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Yexoca0BauKnii MaTeMaTHYeCKHii skypHa, 1. 16 (91) 1966, Ilpara

EXPONENTIALLY STABLE INTEGRAL MANIFOLDS,
AVERAGING PRINCIPLE AND CONTINUOUS DEPENDENCE
ON A PARAMETER

JArROSLAV KURZWEIL, Praha

(Received August 6, 1965, in revised form November 2, 1965)

The main tools that are used in this paper to the study of integral manifolds are
some stability considerations and continuous depedence on a parameter so that
differential equations in Banach spaces and functional differential equations are
covered. The results on differential equations in Banach spaces are applied to special
boundary value problems.

In abstract form the existence of exponentially stable integral manifolds is
established for flows (section 2). By a flow a system of functions is meant that fulfils
certain conditions, which are always fulfilled by the set of solutions of a differential
equation. It is proved that there exists a unique (exponentially stable) integral
manifold of every flow that is sufficiently near to a given flow, which fulfils some
special conditions (Theorem 2,2). By means of some theorems on the continuous
dependence on a parameter and a Stability Lemma this result is specialized to
differential equations in Banach spaces. There exists a unique (exponentially stable)
integral manifold of every differential equation the right hand side of which is
sufficiently near (in a certain sense) to the right hand side of a given differential
equation, which fulfils some special conditions (Theorem 1,2). The concept of being
near is chosen in such a way as to cover. the averaging principle.

In section 3 Theorem 2,2 and the Stability Lemma are applied to functional
differential equations. As the Stability Lemma is proved for differential equations
with no time lag, the existence of an exponentially stable integral manifold is esta-
blished for a functional differential equation, the right hand side of which is sufficiently
near to the right hand side of a differential equation (without time lag), which fulfils
some special conditions.

Section licontains theorems on the continuous dependence on a parameter for
differential equations in Banach spaces (Theorems 1,1—9,1). Theorems 1,1 and 3,1
only are needed in the specialization of Theorem 2,2 to Theorem 1,2. Two features
are to be emphasized on these Theorems:
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i) the usual condition that the difference of the right hand sides of the differential
equations is small is weakened to the condition that the difference of the right
hand sides integrated with respect to time is small,

i) let x, y denote solutions of a differential equation depending on a parameter
with the initial conditions x(fo) = %, y(f,) = 5. An estimate is found for the
change of x(t) — y(t) with respect to the parameter. This change is found to be
small compared to ”)E — )7“

In sections 4, 5 and 6 the results of sections 1 and 2 are applied to a boundary
value problem for a weakly nonlinear wave equation (with one space variable).
Section 4 contains preliminaries, in section 5 several examples are examined and in
section 6 it is proved that a special problem of the above type has a smooth solution,
which remains bounded for ¢ — co and tends (uniformly) to a periodic function,
which has discontinuous derivatives of the first order.

1. CONTINUOUS DEPENDENCE ON A PARAMETER
Let X be a Banach space, E, the real line, G a subset of X (G need not be open),

K, a positive constant. Let f,, = f;)(G, K;) denote the class of functions f from
G x Eq to X, which are continuous and fulfil the conditions

(L.1) |76 ] = K,

(2,1) [£(ei ) = f(%20 7)|| S K%y — x2f| s X, %1, %5, €6, €k .

The solutions of
dx

(3.1) & fx)
dt

will be denoted by x, y, their values by x(t), y(t); the initial conditions will be

(4.1) @) =%, y@)=7.
Similarly the solutions of

d
(5.1) & fo(x, 7)

dt

will be denoted by X, Vo, their values by x4(z), yo(z), With the initial conditions
(6,1) ‘ X(f) =% y(B)=7-

The solutions x, xo, X(f) = % = x,(%) are unique, if f, fo € f(1) and if in addition G
is open, an existence theorem may be stated.
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Theorem 1,1. Let K, > 0 be given. There exists a function x1(¢, T) defined for
{ > 0, T > 0 nondecreasing in { such that

(7,1) lim (¢, T) =0,
-0+

and the following assertion takes place:

Let f, fo € f(1), let x, X, be solutions of (3,1), (5,1), on (%, ¥ + T7> T > 0 fulfilling
(4,1), (6,1). Suppose that

&.1) J' L1z 1) = folz, )] de
Then l
(9.1) [x(r) = xo(7)|| £ 2:(C, T), FST<E+ T

(¢ for zeG, 1, £, =7 + 1.

Note 1,1. The proof of Theorem 1,1 goes back to L. I. GIcHMAN, [2], cf. also [1],
Theorem 1,1.

Proof: It follows from (1,1) and (2,1) that [|x(z) — x(;)| < Ki|t — 7| and that

(10,1) x(t) = x(ty) + ~rf(x(rl), o)do + Z,

|1Z| < 1K3|x - ol* for <t STt<E+T.

Similar relations hold for x, also. Put ¥ = 0 and let r, s denote integers, 0 < r < s,
T<s;let0 <7< T Then
r—1 p(pt+1)/s

x(rt[s) — x(0) =P;0 f(x(pt[s), o) do + Z,

pt/s

where |Z, || < $K}rt*[s* and a similar relation holds for x, also. Therefore

s(ref) = xaef9) = 3, (p,ﬂms[f(x@r/s), 8) - f(xolpels), )] do +
r—1 p(p+1)t/s ™ -
3 [ Dl )~ Sl ol o + 2
=0 pys

where |Z] || < K}rt®[s®. According to (8,1) the norm of the second sum does not
exceed s{, so that

Il = salref)] = (Kue) & (o) = xoorf9)] + s + KETs.

Hence
[x(re/s) — xo(refs)| < (s¢ + KiT?[s) (1 + Kyzfsy~t,
[%(2) = xo(@)]| = (s + KIT?[s) €,
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and Theorem 1,1 holds for
(111) x1(¢, T) = min (s¢ + KiT?[s) 517
s=T

(s being an integer).

Note 2,1 The assumption in Theorem 1,1 that the solution x of (3,1) exists on
{%, % + T) may be modified as follows: the solution x, of (5,1) is defined on
(H#+ Ty and tedi i+ T), zeX, |z = xo(7)] £ xu((, T) + # imply that
z € G, yy being defined by (13,1), n > 0 being an arbitrary constant. If all other
assumptions of Theorem 1,1 are fulfilled, then there exists the unique solution x of
(3,1) fulfilling (4,1); this solution exists on (%, ¥ + T and fulfils (9,1).

Let  be a nondecreasing function on <0, o), lim w(¢) = 0. Denote by f,, =
= f2)(G, Ky, ») the subset of those f & f,, that *~°*

(12,1) Hf(x; +3,1) = f(x1 + 1) = f(x2,T) + (15 T)H <
s ”x2 - xl” w(“y”) y X Xy, Xy + ¥, X, +y+ G, teE;.

If G is convex, if f is differentiable with respect to x and if

< cu(”xz —x4]), x2,%,€G,tekE,,

(13.1) H% (2, 7) — %(xl, 0

then (12,1) is fulfilled as f(x; + y, 1) — f(x; + », 7) — f(x2, ) + f(x1, 7) =
=[5 [ofox(a(x; — x1) + x; + »,7) — Offox(o(x, — x;) + X4, 7)] do(x; — Xy).

Theorem 2,1. Let the number K, = 0, and the function w be given. There exists
a function XZ(C, T) defined for { > 0 T > 0 nondecreasing in { such that

(14,1) lim y,(¢, T) = 0

-0+

and the following assertion takes place:

Let f, fo € feay, let x, y(Xo, yo) be solutions of (3,1) ((5,1)) on <%, % + T», T >0
fulfilling (4,1) ((6,1)). Suppose that (8,1) takes place and that

(15,1) 1

&t 5 e - =]

J‘n[f(ZZ’ 1:) - f(zla T) - fO(ZZa T) + fo(zp T)]
forzy,z,€G, 1y £1, St + 1. Then ‘

(16,1) [x(x) = ¥(x) = xo(2) + yo(?)| = |% = 7] - %2(&, T),

F<t<i+T.
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Note 3,1 (15,1) s fulfilled, if G is convex, if 3f[dx, afo/dx are continuous and if

(17,1) \U [% 9 -2, 1:)] ae

Proof. Put T = (.
(18,1) x(t) — y(r) - xo(r) + yo(r) =
- j LA(x(6). o) = 1) = ole) + ¥(0) o)) do +

_S_Ca ZEG7T1§12§11+1'

+ _E[f (xo(@) = yo(0) + ¥(0), 0) = £(¥(0), 8) — (xo(0), 6) + f(o(0) 0)] do +

+ [l ) = 700001 ) = £olslo) o) + Sloelo) oY b = s + s+ -
It follows from (2,1) that |
(19.) 1] = K, [ (0) = 3(0) = (o) + vole)] do
Taking (12,1) and (9,1) into account we obtain that
I12] = [ ae) = ()] ) = (o)) do <
< (6, T) [ Txle) = vole)]

As |xo(0) — yo(o)||  |% — F|| €, it follows that

(o) 2] 5 I - 5] - K "o Ta(u (e, T)).

Choose an integer s = Tand put ¢; = jts,j = 0,1, ..., s. We have

QLI = Y, j " xo(0)), 8) = F(5(6,): 0) — Folxo(,)s &) + folyoles) )] do +

i=0Jg;

+ 3 [ Ulo ) = 100, 0) = Sl ) + Sl V] do +

a5

+:§‘: rm[-fo(’%(“)’ o) + fo(yo(0) 0) + fo(xo(0;), o) — fo(vo(0)): 0)] do.

aj

According to (15,1) the norm of the first sum does not exceed
s—1
C,ZOHXO(UJ') = yolo))| £ steiT|x — 7| -
f=
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The second sum and the third sum in (21,1) may be estimated as follows

‘i Jaj“[f(xo: (0'), 0) - f(YO(O'), 0') - f(xo(o'j), 0) + f(J’O(Gj)’ U)] da,

8 |

s

j " Li(ea(o) ) = flola) = 3u(e) + ule), )] dol +

9j

=

+

_[gm[f(xo(ﬁj) = yo(0;) + Yo(0); 0) = f(yo(0), 0) —
— f(xo(a))s 0) + f(vo(c;): 0)] do

<

(cf. (2,1) and (12,1))
<K, j " xolo) = volo) = xo(@)) + vo(ay)] do +
+ [[xo(e;) = yo(a))| J.amw(“%(“) — yo(0))]) do =

J
Gj+1
<K, j
aj

+ |xola;) = volo))| - (K, T]s) - Ts =

do +

j" [ ool ) = Folo(A), )] d2

g

< (K, Ts) K, j " ko) = yo)] 42 + [xo(@)) = volo)| - (K, Ts) . Ts <

g

< [& - 7] MTIKIT?fs + To(K,T)s)] %

(as |xo(A) = yo(?)| = ||& — | 7). Therefore the norm of the second sum in
(21,1) does not exceed ||% — || €X' T[KiT?[s + Tw(K,T][s)] and the same estimate
holds for the third sum in (21,1) also. Therefore

1] < |% - F|| e TLsC + 2K3T?[s + 2Tw(K, T]s)] .

Put y5((, T) = min e 7[s{ + 2K3T?[s + 2Tw(K, T]s)] (s being an integer). Obviously
szT

lim x5(¢, T) = 0 and

{-0+

@ 1] < % - 3] 16 7).
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From (18,1), (19,1), (20,1) and (22,1) it follows that

x(2) = »(2) = xo(2) + 2ol = K, J (:”x(a) — 3(6) = xo(0) + yol0)] do +
+ % - g” SR oy (C T)) + 1(8 T)] -
Hence (16,1) holds, if

16 T) = TR e T8, T)) + 256 T)]

and the proof of Theorem 2,1 is complete.

The following Theorem 3,1 is the main tool in section 2; in contradistinction to
Theorem 2,1 it is not necessary to assume (15,1). Let by G,, d > 0 be denoted the set
of such x € G that y e X, ||y — x| < d implies that y € G.

Theorem 3,1. Let the numbers K, > 0, d > 0 and the function o be given. There
exists such a function y4(C, T) defined for { > 0, T > 0 nondecreasing in { that

(23,1) lim x4(¢, T) = 0
{~0+

and the following assertion takes place:

Let f, fo € f(2) let x, y(xo, yo) be solutions of (3,1) ((5,1)) on (%, %+ T), T>0
fulfilling (4,1) ((6,1)), x(z), y(z), Xo(7), yo(z) € G, for T € (%, % + T). Suppose that
(8,1) takes place. Then

(24.1) [x(2) = ¥(z) = %o(z) + yo(@)| £ % = 7] 2(& 7).
Tst=7T+T.

Lemma 1,1. Let the numbers K, > 0, d > 0 and the function w be given. Then
there exists a function y5({) defined for { > 0, nondecreasing in { that

(25.1) lim z5(¢) = 0
{-0+

and that the following assertion takes place:
Let f, fo € f(2y and let (8,1) hold. Then

(26,1) < 1) 22 = =

j (2 7) = flz1r7) — folzar 7) + folzas )] d

for z;,2,€Gpty £ 1, S 14 + 1.

