Štefan Schwarz
A new approach to some problems in the theory of non-negative matrices

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 2, 274–284

Persistent URL: http://dml.cz/dmlcz/100729

Terms of use:

© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these _Terms of use._

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project _DML-CZ: The Czech Digital Mathematics Library_ http://dml.cz.
A NEW APPROACH TO SOME PROBLEMS IN THE THEORY OF NON-NEGATIVE MATRICES

Štefan Schwarz, Bratislava

(Received May 21, 1965)

In the paper [11] I developed a semigroup treatment of some theorems concerning non-negative matrices. The substance of this method is the following.

Denote \(N = \{1, 2, \ldots, n\} \) and consider the set of all \(n \times n \) matrix units, i.e. the set of symbols \(\{e_{ij} \mid i \in N, j \in N\} \) together with a zero \(0 \) adjoined. Define in \(S = \{0\} \cup \{e_{ij} \mid i \in N, j \in N\} \) a multiplication by

\[
e_{ij}e_{ml} = \begin{cases} e_{il} & \text{for } j = m, \\ 0 & \text{for } j \neq m,
\end{cases}
\]

the zero element having the usual properties of a multiplicative zero. The set \(S \) with this multiplication is a 0-simple semigroup containing \(n \) non-zero idempotents \(e_{11}, e_{22}, \ldots, e_{nn} \).

Let \(A = (a_{ij}) \) be a non-negative \(n \times n \) matrix. By the support \(C_A \) of \(A \) we shall mean the subset of \(S \) containing 0 and all \(e_{ij} \) for which \(a_{ij} > 0 \).

For any two non-negative \(n \times n \) matrices \(A, B \) we have \(C_{AB} = C_A C_B \), where the multiplication of subsets of \(S \) has the usual meaning used in the theory of semigroups.

Consider the sequence

\[A, A^2, A^3, \ldots \]

The sequence of the corresponding supports

\[C_A, C_A^2, C_A^3, \ldots \]

has clearly only a finite number of different members.

Let \(k = k(A) \) be the least positive integer such that \(C_A^k = C_A^{l_1} \) for some \(l_1 > k \).

Let further \(l = k + d \) \([d = d(A) \geq 1] \) be the least positive integer for which \(C_A^k = C_A^{k+d} \) holds. Then the sequence (1) is of the form

\[C_A, C_A^2, \ldots, C_A^{k-1} \mid C_A^k, \ldots, C_A^{k+d-1} \mid C_A^k, \ldots, C_A^{k+d-1} \mid \ldots \]

274
The system of sets \(\{C^k, C^{k+1}, \ldots, C^{k+d-1}\} \) with respect to the multiplication of subsets of \(S \) forms a finite semigroup of order \(k + d - 1 \). It is well known from the elements of the theory of finite semigroups that \(\Theta_A = \{C^k, C^{k+1}, \ldots, C^{k+d-1}\} \) (with respect to the same multiplication) is a cyclic group of order \(d \). We mention by the way (though it will not be used in this paper) that the unit element of the group \(\Theta_A \) is the set \(C^d_s \), where \(q \) is the uniquely defined multiple \(q \) satisfying \(k \leq \tau d = q \leq k + d - 1 \).

In this manner we have associated to any non-negative matrix \(A \) three positive integers \(k = k(A), d = d(A), q = q(A) \).

A non-negative \(n \times n \) matrix \(A \) is called reducible if \(N \) can be decomposed in two non-empty disjoint subsets \(N = I \cup J, I \cap J = \emptyset \) such that \(a_{ij} = 0 \) for \(i \in I \) and \(j \in J \). Otherwise it is called irreducible.

In [11] we have shown: For an irreducible matrix \(A \) the number \(d = d(A) \) is simply the index of imprimitivity of \(A \) and we always have \(d \leq n \). [For a characterization of \(d(A) \) in the general case see [12].]

A matrix \(A \) is irreducible if and only if

\[C_A \cup C_A^2 \cup \ldots \cup C_A^n = S. \]

It turns out that this is the case if and only if

\[C_A^k \cup C_A^{k+1} \cup \ldots \cup C_A^{k+d-1} = S. \] (2)

Note also that an irreducible matrix is primitive if and only if \(d(A) = 1 \).

