

Obviously the trajectories of (12) are isogonals to those of example 1; the angle
between the trajectories is Arg —ia.
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Pe3rome

O MEPOMOP®HbBIX TUHAMMWYECKUX CUCTEMAX, I

OTOMAP I'AEK (Otomar Hajek), ITpara

W3yvaeTcs OBEICHUE B [[EJIOM TPAEKTOPHIA JUHAMIYECKOU cucTeMbl dz/df = f| (z)
Toe ¢yskmus f MepoMopdHas B 3amaHHONW o6sacTH KoMiuleKkcHou cepsl, u 0 Be-
wiecTBeHHas nepeMennast. (B [2] mpeuioxkena JlokabHAs TEOPHUs 3THX CHCTEM. )

JokaszaHo, YTO Y MEpOMOP(HBIX CUCTEM HE CYHIECTBYIOT M30JUPOBAHHBIEC TIUKJIIBL:
BCSIKA ITAKJI HOTPY’KEH B IIOJIOCY IUKJIOB TOTO X€ MEpHoa (TeOpeMLI 2u 3). Pesymnb-
TaThl O KPATHOCTSX M PE3UAYYMaX CHHIYJISIPHBIX TOYEK BO BHYTPECHHOH o0slacTu mmu-
xia (Teopema 1; IepBBlif U3 HUX, [0 CYLIECTBY, KJIACCHYECKHIA) IepeHOCATCS Ha Goltee
o0mmii ciryuait 3aMKHYTOM cemapaTpuubl: TeopeMbl 4 u 5. OTOeNbHBIC Pe3yJIbTaTh
WUIIOCTPUPOBAaHBl Ha KAayeCTBEHHOM aHAJIM3€ OIHOIO IIpuMepa MepoMopbHOI
crcreMsl (dur. 1).
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