Proof of Lemma1,1.Put {; = d2[4 and define x5() = 2w(2¢*) + 3(*for 0 < { <
< {4 25(0) = max (2K, x5(¢,)) for ¢ > {,. It is obvious that (25,1) holds and that
(26,1) holds, if { > ¢, or if y5(0) ”z2 - 21” > 2¢ (cf. (8,1)). Let there exist {, zy, z5,
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74,7, in such a way that 0 £ £ X ¢, 0 < lz2 = 24| < 2Uxs(©) ™" 215 22 € Gas
Ty <1, =1+ land

jn[f(zz, 1) — f(z1, 1) = Jolzy, 1) + fo(z4, 7)] do

T

= x5(0) “22 - 21” .

It follows from (12,1) that

(27,1) If(z1 + (k + 1) (22 = 2,),7) = f(zy + k(zo — z1) 7 —
~ $e2 )+ JC ] 5 22— 2] @lkz2 - =),
=12..., k”z2 - Zl” <d.
Hence

@8.1) £z + Kz = 21), D = fz1,7) — K(f(z27) = f(z0 )| <
< k"z2 - 21” w(k”22 - 21")’ k=1,2,..., k”zz - zln <d.

As (27,1) and (28,1) is fulfilled bY fo, it follows that

J [z + k(za — 22, 7) = S 1) = folzs + Kz — 20.7) + folzer 7)] de —

T

<

-k Jn[f(zz’ 1) = f(z1, 1) = folz2, 7) + folz1, 7)) dt

T

< 2k”22 - Zl” cu(k“zz -z,

Therefore

), k=1,2..., k|z; —z| 24d.

(29,1) =

j (s + Kza = 20 7) — folzs + Kz — 21), 7)] de

> k

jtz[f(zz’ T) — f(zy, 7) — fo(zz, 7) + folze, ‘r)] dri

T

— 2z — 2 o]z - 2 2

Jiz[f(zl’ 1) — fo(zs, 7)] de

2 kl|z, — zy| [20(28%) + 304] - ¢ - 2k|z, — zy| w(k|z; — z),
k=1,2,..., kl|z, —z| 2d.

As 0 <l <y =d4, ||z, — z:] £ 2(xs(0))™" < ¥, there exists an integer k'
d = 20* 2 K|z, — z,| Z ¢* and (29,1) implies that

!

>

J‘u[f(zl + K'(z; — z4), 1) — folzy + k'(z; — zy),7)]dr

T1

23Kz —nf -z 2.

This contradiction proves Lemma 1,1.
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Theorem 3,1 is a consequence of Lemma 1,1 and Theorem 2,1 applied on Gy, if
we put 74(C, T) = x2(x5(0) + & T).

Theorems 1,1, 2,1 and 3,1 may be modified as follows. Let f 5, denote the class of
functions f from G x E; x E; to X, which are continuous and fulfil the conditions

(30,1) |/(x. . 0)| £ K4,
(3L,1) |£(x20 0, 0) = f(x1, 0, 0)|| < Ky|xs — x4 5
(32,1) Hf(x, 1,0) — f(x, 0, O‘)H < leT — al R

X,X;,%X,€G, 1,0eE;, 105t +1.
Let f(4, be the subset of those f € f3, that
(33.1)  |[f(x2 + v 0,0) — f(x1 + ¥, 0, 0) = f(x2, 0, 0) + f(X15 O, o)| £
< [ = x| (ly])
(34,1) |f(x2. 0, 0) = f(x15 0, 0) = f(x3 7, 0) + f(x1: T, 0)| =

< e = xi] oz - o).

X2, X1, X + ¥, X1 + yeG, T§0’§T+1-

Theorem 4,1. Let K, be given. There exists a function %s(Cs T) defined for { > 0,
T > 0 nondecreasing in { such that

(35,1) lim %6(¢, T) = 0
-0+
and the following assertion holds:
Let f, fo € f3y let x, x, be solutions of

dx

(36,1) - f(x, 7, 7),
o
(37.1) ai—c = fo(x, 7, 7)

on (%, % + Ty, T >0, x(%) = & = x0(%) and let

(38;1) j‘ 1I:f(z’ 01, 0) '—fO(za Gy, 6)] do § C for zZe G’ 0y é 02 é g1 + L.
Then
(39.1) [x(z) = %(@)| S 26, T), t<cg?+ T
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Theorem 5,1. Let the number K,, and the function w be given. There exists
a function x,(, T) defined for { > 0, T > 0 nondecreasing in { such that
(40,1) lim x,({, T) = 0

{0+

and the following assertion takes place:

Let f, fo € fia) let x, y(xo, yo) be solutions of (36,1) ((37,1)) on (%, % + T, T > 0,
x(?) = & = x0(?), ¥(&) = J = yo(%), let (38,1) be fulfilled and let

(41,1) .

J\ﬂ[f(xb Ty, ‘7) - f(xn 0y, 0') - fo(xz(xza gy, C’) + fo(xn 0y, U) do

a1

éCHXz—xl » X1,%,€G, 01 20,0 +1.

Then
(42,1) [x(z) = y(2) = xo(2) + yo(@)| £ ¥ = F| - 0(( T), TSTSE+ T,

Theorem 6,1. Let the numbers K; > 0, d > 0 and the function w be given. There
exists a function xs(C, T) defined for { > 0, T > 0 nondecreasing in { such that

(43,1) lim xg(Z, T) = 0
>0+
and the following assertion takes place:
Let f, fo € fay let x, y(xo, yo) be solutions of (36,1) ((37,1)) on <%, % + T, x(%) =

= % = xo(%), y(&) = J = yo(%), x(z), ¥(2), x0(7), yo(z) € G for 1€ (%, ¥+ T) and
let (38,1) be fulfilled. Then

(44.1) [x(x) = ¥(x) = xo(z) + o(@)| = % = 7] 2s(L, T).

As the proofs of Theorems 4,1, 5,1 and 6,1 are simple modifications of the ones of
Theorems 1,1, 2,1 and 3,1, they are omitted.

Note 3,1. Let

= eu(r, Y, 1), (;—l/tf = o + ew(r, ¥, t)

(45,1)
be given. Suppose that v (w) is a continuous map from G, x E,, x E; to E, (to E,),
G, being an open subset of E, o(r,y + e, ) = v(r, ¥, 1) = v(r, ¥, t + 1),
w(r, § + e, t) = wr, Y, 1) = w(r, ¥, t + 1), e; = (8iy, :-., Oin), 05y = 1, 8;; = 0 for
i *j,i,j=12...,m, the derivatives 0v[dr, dv[dy, Ow|Or, dw|0y are continuous,
(45,1) is transformed by Y = ¢ + ot, &t = 7 to

(46,1) 3—r=v<r,(p+wz,z>, (1?—=w<r,¢+wz,z>.
T e

g dt e €
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Put

T— o

S N
vo(r, @) =1lim — | o(r, ¢ + wt, 1)dt, wy(r, @) =1lim — | w(r, ¢ + wt,f)dt.
T 0 : Tow T 0
Then to every compact subset @ = G, and { > 0 there exists an g, > 0 that
j‘~[u (r,(p + wf,f) - Uo(", (P):idT
o € ¢
[Loereei-nteafo
o e ¢

for reQ,¢9p€E,,0=1, -1, 1,0 <¢ =< g and Theorems 1,1 and 3,1 may be
applied to (46,1) and

=,

=¢

(7.1) I (r0), 92 = wo(r ).
dt dr
In a similar way
(48,1) % = ev*(r, Y, 1, et), %‘é = o + ew*(r, Y, 1, &t)

may be treated provided that v* (w*) is a bounded continuous map from G, x E, x
x E; x E; to E, (to E,,) the derivatives dv*or, ov*[0ys, ow*[0r, dw* [0y are bounded
and uniformly continuous and v*(., ., ., o) and w*(., ., ., o) fulfil the same perio-
dicity conditions as v and w, ¢ being fixed. (48,1) is transformed to

(49.1) g’:—_—v* r,(p+w£,z,t), 49 _ e ne+o it
dr dr e ¢

and Theorems 4,1 and 6,1 may be applied to (49,1) and

(50,1) ar_ v5(r, @, 7), do _ wo(r, ¢, 7)
dt dr
* 1T
vo(r, 0, 1) = lim — | v*(r, ¢ + wt,t,7)dt,
T—w T 0

1 T
we(r, @, 7) = lim T w¥(r, @ + ot, t,7)dt.
0

T

Let fiefi)j=1,2,3,..., {; > 0 with j » o0 and let

Jtz[fj(zb T) - fj(zl’ T) - fk(zb T) + fk(Zl, ‘E)] dz

T2

[T 9 s e

IIA

Cj’

< Gllz - =
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for z,2;,2,€G, 1y St <1+ 1, k2j. Let the solutions xj, y;, x;(f) = X
yE) =5 =12..0f
dx
— = filx,7
dr . 7)

be defined on <% % + T, T > 0. According to Theorem 1,1 x,(t) and y(r) te
e (%, % + T are Cauchy-sequences. Put x*(7) = 11m x(t), y*(r) = lim y(7). Accord-
ing to Theorem 2,1 joe

[x*(2) = y*(2) = x,(2) + ¥ S 0 T) - |2 = 7] -

Nevertheless there need not exist a f* € f(,) that x*, y* are solutions of
dx
—= = f¥(x, 7).
dz

Theorems 1,1, 2,1 and 3,1 may be extended in such a way that they are closed to the
above limiting process. Put

A7 F(x,7) = F(x, 7 + 0) — F(x, 1), 4%F(x,7)= F(x + z,7) — F(x, 7).
Let F(y, be the set of functions F from G x E; to X which fulfil the conditions
(s1.1) |42 F(s, ) < Koo, 4242 F(s, 9] S K] o

forx,x + zeG,7€E;,0 2 0.
Let FeF,. If v is a continuous function from {«, > to G, o, f € E,, define

J
%1 D, F(v(7), o) as the limit of the partial sums Y [F(v(ty), 0;) — F(v(t;), 0i-1)],
i=1

aSa; =057 50,=7,=5...571;=0;=p, £p. This limit exists in the
same sense as in the theory of the Riemann integral. The function (from (%, ¥ + T)
to G) is said to be a solution of

dx

52,1
(52.1) &

=D F(x, 1),

if it is continuous and if x(t,) — x(t;) = [2 D, F(x(x), 0), 74, 1, €<%, T + T). It
is verified easily that

1 J D Flu(z), o) — f D F(e), o)

if u, v are continuous functions from {7y, 7,> to G. Therefore existence and uni-
queness of solutions of (52,1) is established by means of successive approximations
similarly as for equation (3,1). If u has the same meaning as above, f € f;), F(x, 7) =

< & Jute) = )] @,
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= [§f(x,0)do then FeF,, and [2D,F(u(7),0) = [ f(u(r), ) dr; therefore
every solution of (3,1) is simultaneously a solution of (52,1) and the converse also
holds, as the solutions of (52,1) are unique. Theorem 1,1 may be given in the following
form:

Theorem 7,1. Let K, be given. There exists a function x({, T) defined for { > 0,
T > 0 nondecreasing in { such that 11m xl(C T) = 0 and the following assertion
takes place:

Let F, Fy € F(4,, let x be a solution of (52,1) let x, be a solution of

(53,1) & Dy, )
dr -

on {E, %+ Ty, T> 0, x(%) = % = x,(%) and let

(54,1) “A‘;[F(Z, 1) — Fyo(z, ‘c)]” <¢ for zeG,1eE,0<Z0< 1.

Then
[x(z) = %o()| € 2:((, T), F<T<%E+T.
Let F(,, be the set of those F e Fy, that
(55,1) | 424545 F(x, 9)] < o([u]) - o] - 0

forx,x +v,x +u,x+u+veG,1eE,0 = ¢ £ 1, o having the same meaning
as in Theorem 2,1. Theorem 2,1 may be extended as follows:

Theorem 8,1. Let the number K., and the function w be given. There exists
a function x,((, T) defined for { >0, T > 0 nondecreasing in { such that hm XZ(C, T)=
= 0 and the following assertion holds:

Let F,Fy€F,), let x, y(xp, o) be solutions of (52,1) ((53,1)) on <%, % + T,
x(%) = & = xo(%), ¥(%) = 7 = yo(?), let (54,1) hold and let

(56,1) |474:[F(x, 1) — Fo(x, 7)]| < L]z for x,x+zeG,
teE;, 0Zo0=1.
Then
670 @) =@ — %)+ yo@)] < [F -5 nGT), Fs e+ T

Theorem 9,1. Let the numbers K, > 0, d > 0 and the function w be given. There
exists a function y4(C, T) defined for { > 0, T > 0 nondecreasing in { such that

Tim y4(C, T) = 0 and the following assertion takes place:
-0+
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Let F, FyeF,, let x, y(xo, yo) be solutions of (52,1) ((53,1)) on <%, T + T),
E) = 3 = %@, 1) = = 3ol 3(0) O oD 3ul0) < Gy for v GGt + T
and let (54,1) hold. Then

x(2) = 50) = xo(®) + yo(@)] S |~ F| 26 T) for FEesE4 T,

The proofs of Theorems 7,1, 8,1 and 9,1 are omitted as they are quite analogous
to those of Theorems 1,1,2,1 and 3,1. Theorems 6 and 7 announced in [3] follow
from Theorems 7,1 and 8,1. If the functions F e F, are normed by the condition
F(x,0) = 0, then from lim J[Fi(x,7) — Ff(x,7)]| =0 follows that

j—2o 0Zc=1
lim ”F(x 7) — Fy(x, 'c)“ —-0 Put F*(x, 7) = hmF(x ). IfFieFyyi=12,.
i=ow,j 0

then F* e Fy), if Fie F,), i =1,2,..., then F*e F(z) and Theorems 7,1, 8,1 and 9,1
are closed with respect to the above limiting process.