In this paper we shall use a refinement of the argument used in [11] in order to find estimations for the number \(k = k(A) \) for any irreducible matrix.

For a primitive matrix it is well known that \(k(A) \leq (n - 1)^2 + 1 \) and that this result is sharp. (See [1]–[4], [6], [7], [8], [10], [11], [15].)

An analogous question for irreducible (but not necessarily primitive) matrices has been recently treated in [5] and in some special cases in [10].

The refinement of our argument consists in the fact that instead of studying the global behaviour of the sequence (1) we shall first study the behaviour of a fixed “row” in the sequence (1).

To this end we introduce the following notations: We denote \(\{e_{i1}, e_{i2}, \ldots, e_{in}\} \cup \cup \{0\} = S_i \), so that \(S_1 \cup S_2 \cup \ldots \cup S_n = S \). If \(A \) is a given \(n \times n \) matrix, we further denote \(F_i = F_i(A) = S_i \cap C_A \). Hence \(F_i = F_i(A) \) is the “support of the \(i \)-th row of \(A \).” For further purposes note that \(F_i = e_iC_A \).

For brevity we shall occasionally say that \(F_i \) is “the \(i \)-th row of \(C_A \)” by considering hereby in a natural manner the set \(C_A \) (subset of \(S \)) written in the form of a square block with the non-zero entries \(e_{ij} \) on appropriate places. For instance for the matrix

\[A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 4 & 3 \end{pmatrix} \]
we shall write \(C_A = \{0, e_1, e_2, e_3, e_4, e_5, e_6\} \) in the form

\[
C_A = \begin{pmatrix}
e_{11}, 0, & e_{13} \\
0, & e_{22}, 0 \\
e_{33}, & e_{32}, e_{33}
\end{pmatrix} \cup \{0\}.
\]

Here

\[
F_1 = \{0, e_{11}, e_{13}\}, \quad F_2 = \{0, e_{22}\}, \quad F_3 = \{0, e_{31}, e_{32}, e_{33}\}.
\]

Consider now the sequence

\[
F_i, F_iC_A, F_iC_A^2, \ldots
\]

and define \(F_iC_A^0 = F_i \). The members of this sequence are clearly the supports of the \(i \)-th rows in the sequence (1).

Again (3) contains only a finite numbers of different sets. Denote by \(k_i = k_i(A) \) the least integer such that \(F_iC_A^{k_i-1} \) occurs in (3) more than once. Let further \(d_i = d_i(A) \) be the least integer \(\geq 1 \) such that \(F_iC_A^{k_i-1} = F_iC_A^{k_i-1+d_i} \). Then the sequence (3) is of the form

\[
F_i, F_iC_A, \ldots, F_iC_A^{k_i-2} \big| F_iC_A^{k_i-1}, \ldots, F_iC_A^{k_i-1+d_i-1} \big| F_iC_A^{k_i-1}, \ldots
\]

Clearly \(k_i \leq k, d_i \leq d \) (for \(i = 1, 2, \ldots, n \)) so that, in particular, \(\max k_i \leq k \).

Conversely, if \(k* = \max k_i \), then the term \(F_iC_A^{k_i-1} \) (for any \(i \)) occurs in the sequence (3) more than once, hence \(F_iC_A^{k_i-1} = F_iC_A^{k_i-1+d_i} \) (for any \(i \)). This implies that for any integer \(\lambda_i \geq 1 \) we have \(F_iC_A^{k_i-1} = F_iC_A^{k_i-1+\lambda_id_i} \). Let \(d* \) be the least common multiple of the numbers \(d_1, d_2, \ldots, d_n \) and put \(\lambda_i = d*/d_i \). We then have \(F_iC_A^{k_i-1} = F_iC_A^{k_i-1+d*} \) and \(\bigcup_{i=1}^n F_iC_A^{k_i-1} = \bigcup_{i=1}^n F_iC_A^{k_i-1+d*} \), i.e. \(C_A^{k*} = C_A^{k*+d*} \). This shows that \(C_A^{k*} \) occurs in (1) more than once, so that \(k \leq k* \). Hence \(k = k* = \max k_i \).

