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1. Introduction. This paper was initiated by Professor J. MARIK who investigated in
a not published treatise the connection of the approximate derivative of a function
of one variable with the Federer normal of the set of those points in E,, which are
lying below the graph of the function in question. In this paper Mafik’s results are
extended to the m-dimensional case.

I want to express my thanks to Professor Mafik for his very valuable advice and
above all, for placing the above mentioned treatise at my disposal.

2. Notation. The set operations are denoted by the usual manner, by A A\ B
we denote the symmetrical difference (4 — B) U (B — A) of sets A, B.

E, (p natural) is the p-dimensional Euclidean space. For x = [x,....,x,] € E,,
y=[Ds.»y]€E, e E;, M < E,,, we write

[yl =[xt e Xp V1o s Vgl s ME = {yeE,[x, y]eM}.
Ax = [Axy, ..., Ax,] .

P

x+y=[x +yy.eux,+y,, x.y =leiy,. it p=gq, |x|=(x.x)*.
i= .

We shall also use the term “vectors” for points of E,,.

The outer Lebesgue measure of the set M < E, is denoted by the symbol |M|.
(The meaning of the symbol |...| is different for sets and for vectors or numbers,
but there is no danger of misunderstanding.) The terms outer measure, measure,
measurable and so on are related to the Lebesgue measure. .

ForaeE, r > 0let us put

Qa,r)={xeE, |x —a| <r}.

Obviously |Q(a, r)| = y,7? with y, = |Q(0, 1)].
ForaeE, veE,let us put

Pla,v) = {x€E,v.(x —a) <0}.
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3. Measurable cover. A measurableset Z < E,, is said to be a measurable cover of
aset M < E,, if M = Z and if each measurable subset of Z — M has measure zero.
For the measurable cover of M the following assertions hold:

a) If Z, and Z, are measurable covers of M, then |Z1 A Zz| = 0.

b) If Z is a measurable cover of M and if N < E, is measurable, then Z n N is
a measurable cover of M A N and [M " N| = |Z A N|.

c) If M = Z, Z is measurable and if each compact subset of Z — M has measure
zero, then Z is a measurable cover of M.

d) For each set M < E, there exists a measurable cover Z which is of type G,.

4. Lemma. If Z is a measurable cover of a set M < E,, then Z x E, is a measur-
able cover of the set M X E,.

Proof. Let K be a compact subset of Z x E, — M x E,. Then the projection of K
into E, is a compact subset of Z — M and so it has measure zero. Therefore ]K‘ =0
and this implies by 3c) our lemma.

5. Corollary. a) Let M be a subset of E,, let Z be a measurable cover of M and
let A be a measurable subset of E, x E,. Then

(M x E)) n A =f |A%| dx .
z

b) Let M be a subset of E, and N a measurable subset of E,. Then

-

[ % N| = M) [N
Proof. a) By 4, Z x E, is a measurable cover of M x E,, therefore
(M x E)n 4] = |[(Z x E,) n A =J|Af|dx.A
b) If we put 4 = E, x N in a), we get ’
e x ] = [ ¥ =[] 2] = o] ]

6. Points of dispersion. A point a € E, is said to be a point of symmetrical disper-
sion of a set M < E, if

lim r=?|Q(a, r) " M| = 0.
r->0+

The set of all such points for given M is denoted by Z(M).
For two subsets M, M, of E,, it is easy to prove the following statements:

a) If M, = M, then #(M,) = #(M,).
b) Z(M, U M,) = Z(M,) " R(M,).
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Remark. Put &(X) = [X n M| for X < E,. Using the terminology in [1] the
points of symmetrical dispersion are the points at which the symmetrical derivative
(see p. 149 in [1]) of @ is zero. It is easy to prove that we obtain the same concept
using the general or ordinary derivative (see p. 106) of . But the concept of points of
dispersion in [ 1] p. 128 obtained using the strong derivative is different in general.