2. INTEGRAL MANIFOLDS

The purpose of this section is to establish existence theorems for integral manifolds.
First a theorem (on the existence of integral manifolds) is formulated for differential
equations in Banach spaces (Theorem 1,2). Then the concept of the differential equa-
tion is replaced by a more general concept of a flow (a flow is a set of functions, which
fulfil some conditions, which are always fulfilled by the set of solutions of a differen-
tial equation). The existence of integral manifolds is proved in the case of flows
(Theorem 2,2) and the properties of integral manifolds are studied (Theorems
3,2—5,2, Note 6,2). Theorem 1,2 is deduced from Theorem 2,2 by means of a Stability
Lemma (Lemma 11,1) and a specialization to a finitedimensional system is made
(Note 8,2). In a similar manner the existence of integral manifolds is established for
generalized differential equations (Theorem 6,2).

LetX = C x ¥, C, ¥ being Banach spaces. Forx e X,ce C,y € € let Hx , |lc
denote the norm of x, ¢, y in the respective space. Without the loss on generality we
may assume that

12) el = el + Bl x = (@ )ex.

(5,1) be given in the form

(2.2) de _ ale, v, 1), & _ (e, v, 1),
dt : dt
de d
(3,2) — = ap(e, 7, 7)., @ ao(c, 7, 7) -
dt dt

Solutions of (2,2) ((3,2)) will be denoted by (c, 7), ((co, 70)), their values by c(z),
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7(7) (¢o(t), yo(7)); the initial conditions will be usually written in the form (%) =
=T = co(%), y(}) = 7 = 7o(?).

Theorem 1,2. Let the functions f = (a, &), fo = (aq, %) fulfil the following con-
ditions:

(4,2) ”f(x, ‘c)“ <K,, “fo(x, r)” <K,, x=(¢,y)eG, 1€k,

(5.2) f. fo are continuous in (x, ), differentiable with respect to x and

(6,2) gi(x,r)”<K1, I <K,, xeG, t€E,,
X

1=

L x307) = L (w19

o
o (x, 7)

< offx =i

a—fg(xl,r)— gf—g(xz,r) S Ki|x, = x|, x5.x,€G, ek
0x 0x

i > 0 being fixed,  being a nondecreasing function, w(£) = K,&" for & 20,
lim (&) = 0.

&0
Let (8,1) be fulfilled. Suppose in addition that

(7,2) ao(0,7,7) =0, (0, y, ) = a*(c) is independent of y .

Put A(y, ©) = day[dc (0, y, t) and suppose that the solutions of the linear equation

T

(8,2) j—i:A(Ia*(a)da+5,1)c, teE,, 6€¥

may be estimated by
(9,2) [e@)] € Ke e, 127, (H=¢, v>0,

K, and v being independent of ¢, ¥ and 4.

Then there exist positive constants {y, ®,, L, K', V', K" depending on K, %, u, v
only, %, < %, L < (6K,)™" in such a way that 0 < { < {, implies that there exists
amap p from % x E, to C and the following assertions hold:

6) I[p(v, 1) £ %2 7€%, 1€Ey,
(i) [p(r7) = p(8,7)] = Ly — B], . Be%, <k,

(iii) If § € %, ¥ € Ey, & = p(J, %), then the solution (c,y) of (2,2), c(%) = & (%) = 7
exists for t € E; and c(t) = p(y(z), 7) for 7 € E;.
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(iv) If ¢eC, ”5” < %,, 7€%, T€E,, then the solution (c,y) of (2,2), (%) =g,
(%) = 7 exists on (%, ) and ||c(z)| £ 3[4, |c(x) — p(y(c). 7)|| < K'e™> 0.
g = p@, %) for v = .

(v) If p’ is a map from € x E; to C, which fulfils (i) and (iii), then p' = p.

(vi) If (c, 7) has the same meaning as in (iv), then there exists a solution (b, p) of
(22) on Ey, b(z) = p(B(v). 7) for T € E, and [e(x) = b(x)]| + [+(x) = B(x)| <

S K'e™C0|e — p(§, ¥)|| for T 2 %

(vii) p is uniformly continuous in v, 1.

Note 1,2. According to (iii) the set of such (¢, y, 7) € X x E, that ¢ = p(y, ) may
be interpreted as an integral manifold of (2,2). Solutions of (2,2) lying on this mani-
fold fulfil obviously

d
il a(p(y, 1), 7, 7) -
dt

Note 2,2. (8,2) is equivalent to

de dy
— = Ay, 1) c, — =a*71).
dr (y ) dr ( )
Note 3,2. If f, = (a,, a,) does not depend on 7, then the notations are simplified:
A(y, ©) = A(y) = doo[dc (0,7), «* is a constant and (8,2) is replaced by dc/dr =
= Aa*(t — %) + 8)c, €%, TcE,.

Note 4,2. Let K,, %, y, v be given. There exist positive functions L((), %,({) on
(0,¢,> such that lim I({) = 0, lim#%,({) = 0 and the following assertion holds:
{»0+ {0+

if 0 < { = {; and if all assumptions of Theorem 1,2 are fulfilled, then the map p
fulfils (i) and (ii) with %, and L replaced by #,({) and L({). This situation is a
consequence of Theorem 1, 2, as to every set of positive numbers K7, %*, p1, v there
exist positive numbers (%, x5, L*, K'*, y*', K"*, x5 < x*, L* < (6K7)™' that The-
orem 1,2 holds, if K;, %, {;, %;, L, K’, 7', K" are replaced by K7, »x*, (T, 3, L*,
K'* y'% K"*,

Let X, C, % have the same meaning as above. Let G be a subset of X. Let & be a set
of functions x from intervals J(x) in E, to G (each x € Z is defined on an interval J(x)
(closed, open or halfclosed, bounded or unbounded), which may vary with x). 2 will
be called a flow (in G), if the following conditions are fulfilled: :

() Ifxe%, J < J(x), J being an interval, and if y is defined by y(r) = x(t) for
teJ, then yeZ (J(y) = J).

(I) To every £eG and TeE, there exists an xe %, J(x) = (%, %), T <7y,
x(f) = %.
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(1) Let x; €%, i = 1,2; if there is 7, € J(x,) 0 J(x,) that x,(r,) = x,(7,) then
x4(t) = x,(7) for 7 e J(x;) N J(x,) N <{zq, ).

(IV) Let x; € &, T e J(x;), x(t) = x7) for T € J(x;) n J(x;), i,j = 1,2,3, ... Then
there exists an x e Z, J(x) = UJ(x;), x(t) = x(z) for 1eJ(x;), i = 1,2, ...

(V) Let xeZ, J(x) =<11,73), T, > 7, 4 >0 and let zeX, telry,T1,),
|z = x(z)| < 4 imply that z € G. Then there exists a y € X, J(y) = <14, 15,
y(7) = x(z) for 7 e J(x).

The elements of a flow & will be called solutions, as they have many properties
in common with the solutions of differential equations. A solution x € & will be said
to exist on {7y, 7,), if J(x) = <74, 7,). One of these properties is stated explicitely
in the following Lemma.

Lemma 1,2. Let Z be a flow, let x, be a map from {1, 1,> 10 G, 1, < 15, &, > & >
> 0 and let the following assumptions be fulfilled:

(10,2) zeX, 1e(1y, 73),

z — xo(r)H < &, imply that ze@G,
(11,2)  xeX, 1, eJ(x), x(ry) = xo(ry) imply that |x(z) — xo(7)| = &,
for telJ(x)n {1y, 5.

Then there exists a y € Z such that J(y) = {14, T,), y(t,) = Xo(t,) (and | y(z) —
- xo(T)” £ & for telry, T2>)-
The proof is omitted, as it is quite analogous to the one in case of differential

equations. In the proof conditions (I)—(V) are needed.
Let Z, %o be flows, T > 0. Let T-distance d(Z, Z,) of Z, Z, be defined by

(12.2) d(Z, Zo) = sup [x(z) = xo(®)]| +

)

+ flylg)zolli = 27 l3(2) = 2(z) = yo(?) + zo(2)
o X, 1,2 €&, Xoy Yor Zo € Lo s
J(x) = J(y) = J(z) = J(x0) = J(yo) = J(z0) = <71, 72)
U< ST+ T, 1edt,1),
x(ty) = xo(r1)» ¥(r1) = yo(t) =, z(ty) = zo()) = Z.

Theorem 2,2. Let the flow %, (in G) fulfil the following conditions:

(Q,) To every § €%, ¥ € E, there exists a solution (co, 7o) € Zo, J(co, 7o) = <%, ),
co(t) = 0 for v = %, yo(%) = 7.
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(@,) There exist K, > 1 and v, > 0 that to every ¢eC, je%, tcE,, ”Z” <
< R3'% there exists a solution (co, 7o) € Zo, J(Cos 70) = <& ®), ¢o(%) = &,
70(¥) = 7 and

(13,2) Jeo(®)] = Rye 6D

5” , 1T=7.
(23) To every 0,0 < ¢ < 1thereexists ax,,0 < %, < (2K,)™" 2 that the estimates

(14’2) ”co(r) - bo(T)H = Kze““l('":)[

e+ |78, <24,
(152)  |ro(e) = Bo(2) — 7 + B| < K[| — B|| + o||7 — B
hold for any couple of solutions (¢, 7o), (bos Bo) € Zo» co(F) = & 7o(F) = 7, bo(%) =
= b, BO(:E) = Ba J(COa )’o) = J(bo, Bo) = (%, oo), ”E”’ “5“ S %y

Then there exist positive constants D = (72K,)™*, L = (6K2)_1, T, %, K', v, K"

depending on %, K,, v, only, %, < 32, that to every flow & for which d(Z, 56”0) <D
there exist a map p from 4 x E; to C and the following assertions hold:

) “p(y, 'c)” < %y, y€%, 1€E,.

(i) |p(,7) — p(Bs7)| < Ly — B|, 7. B %, t<E,.

(iii") If 5e%, TeE,, &= p(§ %), then there exists a (c,7)eZ, J(c,y) = Ey,
o®) = & y(¥) = 7 and c(t) = p(y, 1), 7) for 1€ E,.

(iv) If ¢eC, “Z‘” S %, 7€%, TeE,, then there exists a (c,y)eZ, J(c,7y) =
= (%, ), ¢(f) = & y(f) = 7 and
le@)] = 2% |c(z) — p(3(x), 7)|| = Ke™ |z — P3|, =%

(v") If p'is a map from € x E, to C, which fulfils (")) and (iii’), then p’ = p.

(vi") If (c, y) has the same meaning as in (iv'), then there exists a solution (b, f) € Z,
J(b, B) = Ey, b(r) = p(B(x), 7) for 1 € E, and
”c(‘r) — b(‘L’)‘ + ”y(r) — ﬁ(’t)” < K"e'”'("’)”E - (%, f’)l

(vii") If solutions (c,y) € Z, J(c,y) = Ey, ¢(z) = p(y(x), ©) for © € E; are equicon-
tinuous, then p(y, ©) = p(7) (y) is uniformly continuous.

1, =%

, T=7T.

In order to prove Theorem 2,2 several Lemmas will be needed.
Lemma 2,2. Let 3 be a map from % into € and let
(16,2) ity = 8] < [90) - )| < Ly - 8. » e,
(17.2) 190) = 98) =y + | s Ly — B]. »Be%

with0 < I; <1 < I,. Then § maps € onto itself.
Proof. Choose d € %, put y; = & and efine

Vier =7+ 6 —9(y:), i=123,..
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As l[g(}’in) — 9(7) = Visr + )’i” = ll“?iﬂ_ - Yi”,
Vier = Vi =0 — 9(%) > ‘9()’i+1) - S(Yi) —Vitr + Vi = 9(Y5+1) -9,

we obtain [|9(y;4+1) — 8| = 1]|9(:) — 6| and 9(y;) —» & with i — oo. (16,2) implies
that y; is a Cauchy sequence, hence y; = 7 and 3(y;) - 6 = ().
Let us choose

(18,2) 0=03R,)™"', L=(6K,)™", D=(12K,)"!

and let x, be the number %, that corresponds to ¢ = (3K,) ™" according to condition
(Q3) (%2 = 2K,)7 2 < 32).

Lemma 3,2. Let ¢ € C,

& < %20 7€, FeE,. If

(19,2) Rye™T 23, dyrlZ, Zo) < Jp

then there exists a solution (¢, 7) € Z, J(c, y) = <%, o), ¢(%) = & y(¥) = 7 and
(20,2) [c@)| = 32, te<i i+ T,

(21 €@l £ % te <t + T, o).