Remark 1. By the way: \(C_A^{k*} = C_A^{k*+d*} \) immediately implies that \(d \leq d* \) and \(d \mid d* \). Since it is easy to see that \(d \mid d* \), we also have \(d \mid d* \), so that \(d = d* \). We shall not need this fact in the present paper.

Remark 2. If \(A \) is irreducible, then (2) implies that

\[
F_iC_A^{k_i-1} \cup F_iC_A^{k_i} \cup \ldots \cup F_iC_A^{k_i+d_i-2} = S_i
\]

for \(i = 1, 2, \ldots, n \). In particular, if \(A \) is primitive, then \(F_iC_A^{k_i-1} = S_i \).

Remark 3. It is easy to introduce in the sequence (3) a multiplication \(\odot \) so that (3) becomes a cyclic semigroup. To this end it is sufficient to define \(F_iC_A^* \odot F_iC_A^* = \)

\(^{1)}\) The set \(\{0\} \) can be omitted if \(A \) contains a zero entry.
Then the set \(\{ F_i C_A^{-1}, \ldots, F_i C_A^{-d_i-2} \} \) (with the same multiplication) is a cyclic group of order \(d_i \).

1. THE GENERAL CASE

The goal of this section is to prove some theorems, which hold for any non-negative irreducible matrix. Some of the lemmas are of independent interest.

All matrices considered below are \(n \times n \) matrices, \(n > 1 \).

We begin with the decisive

Lemma 1. Suppose that \(A \) is irreducible and \(M \) any proper subset of \(S_i \) containing 0 and at least one non-zero element. Then \(MC_A \) contains at least one non-zero element \(e \in S_i \), which is not contained in \(M \).

Proof. Let \(M = \{ 0, e_{ia}, e_{ib}, \ldots, e_{iv} \} \), \(\{ \alpha, \beta, \ldots, v \} \subseteq N \). Suppose for an indirect proof that for all elements \(e_{ia}, e_{ib}, \ldots, e_{iv} \) we have

\[
\{ e_{ia}, e_{ib}, \ldots, e_{iv} \} \subseteq \{ e_{ia}, e_{ib}, \ldots, e_{iv} \} \cup \{ 0 \}.
\]

If \(q \in \{ \alpha, \beta, \ldots, v \} \), we necessarily have \(\sigma \in \{ \alpha, \beta, \ldots, v \} \). In other words: If \(q \in \{ \alpha, \beta, \ldots, v \} \) and \(\sigma \in N - \{ \alpha, \beta, \ldots, v \} \), we have \(a_{q\sigma} = 0 \). This says that \(A \) is reducible, contrary to the assumption.

Lemma 2. Suppose that \(A \) is irreducible.

a) If \(F_i \) contains \(g \geq 1 \) non-zero elements \(e \in S_i \), we have

\[
F_i \cup F_i C_A \cup \ldots \cup F_i C_A^{n-g} = S_i.
\]

b) In particular we always have

\[
F_i \cup F_i C_A \cup \ldots \cup F_i C_A^{n-1} = S_i.
\]

c) If \(i \neq j \) we always have

\[
e_{ij} \in F_i \cup F_j C_A \cup \ldots \cup F_j C_A^{n-2}.
\]

Proof. a) By Lemma 1 \(F_i \cup F_i C_A \) contains at least \(g + 1 \) non-zero elements. Again by Lemma 1

\[
(F_i \cup F_i C_A) \cup (F_i \cup F_i C_A) C_A = F_i \cup F_i C_A \cup F_i C_A^2
\]

contains at least \(g + 2 \) non-zero elements. Repeating this argument we find that \(F_i \cup F_i C_A \cup \ldots \cup F_i C_A^{n-g} \) contains at least \(n \) non-zero elements \(e \in S_i \), i.e. the whole set \(S_i \).
b) Follows from the fact that an irreducible matrix has in each row at least one element different from zero.

c) Since \(e_{ii} C_A\) contains at least one non-zero element \(\neq e_{ii}\), the set \(e_{ii} \cup e_{ii} C_A\) contains at least two non-zero elements in the set \(S_i\). Analogously \((e_{ii} \cup e_{ii} C_A) \cup (e_{ii} \cup e_{ii} C_A) C_A = e_{ii} \cup e_{ii} C_A \cup e_{ii} C_A^2\) contains at least 3 non-zero elements, and so on. We finally have

\[
e_{ii} \cup e_{ii} C_A \cup e_{ii} C_A^2 \cup \ldots \cup e_{ii} C_A^{n-1} = S_i.
\]

Since \(e_{ii} C_A = F_i\), the last equality can be written in the form

\[
e_{ii} \cup F_i \cup F_i C_A \cup \ldots \cup F_i C_A^{n-2} = S_i,
\]

from which our assertion immediately follows.