7. Federer exterior normal. A vector ve E,, v & 0, is said to be a Federer exterior
normal (briefly an F-normal)ofaset M < E,atapointa € E, if a € Z(M A P(a, v)).

By the direction of a vector ve E,, v + 0, we mean the set of all vectors Av for
A > 0. Since P(a, v) = P(a, Jv) for 2 > 0, the following assertion obviously holds:
If a vector of some direction is an F-normal of M at a, then each vector of this direc-
tion is an F-normal of M at a.

In the case p = 1 the number v > 0 is an F-normal of M at a if and only if a is
a righthand point of dispersion of M and a lefthand point of dispersion of E;, — M
(with obvious meaning of these terms). Similarly for v < 0.

8. Lemma. Let M be a subset of E,. Then for each a € E, there exists at most one
F-normal v of M at a such that ivl = 1.

Proof. Let v, and v, be two F-normals of M at a such that |v,| = |v,| = 1. By
definition we have a € Z(M A P(a, v,)) n (M A P(a, v,)) = 2(M A P(a, v,)) U
U (M A P(a, v,))). From the relation P(a,v,) A P(a, v,) = (M A P(a, v,)) u
U (M A P(a, v,)) it follows that a € Z(P(a, v;) A\ P(a, v,)). This means that the
halfspaces P(a, v,), P(a, v,) must be identical. Since |v,| = |v,| we have vy, = v,.

9. Notation. In the following sections m denotes a fixed natural number. We shall
now introduce some sets which appear in the text below. Given a€E,, veE,,
beE;,r>0,e>0,c=[a b]eE,, let us put

K(a,v,r,8) = {x€E,, |x —a| <r, [v.(x —a)| S eJx —a|} for v+0,
Lic,v,r,8) = {z =[x, y], x€E,, yeE, |z — ¢ =,

[y —b—v.(x—a)| < ¢lx — a|}

H(c, v, 1, 8) = {z =[x,y x€E, yeE, |z = <r;
Lb—glor v.(x—a):0} for v+0.
v.(x —a) ¢
All these sets are measurable and

|K(a, v, 7, e)| = (v, &) ™™, |L(c, v, 7, €)| = Ao, &) rm+*,
|H(c, v, 7, ¢)| = (v, &) ™"
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with

(v, &) = |K(0,v, L e)|, v, ) = |L(0, v, 1, 8)|, (v, &) = |H(0, v, 1,¢)|.
Since
NKO,v,1,¢) = {xeE,, [\l <1lLv.x=0},

>0
NLO,v,1,¢) = {z=[x.y].x€E,, yeE,, lzl <l y=v.x},
e>0
NHO,v,1,6) = {z=[x,y], x€E,, yeE, |z]| £ 1L, v.x =0}
>0

we have lim (v, €) = lim A(v, &) = lim (v, €) = 0. (All expressions with K, H, x, ¢
e—=0+ e—0+ -0+
have a meaning only for v # 0.)

10. Notation. In the rest of this paper let f be a function with the domain of defini-
tion D < E,,. We shall use the following notations:

S(fy={z=[xy],xeD, yeE, y < f(x)},
0" (fik)={xeD, f(x) =k}, Q°(f.k)={xeD,f(x) <k} for keE,.

Givenae D, ve E,, ¢ > 0, we put further:
T(f, a,v,¢) = {xe D, lf(x) —fla) —v.(x - a)| > slx — a|} ,
U(f,a,v,¢) = {xeD,M <1} for v+=0.

v.(x—a) e
11. Approximate gradient and approximate differential. a) A vector ve E,, is said
to be an approximate gradient of the function f ata point a € D with respect to a set
M < E,, if and only if

ae R(M — D)u (M n T(f,a,v,¢)) for each &¢>0.

If v is an approximate gradient of f at a with respect to M, then the linear function
v.(x — a)is termed an approximate differential of f at a with respect to M.

In the case m = 1 we say also approximate derivative instead of approximate
gradient.

b) The function f is said to possess an improper approximate gradient in the
direction of a vector ve E,,, v & 0, at a point a € D with respect to M < E,, if and
only if i

ae (M — D)yu (M nU(f, a,v,¢)) foreach &>0.