Proof. Let (o, 7) be defined by (2,). Apply Lemma 1,2 with xo(7) = (co(t), yo(7))
on %, T + 2T) = {14, 75D, & = ¥, & = 12. As conditions (10,2) and (11,2) are
fulfilled (cf. (12,2), (19,2) and %, < }2), there exists a solution (cy, ;) € Z, ¢,(%) =
=& 1@ =7 and [e(@)] < [eo@)] + [er(s) = eoD)] = #Rae™H D + ey,
Te(i, i + 2T). ‘

Therefore (cf. x, < 12) ¢, fulfils (20,2) and [¢,(7)|| < %, for T e (F + T, ¥ + 2T).
It may be proved by induction that there exists a solution (c;, y:) € Z, J(c;, 7:) =
=<5 %+ (i + 1) TD, () = & %) = 7 that ¢, fulfils (20,2) and |c,(7)|| < », for
te(f+ LT+ (i+1)T),i=123,... Lemma 3,2 holds (cf. (IV)).

Lemma 4,2. Let ¢, beC,

|&], |B]] < %20 5. Be®, TeE,, T>0 and let (19,2)

hold. If
(22,2) T = T2K%, A%, %,) = D,
(232) le =8 <Ly -A].

(D, L being defined in (18,2)), then there exist solutions (c,y), (b, B) € %, J(c,y) =
= 7J(b, B) = (& o), ¢(¥) = ¢, (%) = 7, b(¥) = b, p(¥) = f and

@7 [l - 0] s L) - 50
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Proof. It follows from Lemma 3,2 that solutions (c, y), (b, B) € Z exist on <%, o).
Therefore the following estimates hold on (% + T, ¥ + 2T (cf. (12,2), (14,2), (15,2),
(18,2), (22,2)), (bo, Bo) being the solution of Z, on (%, ©), by () = b, by(F) = p)

”c(‘c) — b(T)“ < ”co(r) - bo(r)” + ”c(t) — b(r) — ¢o(7) + bo(r)“ <
< Raee™ |2 — 6] + |7 = B|1 + pLJe = 5] + |7 - B|1 =
S [(12R,)71 + (12R,) ] (L + L) [§ - B = (18Ky) . 7 = B

@) = @] 2![5 = Bl = [ro(0) = Bo(x) = F + B = 1) = BE) = 3ol0) + Bo(0)] 2
2 [[7 = B| - Ry(c - 6] + ef5 - B]) - DIz ~ 5] + |7 - B[] 2
2|7 - B[ - KoL+ @)= DL+ D] 2 [F-Fl[1 -5 -5 -3 2
= 47 - B -

Consequently [¢(z) — i)(t)“ < Lly(z) — B(x)| for te{¥ + T, © + 2T) and (24,2)
holds by induction.
Denote by Q the set of maps ¢ from % to C fulfilling the conditions

252) a0 = %2 [a(r2) = a@0)] S L|y2 = 0| for py172€%

Let ”‘11“, q; + 43, Aq, be defined in the usual way, g4, q, being bounded maps
from ¥ to C, A€ E;.

Let g be a map from & to C, T, = 7. Let there exist a (¢, y) € Z, J(c, 7) = <%, 1,),
c(?) = q(), 7(t) = 7 for every § € 4. Denote by U, q the set of all (c(z,), y(z,)).
If U, zq is a graph of a map from % to C, then this map will be denoted by P, 3q.

Lemma 5,2. Let (22,2) be fulfilled, g€ Q, % < t £ T + 2T. Let (¢,7) e Z, J(c, ) =
= (%, ©), () = q(5), (%) = 7. Put 9(5) = y(z). Then 9 is a map of € onto € and 9
fulfils (16,2) for I, = 3.

Proof. Let § € €; then 9(B) = B(z), (b, B) being defined by the conditions (b, f) e
e, J(b, ) = <&, 00), b(¥) = q(B), B(Z) = B. It follows from (12,3), (15,2), (18,2)
and (22,2) that

[9G5) = 3@)| = [v(x) - ()| =
= Bl + [ro(®) = Bo(x) = 7 + B + [(x) = B(=) = 70(x) + Bo(e)]| =
B + Ka[]aG) = aB)] + ef7 - B|1 + DL|a@) - aB)] + 7 - B|1 =
<7 - B[t + KoL+ @)+ DL+ D] = [[7 = B[ [t + 35+ 56]

lIA
<2

H

<y

Similarly
(26,2) 19G) = 3B)]| = [+(=x) - B()| =
2[5 = Bl = [70(1) = Bol@) = 7 + B = [#(2) = B(x) = 7o(x) + Bo(1)] 2
27— B[t — KoL+ o) = DL+ D]2[5-B|[1 -3
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Therefore (16,2) is fulfilled. As

15@) - 9) -5 + B| =
< [¥(®) = B@) = o(2) + Bo(D)] + [0(e) — Bo(z) — 7 + B <
< D[|la®) = aB)] + 7 = B|1 + Ra[l|aG) - aB)] + of7 — B[] =
< |7 - B [272K) 7" + R[(6K,) ™ + (3R,) 1] < 35 — B ,

(17,2) is fulfilled and 9 is a map of % onto % (cf: Lemma 2,2).

Corollary of Lemma 52. Let (22,2) be fulfilled, qe Q, # <1 < % + 2T. Let
(.7 e, Jey) =<F ), of) =qF), () =7. Put 7) = 3(x). Then 9 is a
one-to-one map of € onto itself. The map 3 fulfils a Lipschitz condition.

Lemma 6,2. Let (22,2) be fulfilled, q € Q. Then P,+q is defined for © > %, P.zqeQ
fort =7+ Tand

(27’2) Ptz,n(Ptz,’;q) = Ptz,;q > T2 ; T1

Proof. Let ¥ <t < % + 2T. U,;q is the set of such (c(r), y(r)) that (c,y) e Z,
J(e,7) = (T, ), ¢(f) =& y(¥) = 7. It follows from Lemma 52 ((16,2) implies
that 9 is a one-to-one map) that U, 3q is a graph of a map; this map is denoted by
P.zq. (24,2) implies that P,zqe Q if 1 + T < . (27,2) is a consequence of the
definition of P, q.

I

T.

Lemma 7,2. Let (22,2) be fulfilled, q,,q,¢Q, é€C, [¢| < x,, §€%¥, TekE,.
Let (¢, 7) € %, J(c, y) = <%, @), c(¥) = &, y (%) = 7 ((c, y) exists according to Lemma
3,2). Then

(282)  |e(x) = (Pezar) G()| = (R, + 1) & — q4(5. %) for
(292)  |e(®) = (P.za0) O@)| S 4e - q,(F)] for T+ T<t<

(30.2)  |Pzq2 — Pzan| £ 42 — g for F+ T<t<t+2T.

N
[IA

T=<T+ T,

+ 2T,

<

Proof. Put f =7, b = q,(f); let (b, B), (co» 7o) and (b, Bo) have the usual
meaning, 7 e %, ¥ + 2T). As (P 3q,) (B(z)) = b(z), it follows from (12,2), (14,2),
(15,2), (18,2) and (22,2) that

(@) = (Peza) G| = [e®) = b()| + [(P.za1) (B(®) = (P.za:) ()] =
< ”(c(r) — b(z) = cof7) + bo(T)u + ”CO(T) — bo(r)” +
+ L[n(®) = B() = 20(t) + Bo(2)] + [70(z) = Bo(x)[] =
< D¢ — b + Roe™ Dz — p| + R,L|z — B] <
<l + K+ e - 0,5 9)
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and (28,2) holds. If 7 + T £ © = ¥ + 2T, then
(@) = (P.a.a0) 0O = [P + Roe™T + RoL] o - B <
<l +an+sle-a6.9)].
(29,2) holds. Substitute ¢ = ¢(7) into (29,2). As ¢(¢) = (P,3q,) (y(r)), we obtain

”(Pr,?‘b) ((x)) - (Pf,?‘h) (Y(T))” = %”42(7’) - 411(7’)” = '.1?“42 - ‘11”

According to Lemma 5,2 y(r) = 9()7) accepts all values from &, if § runs through %,
%4+ T< 1t <%+ 2T, © being fixed. Consequently (30,2) holds too.

Lemma 8,2. Let (22,2) be fulfilled, ;€ Q, i =1,2,... g€ Q, |q; — q| — 0 with
i>0,1 2% P,uqeQ,i=12... Then ||P,3q; — P, xq| — oo with i - oo.

T1,Ti

Proof. Let =fe%, €= tIi(‘?), b= ‘1(/?)’ teEy, let (C’ 7), (Co, YO)’ (b ﬂ),
(bo, Bo) have the usual meaning. Suppose in addition that 7, < ¥ + 2T. According
to (12,2), (14,2), (15,2), (18,2) and (23,2) we obtain

le(z) = b= + o) = B =
< Jleo(zr) = bo(ms)| + [le(z1) = bles) = eofts) + bo(zy)] +
+ ”70(Tl) - /30(71)” + ”V(Tl) = B(r1) = vo(t1) + ﬂo(ﬁ)" =
< 2R,z - B] + Dl — 5] 5 (2R, + 1) g, - a]

As c(ty) = (P,,z4:) (7(t1)), b(z1) = (P.,z9) (B(z1))s Pr,34; € Q, it follows that
“(Pn,?‘h) (B(z1) — (Pn,?l) (B(Tl))” S(l + L) (ZKZ + 1) H‘Ii - qH .

According to Lemma 5,2 f(t,) accepts all values from %, if f§ runs through 4 and
Lemma 8,2 holds (the additional restriction 7, < % + 2T being removed by induction,
cf. (27,2)).

Lemma 9,2. Let (22,2) be fulfilled. Then the limit

(31,2) lim P,z = p(t), qeQ, teE,

T*— 0o

exists and does not depend on q and
(32,2) p(t)eQ, tekE,,
(33’2) Prz,tl p(Tl) = p(TZ) > Tl é TZ .

Proof.Letqe Q,%; =7,%,,, <% — T,i=1,2,... Letj > i > 1. Then accord-
ing to (26,2) it follows that

(34,2) P; =P ;(P;7)

1,15
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and (30,2) together with (27,2) imply that

nPt,:,-q - PT,Iqu” = ”Pa,;z P:i_l,?i(P;(,;jq) - P;l,‘;l P:i—l;iq” é
S Pig -] =G 2

Therefore lim P, ;,q exists for every sequence #; and consequently the limit in (31,2)
exists. In a similar way one may prove that this limit does not depend on g¢. (32,2)
is fulfilled, as Q is closed. (33,2) is a consequence of Lemma 8,2 and (34,2).

Let us finish the proof of Theorem 2,2 with the exception of (vi') and (vii'). Let
(22,2) hold, let p be defined by Lemma 9,2 and put p(y, t) = p(z) (y) for y € %,
7 € E;. Remind that g, L, D were defined in (18,2) and that x, was defined by condi-
tion (2,).

Assertions (i') and (i) of Theorem 2,2 are consequences of (32,2).

Let teE;, €%, ¢ = p( 7). As ”E” < %,, it follows from Lemma 3,2 that there
exists a solution (cy, y,) € &, J(cy, 1) = (%, ), ¢4(%) = &, 9,(¥) = § and the defini-
tion of P, zq together with (33,2) and p(%) (§) = ¢ imply that ¢,(t) = p(y,(7), 7) for
T = 1. It is a consequence of the definition of P, ;g and of (33,2) that to every i =
=1,2,... there exists a (b;, ;)€ %, J(bs B;) = (¥ — i, ), by¥) = ¢, %) = §
and that by(r) = p(B(), 7) for = = %. It follows from Corollary of Lemma 5,2 that
bi(t) = bj(x), Bi(x) = B(x) for = =2 ¥ — i, i < j. Hence assertion (iii’) holds (cf.
(I1I), (IV) in the definition of a flow).

Let e C, “E“ < %,,7 €%, t € E;. According to Lemma 3,2 there exists a solution
(7)€%, J(c,y) = <F ), ¢(F) = & y(F) = 7 and [|c()|| < 3 fort = % (%, < 42).
It follows by induction from Lemma 7,2 and from (33,2) that

le@ = p0o@), D = @) e = p( D), E+iT<c<t+(i+ 1T,
i=1,23,...,
e®) = p6). D = Ry + D [e = (. D), z<c<i+T.

Hence (iv’) holds with K’ = 3(K, + 1),"v' = T"'log 3.

Let p’ be a map from € x E, to C, which fulfils (i’) and (iii’). Let f € %, 7, € E;,
b = p'(B, ,); then there exists a solution (b, f)e%, J(b,B) = E;, b(zy) = b,
B(z,) = B and b(z) = p'(B(z), 7) for t€E,. Put © =1y, ¥ <17y, (¢,y) = (b, B) on
(%, ) in the second inequality in (iv'); it follows that

(35.2) [P'(B, v1) — p(B, ©)| = |[b(x1) — p(B(zs). 1) <

< K'e™ @™ |b(2) — p(B(z), D) < K'e™> 2x, .
(v) holds, as (35,2) is fulfilled for every ¥ < ;.
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Assertions (i’) — (v') of Theorem 2,2 are proved. In order to prove (vi’) the following
Lemma will be needed:

Lemma 10,2. Let (¢, 7)€%, J(ciy:) = (5, ), ¢f) =&, y(}) =75, &=
= p(5i %), i = 1,2, vy = 2T) " log (35). Then
72 = 1@ 2 S - 7
Proof. It follows from (26,2) that
[~ m @ 2 i1 - 7] for seca 2.
As ¢i(t) = p(y{(r), 7). T = %, i = 1,2, ti follows by induction that

Irae) = 1@ = CDF 52 = 71| for TedE+2(i — 1) T % + 2T,

i=1,23,...

and Lemma 10,2 holds.