Lemma 3. If \(A\) is irreducible, then there is an integer \(h = h(i)\) such that \(1 \leq h \leq n\) and \(F_i \in F_i C_A^h\). Here:

a) If \(e_{ii} \in F_i\), we may choose \(h = 1\).

b) If \(F_i\) contains \(g\) non-zero elements in the set \(S_i\), we may choose \(h \leq n - g + 1\).

Proof. a) If \(e_{ii} \in F_i\), then \(F_i = e_{ii} C_A \subseteq F_i C_A^h\), and our statement is true with \(h = 1\).

b) By Lemma 2b there is an integer \(u, 1 \leq u \leq n - g\) such that \(e_{ii} \in F_i C_A^u\). Multiplying by \(C_A\) we get \(F_i = e_{ii} C_A \subseteq F_i C_A^{u+1}\). Since \(u + 1 \leq n - g + 1\), our statement holds.

Remark. The example of the irreducible permutation matrix

\[
A = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

shows that \(F_i \subseteq F_i C_A^1\), but \(F_i \neq F_i C_A^h\) for \(h = 1, 2, \ldots, n - 1\). Hence the estimation \(h \leq n\) in Lemma 3 is — in general — the best possible.

Theorem 1. If \(A\) is irreducible, \(F_i\) contains \(g\) non-zero elements and \(F_i \in F_i C_A^h\), \(h \geq 1\), then \(k_i \leq (n - g) h + 1\).

Proof. The supposition implies

\[
F_i \subseteq F_i C_A^h \subseteq F_i C_A^{2h} \subseteq \ldots \subseteq F_i C_A^{(n-g)h} \subseteq F_i C_A^{(n-g+1)h} \subseteq \ldots
\]

Since \(F_i\) contains \(g\) non-zero elements in \(S_i\), the set \(F_i C_A^h\) is either equal to \(F_i\) or contains at least \(g + 1\) non-zero elements in \(S_i\). Further \(F_i C_A^{2h}\) is again either equal to \(F_i C_A^h\) or
contains at least \(g + 2 \) non-zero elements \(e_i \); and so on. The chain (4) cannot have more than \(n - g + 1 \) different members. There exists therefore a \(\tau, 0 \leq \tau \leq n - g \), such that \(F_i C_A^\tau = F_i C_A^{(\tau+1)\hat{h}} \). Hence \(k_i - 1 \leq \tau h \leq (n - g) h \). This proves our Theorem.

Theorem 2. If \(A \) is irreducible and \(F_i \) contains \(g \) non-zero elements \(e_i \), we have \(k_i \leq (n - g)^2 + (n - g) + 1 \).

Proof. By Lemma 3b we have \(h \leq n - g + 1 \), hence

\[
k_i \leq (n - g)(n - g + 1) + 1 = (n - g)^2 + (n - g) + 1 .
\]

Remark. The results of Theorem 1 and Theorem 2 cannot be — in general — sharpened. To show this consider the matrix \(A \) with

\[
C_A = \begin{pmatrix} 0 & e_{12} & 0 \\ 0 & 0 & e_{23} \\ e_{31} & e_{32} & 0 \end{pmatrix}
\]

and the third row \(F_3 = \{0, e_{31}, e_{32}\} \). Here \(n = 3, g = 2 \). We have \(F_3 C_A = \{0, e_{32}, e_{33}\}, F_3 C_A^2 = \{0, e_{31}, e_{32}, e_{33}\} \) so that \(k_3 = 3 \). On the other hand \((n - g)^2 + (n - g) + 1 = 3 \).