(Clearly, the last relation depends upon the direction of v only.)
In the case m = 1, v > 0 [» < 0], f is also said to possess an (impropgr) approxi-
mate derivative + oo —oo] at a with respect to M.
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Remark. In the concepts just defined we omit the phrase “with respect to M”
for M = E,,.

12. Theorem. a) If v, and v, are two approximate gradients of the function f at a
with respect to M, then either vy = v, or a € Z(M).

b) If a vector v is an approximate gradient of f at a with respect to M and if f
possesses an improper approximate gradient in the direction of a vector v, % 0
at a with respect to M, then a € %’(M)

¢) If the function f possesses improper approximate gradients in the direc-
tions of vectors vy &= 0 and v, = 0 at a with respect to M, then a e.’%’(M e
A (P(a, vy) A P(a, v,))). (See example 13.)

Proof. a) Suppose v, #* v,. Put v = vy — v, and
Ale) = (M — D)yu (M N T(f, a,v,,8)) U (M N T(f, a, v,,€)) for &>0.

If xeM — A(e), then xeD, |f(x)—fla)—v,.(x —a)| Selx —a|, |[f(x)-
— f(a) —v, . (x — a)| < e|x — af, whence |(v; — v,). (x — a)] < 2¢Jx — af. Hence
it follows that M n Q(a, r) = (A(e) n Q(a. r)) U K(a, v, r,2¢) and r "|M N
A Qa, r)| £ r7"A(e) 0 Qa, r)| + (v, 2¢) for each & > 0, r > 0. By assumption
a € A(A(e)) for each & > 0. Making first of all r — 0+ and then ¢ — 0+, we obtain
limr~"|M A Qa, r)| = 0, i.e. a € Z(M).

r->0+

b) Put B(e) = (M 0 T(f, a, vy, ¢)) v (M n U(f, a, vy, 8)) v (M — D) for &> 0.
If xeM — Be), then xe D, |f(x) — f(a) — v, .(x — a)| < ¢|x — al, and either
(f(x) = f(a)) : (v2.(x — a)) 2 &" or v,.(x — a) = 0, whence further |v,.(x —
—a)| £ & f(x) = f(@), |f(x) = fla)] < |v] |x — a| + e|x — a].ie]o,. (x — a)| <
< &(|vy| + &) |x — a|l. Hence it follows that M n Q(a,r) = (B(e) n Qa, 7)) U
U K(a, v, 1, &l[es] +€))  and MM A Qa, 1) < r7B(e) 0 Qa, 1] + (v
&(|vy| + ¢)) for each &€ >0, r > 0. Since a € #(B(¢)) for each & > 0, we obtain
lim r™"|M n Q(a, r)| = 0, i.e. ae Z(M).

c) If sign (v, . (x — a)) = —sign (v,.(x — a)) £ 0, xe D, then either (f(x) —
— f(a)): (v - (x — a@)) £ 0 or (f(x) — f(a): (v . (x — a)) < 0. Hence it follows
that M n (P(a, v;) A P(a, v,)) = (M — D) u (M n U(f, a, vy, 8)) U (M n U(f,
a,vy,6) U {x€kE,, v, .(x —a)=0 or v,.(x —a)=0} for each ¢>0 and
ae (M n(P(a,v,) A P(a, v,))). :

13. Example. Let v;, v, be two linearly independent vectors of E,. Put D = M =
= {x € E,, sign (v, . x) = sign (v, . x)}, f(x) = (sign (v, . x)) |x|* for x & D. Then f
is continuous at 0 € E, with respect to M and possesses an improper approximate
gradient at O with respect to M in every direction v # 0 such that v = Av; +puv,
with 2 =20, p = 0.
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14. Theorem. Let v be an approximate gradient of f at a € D. Then the following
statements hold:

a) w = [—v, 1] is the F-normal of S(f).at ¢ = [a, f(a)]-
b) If v % O, then v is the F-normal of Q™ (f, f(a)) at a and —v is the F-normal
of 0*(f.f(a)) at a.