Let us prove (vi'). Let (¢, 7) € %, J(e,y) = (5, ), () = ¢, “5“ < %y, 9(7) = 9.
According to (iii") there exist (b;, ;) € %
J(b;, B)) = Ey, BiE + iT) = 9(F + iT), b{¥ + iT) = p(y(% + iT), T + iT),

i=01,2,...

(iv") implies that

(36.2) le@ + iT) = bi(& + iT)| < K'e™"z = p(5, )] -

Let (cio» io)> (bio» Bio) € Zo» J(Cios i0) = J(bio» Bio) = (& + iT, ), c;o(t + iT) =

= o + iT), y0o(F + iT) = 9(F + iT), bio(T + iT) = by(T + iT), Pio(T + iT) =

=BT +iT), i=0,1,2,...

(€105 7i0)» (bio» Bio) exist, cf. (2:), (i), (21,2) and the definition of x,). Then (cf.
(15,2) and (36,2))

(37’2) ”V(T) - ﬂi-x(‘f)” = ”%—1,0(1) - ﬂi—l,O(T)” + “Y(T) - ﬁi—1(‘5) -
~ Vi=1.0() + Bicro@)] £ (Ro + D) JeF + (= D T) = bis(F + (1 = D T)| =
< (R, + 1)K'e™ 60Tz — p(5,7)], T+ (i-1)T<c=2t4iT, i=12,..

B + iT) = y(¥ + iT); therefore
B + i) = posfe + D] = (Ra + DK™V - p(5, 7))
and Lemma 10,2 implies that

(38,2) ”.Bi(‘l?l) - ﬂi—-l(‘fl)” = %’gewGHT_“)(Kz + 1) K’env'(i_nT”E - p(f %)“ =
- = V)T =3 =) ¢ — P(i;’ :f)”

< K,e
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fort <7, <%+ iT, Ky = 3K, + lj’K’e"'T. As V' > v, the sequence f3; converges
uniformly on every bounded interval {%, 7,), T, > % and b; also converges uniformly
on (%, 1,) (cf. (ii"), by(r) = p(Bi(r), 7). Put b(r) =lim by(x), B(r) = lim (1),
i i~
© = %. Obviously b(t) = p(B(), ), T = . The continuity of the map 9 from Corollary
5,2 implies that (b, f) € Z. It follows from (38,2) that
[8(z) = Bioa(e)]| S K[t — 7@ 79T] 71 om0 miTone ) g — (5, 7)]
1<, 2%T+iT, i=1,2,3,...
(37,2) implies that
1Bi-1(r) = 2(@)| £ Kse™ VT2 — p(5, 2)|
i=1,2,3,...

i+ ([ —-1)T<t<%+0T,

Therefore

1B(z) = 9()]| £ Kae™ P = p3,9)]|, 127,

K, =K (1 + [1 — e~ @771,
le®) = b@)| = [<(2) = p((2), )] + [P (2). ) = p(B(2), )|
< (K’ + LK) e‘“"":)!]?: - (7, 7)
(vi") holds, if K" = K’ + (L + 1) K,.

Let solutions ~(c, Y e, Jc,v) = Ey, o(t) = p(y, 1), 7) for teE,, be equiconti-
nuous. Let f',fe®, «,i€E, and let (b,B)eZ, J(b, B) = E;, b(%) = p(B, %),
B(%) = B. Then

|68 ) = p(B. D] = [p(8', ) = p(B(x), )] + (=) = b(D)| =
S LI = B| + [6() = BOIT + [o(x') = b(®)] -
Hence (vii’) holds and Theorem 2,2 is proved completely.

IIA

, T=7.

Note 5,2. Theorem 2,2 may be strenghtened as follows: Let ', fulfil the conditions
of Theorem 2,2. Then there exist positive functions x*(n), L*(n) on (0, D) lim »*(y) =
: -0+
= 0 = lim L*(y) and the following assertion holds: if Z is a flow and if d,- 1 (%, %) £
n—0+
< n, then map p fulfils (i’) and (ii") with %, and Lreplaced by x*(7) and L*(n). The
proof is carried out, if Theorem 2,2 is applied K, being replaced by iKz, i=1,2,3...

Flow % is called periodic in y with the period 6,6 € % if (c,y) € Z implies that
(b, B) € Z, (b, B) being defined by b(z) = c(z), f(z) = y(r) + 8, T J(c,y) = J(b, p).
Z is said to be periodic in t with the period o, if x € 2, J(x) = (14, 7,) implies
that y € Z, y being defined by y(t) = x(z + o) for 1 € (t; — 0, 1, — o) = J(y).
Z will be called almost periodic, if there is a sequence of flows Z;, i = 1,2, ... and
dr (%, Z;) - 0 with i - oo for every Ty > 0, Z'; being periodic in 7.

404



If Z, ¥ are flows in G, T; > 0, put

d3 (%, %) = sup ||x(r) - y(7)
X,),a

3

xeZ, yed, J(x)=J(y) =t ), 1y < ST+ Ty,
Te <Tla TZ>5 x(‘cl) = y(Tl) .

Theorem 3,2. Let the assumptions of Theorem 2,2 be fulfilled, let dT(gl", 32’0) <D
and let & be periodic in y with the period 5. Then p(y — 6, 1) = p(y, ©) for y € @,
teE,.

Proof. Define p'(y, ) = p(y — 8, 1), y €%, © € E,. It may be shown that p’ fulfils
assertions (i") and (iii") of Theorem 2,2; therefore p’ = p according to (v').
The following Theorem is proved in the same manner.

Theorem 4,2. Let the assumptions of Theorem 2,2 be fulfilled, dT(FIf, 9&"0) <D,
6 > 0 and let & be periodic in t with the period o. Then p(y, T + o) = p(y, ) for
ye%, teE,.

Theorem 5,2. Let X', i = 1,2, ..., Z* and %, be flows in G, let the assumptions
of Theorem 2,2 be fulfilled, if the couple &, %, is replaced by X, X9, i = 1,2, ...
and by &*, &, (K, and v, being fixed and x, in (Q;) being independent of i).
Let d(Z:, %o) < D, d(Z*, Z) < D. Suppose in addition that dy (%, Z*) -0
with i — oo for every T; > 0. Let p;, i =1, 2, ... and p* correspond to Z;, i =
=1,2,... and Z* in the same way as p corresponds to Z in Theorem 2,2. Then

sup || pi(. ) — ¥ )| = O with i oo,
€€ ,1cEy

b

Proof. Let the operations Pif%, i=12,... Pz; be in the same relation to &;,

i=1,2,..., Z* as P,; relates to & (cf. the definition of P, ; after Lemma 4,2).
Let e Q, teE,. Then Pr,:qeQ, i=1,2,..., P r3qeQ (cf. Lemma 6,2).
Let €%, & = ¢(7). According to Lemma 3,2 there exist x; = (c;, 7;) € &, X* =
= (c*, y¥) e I*, J(x;) = J(x*) = <, ), ¢i(%) = & = c*(F), 7(¥) =7 = v*(}), i =
= 1,2, 3, ... Therefore

PR 6% + 1) - (Phars) 67 + )] <
< [(P030) 67 + 7)) = (P2 0 + T + e + 7) = e + T)] <
< (1 + L) d¥(@,, 7).

According to Lemma 5,2 y*(% + T) accepts all values from % if 7 runs through &;
hence

() *

(39.2) |PZvrza — Prirza] S (1 + L) di(®,, 27%).
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Let g4, g, € Q. Lemma 7,2 and (39,2) imply that

“Pgir,?‘h - P?+T,":‘12” = "PQT,?‘M - P?+T,?‘11“ +

| < (1 + L) d}(Z0 2%) + $a; — o

k

+ |PEirian — Piirsa

It follows by induction that
(40,2) [P jras — Piemjra| <
2052 [+ 3+ QYT T+ @Y g -4, J=123,..

As p(r) = lim P:f%q, p*(z) = lim P:k;q (cf. Lemma 9,2), it follows from (40,2)
- -0

that |pi(c) — p*(c)| < 3d7(%:, #*) and Theorem 5,2 is proved.

Note 6,2. If the assumptions of Theorem 2,2 are fulfilled, dT(EK L X 0) < Dandif &
is almost periodic (in ), then according to Theorems 4,2 and 5,2 there exist maps p;
from % x E, to C, which are periodic in 7 and p,(y, ©) = p(y, t) uniformly. If each p;
is uniformly continuous (cf. (vii')), then p is uniformly almost periodic.

The following Stability Lemma plays an important part in the proof of Theorem 1,2

Lemma 11,2. (Stability Lemma.) Let f, = (a,, o) fulfil the assumptions of Theorem
1,2 (ie. (4,2), (5,2), (6,2), (7.2) and (9,2)). Let 0 < vy < vu. Then there exists a K, =
= K,(Ky, %, pt, v, v;) = max (K,, 1) and to every ¢ > 0 there exists a x5 =
= u5(Ky, %, i, v, vy, @) > 0, Kyxs < §x that the solutions (co, o), (bo, Bo) of (3,2),
co(?) = & 1o(¥) = 7, bo(%) = b, Bo(¥) = B, |||, | B < x5 exist on (%, o) and the
following estimates take place

B

(412) o) = bo(?)]| < Kpe ™ 9[|¢ — B + o — B|], * =%,
422)  |vo(t) = Bo(e) = 5 + B| < K[|e = B + |7 = B]]. vz

Corollary 1,2. Let b = 0,7 = f; then b, = 0 and (42,2) gives

(432) leo(@)] < Kae™ ]|, <z %

%

for any solution (c,, 7o) of (3,2) “E” S %5, 7€ b, #5(Ky, %, 1, v, vy, 1).
Proof of Lemma 11,2: As f, = (a,, %) it follows from (1,2) that

é ‘

da 0
(45,2) l_o (025 Ps T) - ﬂ (cl_’ Vs 1:)
dc dc

|
@42) 1% (9,7 = |22 (9 7)| 2 |22 (c.7. )| < Koy (c29) G, e By
dc dc 0x

Similarly

S Ko — et (ers7)s (e2,7)€G, T€E,.

406



Obviously

1 a 1
aolc, v, 7) = j %o (oc, v, 1) dac, e, y, 1) = o*(z) + J 9% (oc, y, 7) doc
o 0c o Oc

and therefore (3,2) may be rewritten as

d
L tpryerz, Do)+ 2,
dt dr

Z,, %, being estimated by
(46.2) |22 = Kulle* ™ 24]) = Kafe] -

Let (co, 7o) be a solution of (3,2) on (%, % + Ty, Ty > 0, ¢o(F) = &, 74(%) = ¥ and
put ¥(z) = 74(r) — 7 — [%a*(s) do; (co, ¥) is a solution of

@2 % - A(Jta*(a)da +5 r) c+z, Yoz, o=z w@=o,
dz : dt

T

Z, being defined by

(482) z,= [A(vra*(a) do + 5+ ¥, r) - A(ﬁa*(a) do + 7, r>] c+Z,.

(46,2) and (47,2) imply that

®2) W] = K [ )] de

Let £ = (1, o) be the operator solution of

i.E‘=A(Jac*(cr)do+7,17>5,
dt :

E(a, a) =1 (I being the identity operator — i.e. the values of = are bounded operators
from C to C, &(r, 0) & is a solution of de/dt = A([% o*(0) do + 7, 7) ¢, | E(z, 0)| =

= sup ]I E(r,0)c [ & is continuous in (r, o) and according to (9,2)
llell=1

(50.2) |2(r,0)| £ Kie 7, t20.

The first one of equations (47,2) together with the condition ¢,(¥) = ¢ is equivalent to

(51,2) coft) = B(r, ) ¢ + J 5t 0)Z, o

<

407



According to (51,2), (50,2), (48,2), (45,2), (49,2) and (46,2) we obtain the following
estimate:

(52.2) lea(@)] = Kie™De] +

v [ [k ([[eato] aon ) o] + Kl ao

T

Put v, = 3(viu™" +v), &(7) = e"’('_;)uco(r)”. Then

i) 5 K] + K [[emvemrmmeioned,

T

T

. [(K1 J‘je_"(‘”_;)él(al) dal)u+ (61(0)"] E(o)do, t<TST+T.

Let |&| > 0and let &, be the solution of

T
e—(v—-vz)(r~a) .

(53,2) &(r) = 2K, )& + K3 J

¢ - "
. I:(Kl J~e""2(”‘_’)g”2(61) d01> + (52(0'))“] &, (o) do
on {%,% + T,), T; > 0. Then &, is positive and nondecreasing on {7, ¥ + T;) and
as the right hand side of (53,2) is nondecreasing with respect to &, &; necessarily
exists on (%, ¥ + T;) and &,(t) = &,(1) on (%, T + Ty). As &, is nondecreasing,
(54.2) &,(r) £ 2K, ”E“ + K3J e OTIEE () e, FSTSEH T,
K, = Ki[v;*K} + 1].
Let 0 < %, < %, K33 < v — v,, %3 < 1 and let &5 be the solution of

(55,2) 53(1) = 3K1”5” + K3%§ Jje“(V—vz)(t—a)£3(0) do.