With respect to the relation \(k(A) = \max_i k_i \) we immediately get:

Corollary 1. For any irreducible non-negative \(n \times n \) matrix \(A \) we always have \(k(A) \leq n^2 - n + 1 \).

Proof. Since \(g \geq 1 \), we have \(k(A) \leq (n - 1)^2 + (n - 1) + 1 = n^2 - n + 1 \).

Corollary 2. If \(A \) is irreducible and each row contains at least two non-zero elements, we have \(k(A) \leq n^2 - 3n + 3 \).

Proof. Follows from \(k(A) = \max_i k_i \leq (n - 2)^2 + (n - 2) + 1 = n^2 - 3n + 3 \).

The result of Corollary 1 is not the best possible. It is intuitively clear that a possible sharpening of this estimation depends on the possibility to sharpen Theorem 1 for the rows containing a unique non-zero element.

Note first: If \(A \) is irreducible and \(F_i \) contains a unique non-zero element \(e_i \) there cannot hold \(F_i = \{0, e_i\} \) since such a matrix is reducible. Therefore in the following Theorem 3 we may suppose \(F_i = \{0, e_i\} \) with \(i \neq j \).

Theorem 3. Suppose that \(A \) is irreducible and \(F_i \) contains exactly one non-zero element \(e_i \). Let \(h_i \) be the least integer \(\geq 1 \) such that \(F_i \subset F_i C_A^h_i \).

A) If \(h_i \leq n - 1 \), we have \(k_i \leq (n - 1) h_i + 1 \leq (n - 1)^2 + 1 \).

B) If \(h_i = n \), we have \(k_i \leq n^2 - 3n + 4 \).
Proof. A) This follows from Theorem 1 by putting \(g = 1 \) and \(h = n - 1 \).

B) We first show that in this case \(e_{ii} \in F_i C_A^n - 1 \) and \(e_{ii} \notin F_i C_A^h \) with \(h \leq n - 2 \).

By Lemma 2b we have \(e_{ii} \in F_i C_A^h \) with \(1 \leq h \leq n - 1 \). If there were \(h \leq n - 2 \), we would have \(e_{ii} C_A \subseteq F_i C_A^{h + 1} \), i.e. \(F_i \subseteq F_i C_A^{h + 1} \) with \(h + 1 \leq n - 1 \), contrary to the assumption.

Next we show that for \(t = 1, 2, \ldots, n \) the set \(F_i C_A^t \) contains exactly one element \(e S_i \) which is not contained in the union \(F_i \cup F_i C_A \cup \ldots \cup F_i C_A^{t - 1} \). (Hereby \(F_i C_A^0 = F_i \).

By the same argument as in the proof of Lemma 2a it follows that \(F_i \cup \ldots \cup F_i C_A^{t - 1} \) contains at least \(t \) different non-zero elements \(e S_i \). Suppose for an indirect proof that \(F_i C_A^t \) has at least two non-zero elements not contained in \(F_i \cup \ldots \cup F_i C_A^{t - 1} \). Then \(F_i \cup \ldots \cup F_i C_A^t \) contains at least \(t + 2 \) non-zero elements \(e S_i \). By Lemma 1 \((F_i \cup \ldots \cup F_i C_A^t) \cup (F_i \cup \ldots \cup F_i C_A^t) C_A = F_i \cup \ldots \cup F_i C_A^{t + 1} \) contains at least \(t + 3 \) non-zero elements, and repeating this process we obtain that \(F_i \cup \ldots \cup F_i C_A^{t - 2} = S_i \).

Hence \(e_{ii} \in F_i C_A^h \) with \(h \leq n - 2 \), which has been shown impossible.

In particular: \(F_i C_A^t \) contains exactly one element not contained in \(F_i \). But since \(F_i \notin F_i C_A \), we conclude that \(F_i C_A^t \) contains exactly one non-zero element \(e S_i \).

Consider now the finite sequence \(F_i, F_i C_A, \ldots, F_i C_A^{t - 1}, F_i C_A^t \), and let \(l_0 \) be the least integer such that \(F_i C_A^{l_0} \) contains more than one non-zero element \(e S_i \). We have just seen that \(l_0 > 1 \).