As &5 is a solution of

. &) = 3K, ¢

>

d ~
- & =—(v—v, —Kuyd§) & + 3(v — Vz)K1”C
T

it is defined on <%, o) and &(t) < K, || on <%, ), Ky = (v = v2) (v — v, —
— K3x4)™* 3K, + 3K; Choose a x4, 0 < %, < %, Kyxq < 25 Let 0 < ”E” < .
Then &;(t) < %3 on <%, ), &, exists on (%, o) and &,(t) < &; on (%, ®). Thus ¢,
and ¢, together with y, are defined on (%, o) and

P ey(d)] = &) S Kafe] S0y <%, T2 7
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Let us sum up: if |&]| < ,, then the solution (co, 7o) of (3,2) exists on (%, o) and
(56,2) ”Co(T)H < K&‘”"‘BHE” Suy<x, 127,

( being arbitrary).

Let (co» 7o), (o, Bo) be solutions of (3,2), [|2], | B]| < x4 (co, 7o) and (bo, B,) exist
on <%, ) and fulfil (56,2). Put () = yo(r) — [Zo*(0) do — 7, (1) = Bo(r) —
—~ [£a*(0)do — B. Then
(57,2)

di(co — bo) = ¢olcos ¥ + Jta*(a) do + 7,7) — a, (bo, o + Jtoc*(a) do + B, r) ,
T pog z
(58,2) ;;1 ¥ — @) =0 <co, v+ fta*(a) do + ¥, ‘c) -

T T

— 0 (bo, v+ J’joc*(a) do + 7, r) + (bo, v+ Jjoc*(a) do + ¥, 'c) —

— (bo, o+ Jtoc*(a) do + B, r).

The following estimates are obtained in a similar way as (46,2) (using (1,2), (5,2),
(6.2), (56,2) and a2y (0, 7. 7) = O):

% (co(rx H0) + [0 4 7.7) = 20 (b0 4 + j we)do 43, )
< Kileo(t) = bo(7)] .

)rxo (bo(r), W) + j ;oc*(a) do + 7. r) ~ % <b0(‘r). o(c) + f ;cx*(o) do + B, 1)

< Ky(Kae By [[5 = B + () — 0()]1-

Integrating (58,2) we get

[v() = o) = K J:Hcc(a) = bo(o)] do + Ks|5[*- [7 - B +

IIA

IIA

+ KB j " y(o) - oo)] do Ky = KiKE, Ky = Kolvan)

Hence (cf. & < %, < 1)

92) 1669 = #60] 5[ K [[Jedo)= bl do-+ Ko 817 o 6= 5.
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Let us write

602  a (co(‘r), W) + f ;oc*(a) do +7, r> ~ <b0(z), o) +
+ J;a*(a) do + B, r) — 4 ( j ;oz*(a) do + 7, r> (coft) —bo(2)) + Z,

Zy = a, (bo(r), v + f ;oc*(a) do +7, f> ~ ao (bo(r), o(c) + J ;oc*(a) do + B, r) L
+ J : [9@ (bo(r) T o{coft) — bo(e)), ¥(c) + f ;ac*(a) do + 7, r) ~ %85 (04 +

de Jc

N _[;“*(G) do + 7, T)] do(co(r) — bo(7)) + [+ A (!//(r) + Lta*(a) do + 7, r) -

- A( f ;a*(a) do + 7, T)} (colt) — bo(r)).

It follows that (use (1,2), (6,2), (56,2), (49,2) and da,[dy (O, y, ) = 0 and suppose
that [ 5] = |z])

(612  |zs] = Ku(Kae D)) [[5 = B + [v(x) - o(@)]] +
KK ] + O] o) — 00 =
< Kee 5] 17 - 8] + |99 — o] +
b [Rae™ DB + KB ) — 9]
Ks = K;K4 K¢ =K (K;K,v; ).
According to (60,2) equation (57,2) may be given the following form
¢o(t) — bolr) = E(x — 7) (¢ — B) + J 5, 0)Z do
Taking (50,2) and (61,2) into account we obtain

(622) leol®) = bo(a)] < Kye™ ]z — 5] +

+ KK | om0 Sagly - j +
+ KK [ e D]y (o) ~ o(o)] do +
+ K| B j e eo() = bolo)] do, Ky = Ky(Ks + Ko)
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Substituting (59,2) into (62,2) we obtain after some arrangements
62 Jeof) = bl = Kot e — 6] + Kyal B D]y - ] +

KB j e o(0) = by(o)] do,

T

Ky = Kle(V - Vzll).1 (1 + KSKQ)’ Ky = KstKg(V - "2#)‘1 + K.

Put e“‘('";)“co(t) — bo(7)|| = &,(r) and multiply (63,2) by D (and use vou — v, =
= 3(vp — v;) > 0):

(64,2)
640 5 K32 = B+ Kaal P |7 = Bl + KBl [ o2 ar.
It follows from (64,2) that t
tu S TR = 6]+ Kl 7 = PI)-Kuz Ka = 9 (Ko = 5}

Therefore

(65.2)  |eo(t) = bo(r)| < [KiKyaE — b| + KyoKy|[B]* [7 — B]] e~
and (59,2) together with (65,2) imply that

(662 146) - o) = v KiKoKoole - B] +
+ [V 'K KoKz + Ks] Kol 5] |7 - B] -

(65,2) and (66,2) imply that Lemma 11,2 holds, if we choose

(67,2) K, = max (K1K12, KoK 1>, V;IKfK9K12’ [V;1K1K10K12 + Ks] K, 1, K1) s
ns = min ("%, %, 3K 'x) .

Let us prove Theorem 1,2. Lemma 11,2 may be used, the assumptions of Theorem
1,2 being fulfilled. Choose v, = $vu and let K, be defined by Lemma 11,2 and put
% = Kyus(Ky, %, 1, v, 4, 1), K, = K,; according to Lemma 11,2 £ < §x. Let 2(%)
be the set of solutions x, = (o, 7o) (¢ = (¢,7) of (3,2) ((2,2)), which fulfil the
following condition: each solution x,(x) is defined on an mterval J(xo) (J(vc)) and
xo(7) € G for t € J(xo) (x(z)
%y and & are flows in G (i.e. they fulfil COndlthllS (I) (VI))

Let us show that 2, fulfils conditions (), (25), (25) of Theorem 2,2. (Q,) is a con-
>t = us(Ky, %,y v, vy, 1),
§ € €, T € E;. The existence of a solution (¢, 7o) € %o, J(Co» 70) = <F, ), co(%) = &,
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90(f) = 7 is guarranted by Lemma 11,2; (13,2) is identical with (43,2). (Q;) is
a consequence of Lemma 11,2.

Let D, L, T, »,, K, v/, K” be defined by Theorem 2,2. According to Lemma 11,2,
K, = K, depends on Kj, %, i, v, v; only; therefore (cf. the choose of # and v,)
the above constants depend on Ky, %, p, vonly. L = (6K,)™* < (6K,) 'asK, = K,
(cf. Lemma 11,2). %, < (2K,)™' 2 = 3u5(Ky, %, p1, v, vy, 1) < 2 (cf. Theorem 2,2
and Lemma 11,2, K, = 1 and # = Kous(Ky, %, pt, v, v, 1) < 3x).

Put d = % — %; obviously G, = G (G, was introduced after the proof of Theorem
2,1). Let x(x4) be the function from Theorem 1,1 (Theorem 3,1) and choose {; > 0
(depending on Ky, , p, v only) that x,(Cy, T) + x4((y, T) < D. Let (10,1) be fulfilled
and let { < (4. Let xq, yo € Zo, X, y € X, J(x0) = J(yo) = J(x) = J(y) = F, %),
F<1, %+ T, x0(F) = x(f) = %, yo(f) = y(f) = § # %. Theorems 1,1 and 3,1
imply that |x(t) — xo()| = x1(Lr T), % = 771 [x(2) — 9(z) — x(z) + yo(7)|| =
< x4(8y, T) for 1€, %,). Followingly d(Z, %,) < D. Therefore Theorem 2,2
may be applied to &, Z,. Assertions (i)—(vii) of Theorem 1,2 are simple conse-
quences of assertions (i) —(vii") of Theorem 2,2. Theorem 1,2 is proved completely.

Note 7,2. It follows from Theorems 3,2 and 4,2 that p(y + 6, t) = p(, 1) for
ye®,teEy, ifaly + 6,7) = a(y, 1), oy + 6, 7) = ofy, 7) for y € 4, 7 € E; (in addi-
tion to the assumptions of Theorem 1,2) and that p(y, t + o) = p(y, t) for y € %,
teEy, if a(y,t + o) = a(y, 1), a(y, T + 0) = &y, 7) for y €%, © + E;. Conclusions
on almostperiodicity may be drawn from Theorem 5,2 (cf. Note 6,2).

Note 8,2. Let

dr dy

(68.2) P ev(r, ¥), 4 o + ew(r, ¥)

be given. Suppose that v(w) is a continuous map from G, x E,, to E,(E,), G, being
an open subset of E,, v(r, ¥ + ¢;) = v(r, ), w(r,y + €;) = w(r,¥), reG,, y €E,,
e;=(8;1, ..y 0um), 0:5=1, 6, j=0for i +j, i,j=1,2,...,m, the derivatives
dv[or, dv[oy, ow[or, dw|ay fulfil a Holder’s condition, w = (wy, ..., »,,), the numbers
w, i =1,2,..., m are rationally independent (i.e. if oy, ..., o, are integers, |<x1| +
+ ...+ loc,,,l + 0, then oy; + ... + o,®,, + 0). Put

vo(r) =£---£v(r, W) dyy .. d,  welr) =j

Let there exist a solution ry € G, of vy(r) = 0and let the real parts of the characteristic

1

j w(r, ¥) dyy ... dy,, .

0

ov . .
values of »6—9 be negative. Choose % > 0 in such a way that r € E,, |r — ro|| <
r r=ro

implies that r € G,. It may be proved that to every { > O there exists an g, > 0 that

Jtz[w(r, ¥+ otfe) — we(r)] dri

71

‘ .
=3
|

< e,

ftz[v(r, ¥ + otfe) — vo(r)] dr

!
|
|
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for reG,, |r—ro| S YekE,, 0<ese (for m=2 cf. [1], section 2.3).
Therefore the assumptions of Theorem 1,2 are fulfilled, if we put C = E,, ¥ = E,,
c=r—rep Y=y —ot, t=2t, alc,y,7t)=0v(c+ry ¥+ wrfe), afc,y 1) =
= w(c + 1o, 7 + 01fe), ap(c) = voc + ro), ap(c) = wo(c + ro) and there exists
a unique integral manifold ¢ = p(y, 7) of

(69,2) de _ a(e, 7, 17), dr _ afe, y, ),
dr dt

p(y + e, 1) = p(y,7), i = 1,2,...,m (cf. Note 7,2). r = ry + p(y — ot, &t) is an
integral manifold of (68,2). As (68,2) is an autonomous system, r = ro + p(y —
— ot + 0),¢(t + 0))is an integral manifold of (68,2) for every o € E ; the uniqueness
of the integral manifold ¢ = p(y, t) of (69,2) implies that p(y — wt, et) = p*(y)
does not depend on ¢ so that the integral manifold of (68,2) is found in the form
r=ro+ p*(¥), p*(¥ + e;) = p*(¥), i =1,2,...,m and the stability properties
follow from Theorem 1,2.

Let us apply Theorem 1,1 and Lemma 2,1 from [5] to (68,2). Put (using the nota-
tions of section 1, [5])

h=r—ry ¢ =My, M =diag(no;'), i=12....m,
,(t, @, h, &) = eMwy(h + ry) = &F(h, €),
(1, @, b, &) = M[w(h + ro, M~ @) — wo(h + ro)] .
&7 has to satisfy the Lipschitz condition

|95z £) = @1(hss &) < nle: o) [ — B

for || hy, [h.] < e 7" n(e, £) » O with & - 0, ¢ — 0; it is necessary to suppose in

addition that 20| = o
or

r=ro

Note 9,2. Theorem 1,2 may be extended to such classes of f, fo(F, F,) that Theorems
4,1 and 6,1 (Theorems 7,1 and 9,1) are to be used in the proof instead of Theorems
1,1 and 3,1. We shall formulate a Theorem of this type, which will be needed in
Notes 3,5 and 5,5.