α) If \(l_0 = n \), then each of the sets \(F_i, \ldots, F_i C_A^{n - 1} \), contains a unique element and since \(e_{ii} \in F_i C_A^{n - 1} \), we have \(\{0, e_{ii}\} = F_i C_A^{n - 1} \). Therefore \(e_{ii} C_A = F_i C_A^n \), i.e. \(F_i = F_i C_A^n \), so that \(k_i = 1 \).

β) Suppose next \(l_0 \leq n - 1 \) and let \(F_i = \{0, e_{ia}\}, F_i C_A = \{0, e_{ib}\}, \ldots, F_i C_A^{l_0 - 1} = \{0, e_{ik}\} \). Since \(F_i C_A^{l_0} \) contains at least two non-zero elements \(e S_i \) and only one not contained in \(\{e_{ia}, e_{ib}, \ldots, e_{ik}\} \), there is necessarily an index \(\xi \in \{a, b, \ldots, \lambda\} \) such that \(e_{ii} \in F_i C_A^{l_0} \). Consequently: There is an integer \(\tau, 1 \leq \tau \leq l_0 \), such that

\[
\{0, e_{ii}\} = F_i C_A^{l_0 - \tau} \subseteq F_i C_A^{l_0}.
\]

Now \(\tau \) cannot be \(l_0 \) since \(F_i \subseteq F_i C_A^{l_0} \) with \(l_0 \leq n - 1 \) contradicts our assumption. Therefore we have \(1 \leq \tau \leq l_0 - 1 \). The relation (5) implies

\[
F_i C_A^{l_0 - \tau} \subseteq F_i C_A^{l_0} \subseteq F_i C_A^{l_0 + \tau} \subseteq \ldots \subseteq F_i C_A^{l_0 + (n - 1) \tau}.
\]

This chain of \(n + 1 \) sets cannot have all members different one from the other. There is therefore an integer \(u, -1 \leq u \leq n - 2 \), such that

\[
F_i C_A^{l_0 + ut} = F_i C_A^{l_0 + (u + 1) \tau}.
\]

Hence

\[
k_i - 1 \leq l_0 + ut \leq l_0 + u(l_0 - 1) \leq n - 1 + (n - 2)(n - 2) = n^2 - 3n + 3.
\]

This proves Theorem 3.
Remark. The result \(k_i \leq n^2 - 3n + 4 \) cannot be — in general — sharpened. To show this consider the matrix \(A \) with

\[
C_A = \begin{cases}
0, & e_{12}, 0 \\
0, & 0, e_{23} \\
e_{31}, & 0, e_{32}
\end{cases}
\]

We have

\[
C_A^2 = \begin{cases}
0, & 0, e_{13} \\
e_{21}, & 0, e_{23} \\
e_{31}, & e_{32}, e_{33}
\end{cases},
\quad C_A^3 = \begin{cases}
e_{11}, & 0, e_{13} \\
e_{21}, & e_{22}, e_{23} \\
e_{31}, & e_{32}, e_{33}
\end{cases},
\quad C_A^4 = \begin{cases}
e_{11}, & e_{12}, e_{13} \\
e_{21}, & e_{22}, e_{23} \\
e_{31}, & e_{32}, e_{33}
\end{cases} \cup \{0\},
\]

so that \(A \) is primitive (hence irreducible). Now

\(F_1 = \{0, e_{12}\}, \quad F_1C_A = \{0, e_{13}\}, \quad F_1C_A^2 = \{0, e_{11}, e_{13}\}, \quad F_1C_A^3 = \{0, e_{11}, e_{12}, e_{13}\} \)

so that indeed \(F_1 \subset F_1C_A \) and \(k_1 = 4 \). On the other hand \(n^2 - 3n + 4 \) for \(n = 3 \) is equal to 4.