Replace the system (2,2) by the system of generalized equations

(70.2) de _ D.A(c, v, 1), dr_ s (c, v, 1)
dt dr

and put F = (4, o), Fo(x, 1) = [ fo(x, 6) da, fo = (ao, o).
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Theorem 6,2. Let fo fulfil (4,2), (5,2), (6,2), (7,2) and let (9,2) hold. Let F be defined
for x € G, t € E, and fulfil the following conditions

|42 F(x, )| < Ky0, x€G, t€E, 0S 0 £ 1,
| 4347 F(x, ‘c)” < Ky|z|o, x,x+2€G, t€E, 00 <1,
| 474742 F(x, 7)

| < w(“zln) ”zZH O, X, X + 2, X + 23, X + z; + 2, €G,

teE,,0=50=1.
Let in addition

|A;‘[F(x, ) — Fy(x, r)]” <¢{ xe€G, teE, 02051,

Then there exist positive constants {, %, L, K', V', K" depending on K, %, i, v
only, %, < x, L < (6K,)™" in such a way that 0 < { < {; implies that there exists
a map p from € x E; to C and assertions (i)—(vii) of Theorem 1,2 hold ((2,2)
being replaced by (70,2)).

In order to prove Theorem 6,2 the proof of Theorem 1,2 may be used with the
only change that references to Theorems 1,1 and 3,1 are replaced by the ones to
Theorems 7,1 and 9,1. Note 7,2 may be extended in a similar manner.

3. FUNCTIONAL DIFFERENTIAL EQUATIONS

In this section Theorem 2,2 and Lemma 11,2 are used in order to establish the
existence of integral manifolds for functional differential equations. As Lemma 11,2
is proved for differential equations with no time lag, the existence of integral manifolds
will be proved for functional differential equations which are near to differential
equations without time lag.

Let Y, R, & be Banach spaces, Y = R x &, |y| = ||| + o for y = (r, ) €Y,
I»]> [ | @] denoting the norms of y, r, ¢ in the respective space. Let x > 0 and
let G=E[(r,9)eY; reR, ||r| <x, ¢ed]; let UG)(U(Y), U(R), U(®)) be the
set of continuous maps from {—1, 0) to G(Y, R, @). Let h be a map from G x E,
to Y, let g be a map from U(G) x E; to Y and put h = (hg, ho), g = (9z> 9o),
hg, gr being maps to R hg, g being maps to @. The maps from intervals in E; to G
will be denoted by y = (r, ¢), z = (s, ¥), r, s being the corresponding maps to R
and @, J being the corresponding maps to ®. By y(z), r(z), ¢() will be denoted the
values of y, 7, ¢. If y = (r, @), z = (5, ) e U(Y) (r, s € U(R), @, ¥ € U(®)) and if
AeE,, let Hy r”, ”(p|, Ay, Ar, 2@,y + z, r + s, @ + Y have its usual meaning
(i-e. HFH = sup Hr(a)“ etc.). Obviously |y| = I + |-

ae(~1,0)

If y = (r, @) is a continuous map from {t, — 1, 7> (<Ty = 1, 7,), <71 — 1, ), E;)
to G, 7, < 1, and if 7 € <1y, 7o) ({71 T2), {15 0), E) let yo = (re> @.) be the element
of U(G), which is defined by y. (o) = y(t + o) for o€ {—1,0), r, and ¢, being

>
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the corresponding maps to U(R) and U(®). A map y = (r, ¢) from <7, — 1, 7,)
¢ty = 1,7,), {7y — 1, ), E;) to G will be called a solution of

dr do
(1,3) - = hg(r, ¢, 7) + gr(re @u 7) & = ho(r, ¢, 1) + go(r, ¢., 1),

if y is a continuous map and if the derivatives dr/dz, dp/dt exist and fulfil (1,3) for
TE <Tl9 72> (<717 72)5 <Tl9 OO), El)-

It will be supposed that h and g fulfil the following conditions:

(2,3) h is continuous and |[h(y, 7)| < K, for y € G, t € Ey,

(3.3) ? exists and <K, for yeG, teE,
y

‘Z—i (».7)

(the norm of 0h/dy(y, t) being defined in the usual way),

(4.3 z—z(z, 7) — Z—f}(y, 1:)! < K1”Z — y”", O<pu=z1fory zeG, tekE,,
(5.3) hx(0, @, 7) = 0 for ¢ € P, T € Ey,

(6,3) ha(0, ¢, 7) = h(7) does not depend on @, ¢ € &, t € Ey,

(7,3) g is continuous, ”g(ﬁ, ‘c)” < {forjeU(G),teE,,

(8.3) lg(z. <) — g(7. 7)| = ¢||z — || for 2, 7 € U(G), = € E,.

Denote by w the map from & x E; to U(®) defined by w(e, ?) (o) = ¢ +
+ [ h3(A)dA, ¢ € b, T € Ey, 0 € {—1,0). Let Ug(®) be the set of such j e U(P)
that 5(0) = 0.

Theorem 1,3. Let h fulfil (2,3)—(6,3) and let g fulfil (7,3) and (8,3). Put H(p, ) =
= 0hg|or(0, g, 1), & € D, T € E, and suppose that the solutions of the linear equation

I _ne o+ [(m@yan<)r, (@) =¢
dz 7 J
may be estimated by

(0) 9] s Kie s, w27

K, > 0 and v > 0 being independent of FeR, ¢p € ®, T € E,.

Then there exist positive constants {1, %5, L, K', v\, K" depending on Ky, %, u, v
only, %, < %, L < (6K,)™" in such a way that 0 < { < { implies that there exist
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amap u from ® x E, to U(R) and a map v from & x E, to Uy(®) and the following
assertions hold:

i) [[u(g}, r)” < %,, ]v(&;, ‘L‘)H < x%, for p e d, T E,.
) [ ) — G 0] 5 Ll ~ T, 16— o529 5 Ll — ¥ for .
Yed, ek,

(iii") For ¢ € @, ¥ € Ey put ¥ = u(¢, ©), ¢ = v(¢p, £) + w(@, ©). Then there exists
a solution r, ¢ of (1,3) on Ey and r; = F, @7 = @, r, = u(e(7), 7), ¢, = w(o(z), 1) +
+ v(p(7), 7) for T € E,.

(iv") If FeU(R), §eUy(®),

':H + "§” = %, <~p e d, T cE,, then the solution

(r, @) of (1L3) r; = F, o7 = w(p, ) + J exists on <%, o0) and

o + . = wlo(e), )| < 3,
r. — u(e(@), 1) + [o. — wo(), 1) — v(e(z), 7)| <
< K = o@D + 5 - olo@. D] Sor v .

(v") If u', v" are maps from & x E, to U(R), & x E; to Uy(®), which fulfil (i")
and (iii"), then u’ = u, v’ = .

(vi") If (r, ¢) has the same meaning as in (iv"), then there exists a solution (s, /)
of (1,3) on Ey, s, = u(y(x), 1), ¥, = w(yp(2), 7) + v(¥(x), 7) fort e~E1 and ”rr — 5| +
+ [ @c = wit(2), ) = o (), )| + [o(x) — ¥(o)|| £ 2K"e™ L7 — u(o(). 7)] +
+ |8 = v(e®), ?)|]. * = %

(vii") The maps u, v are uniformly continuous on ® x Ej.

Note 1,3. According to (iii") the set of such (F, @, 7) e U(R) x U(®) x E, that
F = u(3)0), 7), & = w(@(0), ) + v(p(0), 7) may be interpreted as an integral mani-
fold of (1,3) and solutions (r, ¢) from (iii") are said to lie on this manifold. These
solutions fulfil obviously )

9 — holu(o(0). DO 9(r)7) + golu(o(6), ). Wole)7) + w(0le), 7). T B

which is a differential equation without time lag.

Note 2,3. Let Ky, %, i, v be given. Similarly as in Note 4,2 there exist positive
functions L ({), %2(() on (0, {;) such that lim L({) = 0 = lim %,(¢) and the following
>0+ :

-0+
assertion holds: if 0 < { < {; and if all assumptions of Theorem 1,3 are fulfilled,

then the maps u, v fulfil (i”), (ii”) with %,, Lreplaced by % ,({), L,(().
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Note 3,3. As r(t) = r0), s(t) = 5,(0), it follows from (vi") that ||r(z) — s(z)|| +
+ [l@(r) — ¥(z)| tends to zero exponentially.

In order to prove Theorem 1,3 the following Lemmas will be needed:

Lemma 1,3. Let y = (r, @) be a solution of (1.3) on <1y, 7,), Ty < Ty, 1, = Ty
¢, = w(,7,) + T, FeU(R), Fe Uy(®), § € D. Let y, = (ro, ¢o) be a solution of

(10,3) dr = hg(r. ¢, 1), do = he(r, ¢, 1)
dt dz

on (T4, 15, 1o(ty) = F(0), @o(ty) = @. Then
(11,3)  |r(®) = ro(@)] + [lo(r) = @o()] £ L(r2 — 1) =T for 1, ST,
Proof. Rewrite equations (1,3) and (10,3) in the form

d

(12,3) = by 1) + 9 )s
dt

(13,3) Y _ iy ).
dr

As y(11) = yo(t,), it follows from (3,3) and (7,3) that

() = yo(0)] < Klj 19(0) = yo(@)] do + Lz — 1) for Tery s

T1

and hence (11,3) follows.

Lemma 2,3. Let { < 1. There exists an M > 0 depending on Ky, y and T, — Ty
only that the following assertion holds:

Let (r, ¢), (s, ) be solutions of (13) on (T4, 15, Ty < T, 7oy = F, ¢, = w(@, 1,) +
+ 9, s, =5 Y, =wlf,t,) + 0, [,5€¢UR), 3,6 eUy(®), @, € d; let (Fo» ®0)s

(505 ¥o) be solutions of (10,3) on <4, 150, ro(ty) = F(0), so(7y) = 5(0), @o(zy) = @,
Yo(ty) = Y. Then

(143) 1) = s0) = 1ul®) + o] + [0(e) = YD) ~ @u(s) + Yoo =
< OM[[F- 5[+ 5 =3 + o - Fl1. veco .
Proof. Putting y = (r, (P): z = (s, '//), Yo = (7'0’ <Po), Zo = (So, '//o) we find that
(15,3) ¥(1) = 2(1) = yol7) + zo(7) =
j " [h(3(0), &) = h(yo(o) — 2o(0) + 2(6), )] do +

T1

[ 1000 = 200) + 20).0) = ). ) = 3u(0) ) + Hee(o), o] o +

+j‘ [9(ves 0) — g(zgo0)|do =1, + 1, + I,
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Denoting y = y,,, Z = z,, one obtains from
0 = ) = (e = =) + [ [H0)0) = helo) ] do +
+ ft[g(y,, o) — 9(z,, 0)] do

by standard methods (cf. (3,3), (8,3) and { < 1) that

(16.3) 1) = 2()] = eRer vy 7).
Therefore
(17.3) I1:] < ez = 71) X+ 005 — 2|

Similarly as (16,3) one obtains (cf. yo,, = J, zo,, = Z)
[76(®) = zo0)]| < =7y — 2], Tecrny).

As
h()’o(") - ZO(") + f(")’ ‘7) - h(z(a), 0') - h()’o(o'), 0') + h(zo(a), o-) =
- f 0 [% (A70(0) = 2o(0)) + 2(0), ) —

- % (Uyo(9) = 20(0)) + 20(0), ‘7)] do[yo(0)—z4(0)]
it follows that (cf. (4,3) and Lemma 1,3)

(18,3) L] < K, J‘r I2(2) = zo®@)[* - [¥o(0) = zo(0)| do <
< C“KI(TZ _ 71)1” eK,(rz—n)(l’ru)”); _ E” .

(15,3), (3,3), (17,3) and (18,3) imply that
) = 2(2) = 2(®) + yo(@)] = K4 f [¥(0) = 2(0) = yo(o) + 2(s)] do +
+ [((Tz _ 11) K1t )(m=t) 4 C“Kl(‘fz _ 71)1 +p eKl(rz—-tx)(l-Hl)] ”)7 _ 2” .
‘Consequently there exists an M; > 0 depending on K, u and T, — T, only that
[9(@) = 2() = yol(®) + zo(2)]| = E*Mu]ly - z].

N

= [ — 5+

Taking into account that “w((p ) — w(l, T )“ I(P - ”
Al +lo] for

+ oo —va| < |7 - 5]+ [5 - 8] + & - */’H and that
(? ) € Y, one concludes that Lemma 2,3 hold
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Proof of Theorem 1,3. In order to prove Theorem 1,3 Theorem 2,2 will be applied.
Let us put C = U(R) x Uy(P), ¥ = &, X = C x ¥, the norms being defined by
el = 7] + 8] for ¢ = (7, 9), 7 € UR), T & Ug(),

||x” = ”c” + ”y” for x=(c,y), ceC, ye®.

Put # =%, G = &[(c,7); ceC, |c| <2, ye®] To every solution y = (r, ¢) of

(1,3) on J = (11, 1,) ({14, 1), {1y, ©), E;), —o0 <1y <71, < o0 there cor-
responds a map x = (c, y) from J to X defined in the following way:
(19,3) o(r) = (r,, o, — w(o(z), 7)), 7(zr) = ¢(r) for teJ;

let Z be the set of such maps x = (¢, y) corresponding in the above way to the solutions
yof (1,3) that [¢(z)|| < # for e J, J(x) = J. Let y, = (ro, @) be a continuous map
from J; = {ty — 1, 1,) K7y — 1,7,), {7y — 1, ), Ey), —00 < 7y <1, < 0 t0 G,
let the derivative dy,/dz exist and fulfil (10,3) for 7 € (74, 7,), (74, T2), (1, ), E,);
to every such map y, there corresponds a map x, = (o, 7o) from J = <y, 7,
(<ty, T2), (T4, ), E;) to X defined in the following way:

(20,3) co(7) = (Foe @or — W(@o(2), 7)), 70(7) = @o(r) for TeJ;

let &, be the set of all such maps x, = (co, 7o) corresponding in the above way to
a map y, that [c,(c)]| < & for teJ = J(xo).