Theorems 2 and 3 allow the following conclusions. If \(n \geq 2 \), we have for the rows with at least two non-zero elements

\[
k_i \leq (n-g)^2 + (n-g) + 1 \leq (n-2)^2 + (n-2) + 1 = n^2 - 3n + 3.
\]

For the rows with a unique non-zero element we have (with \(h_i \) defined above)

\[
\text{either } k_i \leq n^2 - 3n + 4 \quad \text{if } h_i = n,
\]

\[
\text{or } k_i \leq (n-1)h_i+1 \leq (n-1)^2 + 1 \quad \text{if } h_i \leq n-1.
\]

Since (for \(n \geq 2 \)) we have

\[
(n-1)(n-2) + 1 = (n-2)^2 + (n-2) + 1 = n^2 - 3n + 3 < n^2 - 3n + 4 \leq (n-1)^2 + 1,
\]

we get with respect to \(k(A) = \max_i k_i \):

Theorem 4. For any non-negative irreducible matrix \(A \) we always have \(k(A) \leq (n-1)^2 + 1 \).

Theorem 5. Let \(A \) be irreducible. Denote \(h_i \) the least positive integer for which \(F_i \subset F_iC_A^{h_i} \). If for every row \(F_i \) containing a unique non-zero element we have \(h_i \leq n-1 \) (i.e. either \(h_i = n \) or \(h_i \leq n - 2 \)), then \(k(A) \leq n^2 - 3n + 4 \).

Remark 1. The result of Theorem 4 is the best possible for it is known that to every \(n \geq 2 \) there is a primitive matrix \(A \) with \(k(A) = (n-1)^2 + 1 \). This property has the "Wielandt matrix", which is a matrix with \(C_A = \{0, e_{12}, e_{23}, e_{34}, \ldots, e_{n-1,n}, e_{n1}, e_{n2}\} \).
Remark 2. Also the result of Theorem 5 cannot be — in general — sharpened. This shows the example in the Remark after Theorem 3. Here \(F_1 = \{0, e_{12}\} \) and \(h_1 = 3 \), \(F_2 = \{0, e_{23}\} \) and \(h_2 = 1 \) so that the suppositions of Theorem 5 are satisfied. On the other hand \(k(A) = 4 = n^2 - 3n + 4 \).

2. THE CASE OF A PRIMITIVE MATRIX

We shall now apply our results to the case of a primitive matrix. For a primitive matrix \(A \) the set \(F_iC_A^{k-1} \) is the whole set \(S_i \).

Theorem 6. If \(A \) is primitive, then \(k(A) \leq n - 1 + \min_i k_i \).

Proof. Let \(e_{ix} \) be any element \(e \in S_i \). Take \(j \neq i \) and write \(e_{ix} = e_{ij}e_{ja} \). By Lemma 2 \(e_{ij} \in F_iC_A^t \), where \(t = t(i, j) \) satisfies \(0 \leq t \leq n - 2 \). By definition of the number \(k_j \) we have (for any \(\alpha \)) \(e_{ja} \in S_j = F_jC_A^{k_j-1} \). Hence

\[
S_i = \{0, e_{i1}, e_{i2}, \ldots, e_{in}\} \subseteq F_iC_A^tF_jC_A^{k_j-1} = F_iC_A^{t+k_j}.
\]

Therefore \(k_i - 1 \leq t + k_j \), i.e. \(k_i \leq t + 1 + k_j \). (This is, of course, trivially true also for \(i = j \).) Since \(j \) is arbitrary, we have \(k_i \leq (n - 2) + 1 + \min_j k_j = n - 1 + \min_j k_j \). Hence

\[
\max_{i,j} k_i = \max_{i,j} k_i - \min_{i,j} k_i \leq n - 1.
\]

By the way we have also proved\(^2\):

Theorem 7. For any primitive \(n \times n \) matrix \(A \) we always have

\[
\max_i k_i - \min_i k_i \leq n - 1.
\]

Remark. The result of Theorem 6 is sharp in the following sense. In any primitive matrix there is at least one row, say \(j \)-th row, containing at least \(q = 2 \) non-zero elements. By Theorem 2 \(k_j \leq n^2 - 3n + 3 \). Hence by Theorem 6 \(k(A) \leq (n - 1) + (n^2 - 3n + 3) = n^2 - 2n + 2 \) and the "Wielandt matrix" attains this upper bound.

Also simple examples show that the result of Theorem 7 is the best possible. The following result described in Theorem 8 is known. (See [1], [4], [11].)

Lemma 4. If \(A \) is irreducible and \(e_{jj} \in F_j \), then \(k_j \leq n - 1 \).

Remark. It is well known that in this case irreducibility implies primitivity.