It is a simple consequence of elementary properties of differential equations and
functional differential equations that %, and & are flows in G. Let us verify that &,
fulfils conditions (@,), (?,) and (2,) from Theorem 2,2.

Letj = @¢e® =P, TeE;put oo(t) = ¢ + [L hy(A)dA, ro(tr) = Oforz = 7 — 1.
According to (5,3) and (6,3) yo = (ro, o) is a solution of (10,3) on (z; — 1, c0);
according to the definition of @o, and w it follows that @, = W(@,(t), 7) for 7 = %
and xo = (o, 70)s €o(t) = 0€ C = U(R) x Uy(®), 74(t) = @o(1) €€ = @ for 7 =z 7,
is an element of &, and (€, ) is satisfied.

In order to verify (Q,) and (225), observe that Lemma 11,2 may be applied to (10,3).
Choose v} = 4uv; according to Lemma 11,2 there exists a K, = K,(Ky, %, p, v, $uv)
and to every 0, 0 < ¢ < 1 there exists a 5(¢) > 0 — x5 depends o1 Ky, %, g, v, vy =

1uv and g; by writing xS(g) let us underline the dependence on ¢ while Ky, %, p, v
are kept fixed — that the solutlons (70> @o)s (505 Wo) of (10,3), 7o(F) = 7, @o(%) = @,
so(®) = 8 wo(®) =¥, F,5eR, |7, 5] = %s5(e), ¢, e®, TeE. exist on (T, 0©)
and the following inequality takes place

T =

@19) [ = ] = KTl =] + ol b, 27,
(223)  ool®) = o) — & + ] S Kol — 5] + e — 91, =
If§ = 0, = @ then it follows from (21,3) (cf. (5,3)) that

(23.3) Iro@)] = Kae™ 7] -
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Let $eEy, EeC, &= (F,9), FeU(R), JeUy®), || = |F| + |9]| £ »s(1), 5 =
= ¢ €% = ®. Put F = (0) and let y, = (ro, @,) be the solution of (10,3), ro(%) = F,
@o(%) = @; this solution is defined for 7 = % and fulfils (23,3). Let us extend the
map y, = (ro, o) as follows: for 1e<{f — 1,%) put ry(r) = it — %), @o(r) =
= w(@, %) (r — %) + I(r — 7). As ”E” = “F” + |[§” > HF , K, > 1, it follows from
(21,3) that the element x, = (co, 7o) that corresponds to the map y, = (ro, @o)
according to the definition of fulfils the inequalities

leo(®)] = Kalle] for tedt ¥+ 1)

leo(@] = Kpe™ 170

EH for el + 1, o)

and (13,2) is satisfied, if K, = K,e**', v; < v}.

Let 0 < ¢ < 1, suppose in addition that || < xs(¢) and let & F 9,7 = @,
Yo = (Fo» ®o), Xo = (o, 7o) have the same meaning as above, let b e C, b = (5, §),
§eU(R), 5eU(®), |b] = ||5]| + 3] < xs(e), B =V + € = &. Put § = 5(0) and
let zo = (s, Yo) be the solution of (10,3), so(%) = 3, ¥o(%) = ¥; this solution is defined
for © > 7. Let us extend the map z, = (so, ¥) as follows: for te (¥ — 1, ¥) put
so(t) = 3(tr — %), Yo(r) = w(, ¥) (r — %) + &(r — %) and let x§ = (b, B,) be the
element of &, that corresponds to the map y, = (so, o) according to the definition
of Z,. It follows from (21,3) that

”ro:(a) — sot(a)” = ||r0(t + o) — so(t + a)” <
S Ky e[ F =5 + 0@ — Y]] for 1+ 02% 0e(—1,0).

Obviously
[roie) = sol0)| < |F =3 for t+06=% ce(—1,0), T 2%.
Therefore

*) 70, = so.| < Kaoe™ " P[7 — 5] + o] — ¥[] +
+|F=3].8(—1-7%),

t2% S(A)=1 for A0, S(A)=0 for 1>0.

Ift 2% 0e{—1,0), then
) 90d#) = W(po(e), 9 () = Wor () + w(lo(2), ) (0) =
= os + )= [0 + | H) 82| = ol + o)+ o) + |

t+o
T T

20 d/l] -
= (l’o(‘r + 0') - (Po('c) - lpo(T + ‘7) + 1//0(7)‘~
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If in addition T + ¢ = 7, then
90:(0) ~ W(0o(r) %) (5) = You(o) + Wlka(z). 7) (o) =
- f " nalro(), 00(3), 1) — halsuld). oo, 2] 41 +

[Tl 00 — ol v, 0 0.
Therefore (cf. (3,3), (4.3), (6,3), (21,3), (22.3). (23.3))
(5 [90do) — #(0s0 (6) — Vo) + Wila(e). 7) (0)] <
< K1) = s 0 @I o) ~ 0] 4 5

S Ko™ 3] + ol - ] +
KRR~ 8]+ ol - 9] s
= Ksevw(t_lwt)[”': - §” + 0”‘7’ - ‘/;”] » Ky = KK, + KK %"
If 0 + v < %, then (cf. (§), (%))
[20d(0) = w(9o(r), 7) (0) = Wodlo) + W(iho(r), 7) (o) <
< Jloo®) = @o(z) = ¥o(2) + dio(x)| +
+ ”‘Po(f + ‘7):‘ (Po(f) - ‘/’o("-’ + o) + l//o(f)H =<
< Kye "M OF = 5] + e - 91 + 9 - 3]
(as 9ot + 6) = 9o(7) = Yo(t + 0) + Yo(¥) = F(z + 0) — 8(x + 0)). Hence
® [0 = W(60(2) ) — or + Wl 9] <
< Kue™ 5V = 5] + o - B1 + [P~ 5] S(e— 1 - ).
{20,3), (*) and (1) imply that
leo(®) = @] = lIroc = so,| + [ Poc = w(00(2). 7) = v, + Ww(iio(2), )| <
< (Ks + Ks) e T OLF — 5] + o6 — 9] +
+ 7 =3+ |5 -8[1s - 1-%).
As “c - b” ”r - s” + ”g - 5” S(t—1- 1:) < eI G follows that

(14,2) holds for K, = (K, + K3 + 1) "', v, = v/ p.

As 70(t) = 9o(t), Bo(r) = Wo(r) for 2 %, 7 =G, B = U, it follows from (22,3)
that (15,2) holds too.
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Let D, T, x,, K', v/, K" be defined in Theorem 2,2. Let x = (c, y), x* = (b, f) € Z,
Xo = (Co, ')’o), x: = (b07 ﬁo) €%,
J(x) = J(X*) = J(xo) = J(XS") ={11,70, 0<1, -7, T,
x(ty) = xo(7y) = &, x*(ry) = x5(71) = %*,
let y = (r, @), z = (s, ) be solutions of (1,3), which correspond to x, x* according

to the definition of 2 and let y, = (ro, @), Zo = (50> Yo) be the maps, which cor-
respond to x, and xg according to the definition of . Let 7 € {t,, T,). As

w(@(2), 7) (0) = w(9o(r), 7) (0) = () — @o(7) ,
w(2), 7) (0) = w(o(2), 7) (0) = ¥(v) — ¥o(t), oe<—1,0),
it follows from Lemmas 1,3 and 2,3 and from the definition of (cf. (20,3)) that

(243) () = xo(@)] = [e(z) = co@)] + [1(2) = 7o) =
= |r. = roe] + [l@c = W(@(2): T) = @or + W(@o(2), 7)| + [l@(r) — @o(7)]| =
= SHR@”r(t + 0) — 1ot + o) +GE<SBRO>I'¢(1 +0) — @o(t + o)|| +

e +2o(z) — o(7)] = 4T,
(25,3) [x(2) = x*(z) = xo(z) + x5(x)]| =

= [e(2) = b(z) = co(z) + bo(x)]| + [[¥(x) = B(z) = 1o(2) + Bo(7)] =
= ”rz — S — Tor t+ So:“ + . — w(e(z), 7) — ¥ + w(Y(), 7) —
— @o; + W(@o(7), T) + Voo — W(Ho(7), T)” + ”(/’(7) = ¥(7) = @o(7) + ‘//0(7)“ =
< (aM [, = so| + [on, = Wo(ty) 71) — Wy + w((zy), )| +
+ () = w(@)|] = 4|z — 5] .

(24,3) and (25,3) imply that there exists a {; > 0 that d(Z, Z,) < D for { < {,.
Assuming { < {, we may apply Theorem 2,2. As C = U(R) x Uy(®), let us write
the map p, the existence of which is guarrantecd by Theorem 2,2, in the form p =
= (u, v), u, v being the corresponding maps to U(R), Uy(®). Then assertions (i")
and (ii”) of Theorem 1,3 are obvious consequences of assertions (i) and (ii’) of
Theorem 2,2. For ¢ € ®, T€ E;, ¥ = u(@, ?), ¢ = v(@, %) put & = (7, 9), 7 = @.
Let (c, y) €  fulfil (iii") and let the map (r, @) correspond to (c, y) according to the
definition of Z; (r, ¢) fulfils (iii”). Similarly one proves (iv”). (v") and (vii”) are
obvious. For 7eU(R), 9 eUy(9), “f” + ”5” S, §ed, TeE; put & =(F,9),
§=@¢; let (c,7)eZ, J(c,y) = <F ), c(f) = & 7(f) =7, let (b, f) e Z fulfil the
conditions of (vi’) and let (s, ¥/) correspond to (b, B) according to the definition of .
(s, ¥) is a solution of (1,3) on E,. (19,3) and the relation b(t) = p(s(z), t) for t € E,
imply that s, = u(y(z), 7), ¥. = w((7), 7) + v(¥(x),7) for teE, and from the
inequality in (vi') it follows (cf. (19,3)) that

Ire = sl + o = w(0(2). ©) = ¥ + w¥ (@), D] + [o(z) = ¥(3)] =
S K COF - u(@, D) + |8 - o(@, )]
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As =i+ w(¥(2), 1) = —o((x), 7). w(e(e), 7) (o) = w(¥(x), 7) (0) + o) — ¥(v)

for © 2 %, 0 € (—1, 0), it follows that
loe = w¥(2), 1) — o(¥(x). )| =
= Jloe = wlo(@), ©) = ¥ + w((2), D) + o(z) = v(@)]

and the inequality in (vi”) holds. Theorem 1,3 is proved.

Note 4,3. Let $e @, §eU(<15) o) =9 for ce(—1,0). If h(r,p + 9,7) =
= h(r, @, ped, teE, and if g(F, ¢ + 9, 7) = g(F, ¢, 7) for
FeU(R), |7 <= (pGU(@) teE;, then u(p + 9,7) = u(p, 1), v(p + 9,7) =
= v((p, 7) for ¢ € @, © € E,. This situation is a consequence of Theorem 3,2, as the
flow which was constructed in the proof of Theorem 1,3 is periodic in y with the
period 9 in this case. In the same manner the periodicity in 7 and the almostperiodicity
may be treated.

Note 5,3. Let the right hand side of

(26,3) e w(¢)
dr

be defined and continuous in an open subset G, of E, and let the derivative 0W/0¢
(ie. owyfog; if W= (Wy, .., W,), &= (&, ..., &,)) fulfil a Holder condition. Let
there exist an invariant k-dimensional torus Z of (26,3), k=0,1,...,n — 1. Put
R=E, ;, & =E, ¢ € ®] and assume that there
exists a map h from G to E, and a map S from G to G, that h and S have derivatives
with respect to (r, ¢) which fulfil a Hélder condition, dS/d(r, ¢) is nonsingular on G,
S(r, ¢ + €;) = S(r, ¢) for (r, ) € G, e; = (644, ..., 0y), 6:,; =1, 6, ; = 0 for i * j,
i,j=1,2,...k h(r,o + e)=h(r, o) for (rne)eG, i=1,2..,k S(r¢)=

= S(s,y)ifand only if r =5, ¢ — Y = Z Aie;, A; being integers, S(r, ¢) € Z if and

only if r =0, S transforms (10,3) to (26 3). Denote by U(G,)(U(E,)) the set of
continuous maps from {—1, 0) to Gy(E,) and for & e U(E,) let ||| have its usual
meaning. If in addition & fulfils (6,3) ((5,3) is fulfilled, as Z is an integral manifold of
(26,3) and therefore r = 0 is an integral manifold of (10,3)) and if (9,3) holds, then
Theorem 1,3 and Note 4,3 imply that there exists ¢ > 0 with the following property:
if ¥ is a continuous map from U(G,) x E; to E, and H V(E )| se |VE ) -

— V(1. 7)| £ 0|& — 7| for & ijeU(G,), teE,, then there exists a (k + 1)-
dimensional integral manifold (torus) of

? = W(&) + V(&,1)

(in the space U(G,) x E,).
(To be continued)
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