\(^2\) (Added in proofs, May 1966.) In a forthcoming paper ([16]) we shall show that Theorem 7 holds for any non-negative irreducible matrix \(A \) and we use it to obtain estimates for \(k(A) \) in the case of imprimitive matrices.
Proof. By supposition \(e_{jj} \in F_j \), hence \(F_j = e_{jj}C_A \subseteq F_jC_A \). This implies \(F_j \subseteq F_jC_A \subseteq F_jC_A^2 \subseteq \cdots \subseteq F_jC_A^{n-2} \). By Lemma 2c we have for \(j \neq \alpha \)

\[
e_{ja} \in F_j \cup F_jC_A \cup \cdots \cup F_jC_A^{n-2} = F_jC_A^{n-2}, \quad \text{i.e.} \quad S_j = F_jC_A^{n-2}.
\]

Hence there is a \(\tau, 0 \leq \tau \leq n - 2 \), such that \(F_jC_A^\tau = F_jC_A^{\tau + 1} \). Therefore \(k_j - 1 \leq \tau \), i.e. \(k_j - 1 \leq \tau + 1 \leq (n - 2) + 1 = n - 1 \).

Remark. The result of Lemma 4 is sharp, since e.g. \(A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \) is primitive and direct computation shows that \(k_2 = k_3 = 2(n - 1) \).

Under the suppositions of Lemma 4 we have \(\min_i k_i \leq n - 1 \). This combined with Theorem 6 gives the following

Corollary. If \(A \) is irreducible and contains a non-zero element in the main diagonal, then \(k(A) \leq 2n - 2 \).

In the proof of the next Theorem 8 we shall again use the inequality \(k_i \leq t(i, j) + 1 + k_j \) (proved in the proof of Theorem 6).

Theorem 8. If \(A \) is primitive and contains \(r \geq 1 \) non-zero elements in the main diagonal, we have \(k(A) \leq 2n - r - 1 \).

Proof. Suppose that \(\{e_{j_1, i_1}, e_{j_2, i_2}, \ldots, e_{j_r, i_r}\} \subseteq C_A \). Then \(k_{j_i} \leq n - 1 \), \(i \leq n - 1 \).

If \(r = n \), then \(k(A) = \max_j k_j \leq n - 1 \), and our statement holds.

Suppose \(r < n \) and choose an index \(i \notin \{j_1, j_2, \ldots, j_r\} \). Since

\[
e_{ii} \cup e_{ii}C_A \cup \cdots \cup e_{ii}C_A^{n-r} = e_{ii} \cup F_i \cup F_iC_A \cup \cdots \cup F_iC_A^{n-r-1}
\]

contains at least \(n - r + 1 \) non-zero elements \(\in S_i \) and \(\{e_{ii}, e_{ij_1}, \ldots, e_{ij_r}\} \) contains exactly \(r \) elements, these sets intersect and there is a \(j \), say \(j_1 \), such that \(e_{ij_1} \in F_iC_A^t \) with \(0 \leq t(i, j_1) \leq n - r - 1 \). Now \(k_i \leq t(i, j_1) + 1 + k_{j_1} \) implies \(k_i \leq (n - r - 1) + + 1 + (n - 1) = 2n - r - 1 \). Hence \(k(A) = \max_i k_i \leq 2n - r - 1 \), q.e.d.

References

[13] Ш. Шварц: Заметка к теории неотрицательных матриц. Сиб. мат. ж. 6 (1965), 207—211

Author’s address: Bratislava, Gottwaldovo nám. 2, ČSSR (Slovenská vysoká škola technická).

Резюме

НОВЫЙ МЕТОД РЕШЕНИЯ НЕКОТОРЫХ ВОПРОСОВ ТЕОРИИ НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ

ШТЕФАН ШВАРЦ (Štefan Schwarz), Братислава

Пусть A — квадратная неотрицательная матрица. Распределение нулевых и ненулевых элементов в последовательности A, A^2, A^3, \ldots, начиная с некоторой степени $k(A)$, периодически повторяется. Цель статьи — получить оценки для числа $k(A)$ в случае неразложимых матриц. При этом используется новый метод, являющийся уточнением метода, использованного автором в работе [11].