Proof. For ¢ > 0, r > 0 put
A(e) = (E,, — D) U T(f, a, v, ¢) ,
B(r, &) = (A(e) 0 Qa, r)) x {f(a) = r,f(a) + 7>,
V(r) = (P(e, w) A S(f)) 0 Q(c, 1),
W(r) = (P(a,v) A Q(f.f(a))) 0 Qa,r) if v+0.

a) Let us consider the following three cases (for given ¢ > 0, r > 0):

o) z =[x, y]e V(r), xe A(e). Then x e A(e) » Qa, r), |y — f(a)] £ r, whence
z € B(r, €).

B) z =[x, y]eP(c,w) — S(f), zeQ(c,r), x¢ A(e). Then xeD, y— f(a) —
—v.(x—a)=(z—¢c).w=0, y>f(x), |f(x) — fla) —v.(x — a)| < e|]x — 4a|.
It follows that 0 = y — f(a) — v.(x — a) > — &|x — a|, i.e. ze L(c, v, 1, &).

y) Similarly the relations z = [x, y] € S(f) — P(c, w), z € Q(c, r), x ¢ A(e) imply
zeLfc,v, r,¢).

Combining a), B), y) we obtain the inclusion
V0) © B ) o Les 07 0)
According to 5b) and 9 we have |B(r, £)| = 2r|A(e) N Qa, r)| and |L(c, v, r, &)| =
= r"*')(v, ¢). Therefore
rm O ()| < 2r " A(e) A Q(a, r)| + Mv, &) foreach &>0, r>0.

Hence
lim r_(m+‘)1V(r)| =0, ie. ceZ(P(c,w) A S(f)).
r—-0+

b) Suppose v # 0. Let us consider the following two cases:

a) x € P(a,v) — Q7(f.f(a)), xeQ(a, r), x¢ A(e). Then xe D, (x — a).v <0,
f(x) > f(a), |f(x) —f(a) = v.(x — a)| S e|x — a|, |x — a] £ r. It follows that
0 —(x—a).v<f(x)=fla) —v.(x —a)Sex—a|, |[x—a|<r, ie xe
eK(a, v, 1, ¢).

B) Similarly the relations x € Q7(f, f(a)) — P(a, v), x € Qa, r), x ¢ A(e) imply
xeK(a,v,r,e).

Combining a), B) we obtain the inclusion

W(r) = (A(e) 0 Qa, r)) U K(a,v, r,¢).
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Therefore
()] < r " A(e) 0 Qa, r)| + x(v,€) foreach &>0, r>0,

whence

lim r~"|W(r)| =0, ie. ae®(P(a,v) A Q(f,f(a))).
r-0+
The proof of the second part of b) is similar.

15. Theorem. Suppose that f possesses an improper approximate gradient in the
direction of a vector v + 0 at a point a€ D. Then w = [—v, 0] is the F-normal
of S(f) at ¢ = [a, f(a)], vis the F-normal of Q™ (f, f(a)) at a and —v is the F-normal
of Q*(f, f(a)) at a.

Proof. Foreach ¢ > O and r > 0 put
Ale) = (E, — D)v U(f, a, v, ¢),
B(r, ¢) = (A(e) n Qa, r)) x {f(a) — r,f(a) + r),

V(r) = (P(e. w) A S(f) 0 e, 1), W(r) = (P(a, 0) A Q7(f, f(a)) 0 (a, 7).

a) Let us consider the following three cases:

@) z =[x, y] e V(r), xe A(e). Then xe A(e) n Qa, r), |y — f(a)| < r, whence
z e B(r, ¢).

B) z =[x, y] € P(c, w) — S(f), ze Q(c,r), x ¢ A(e). Then xe D, v.(x — a) =
= —(z—¢).w=0, y>f(x) and either (f(x) —f(a)):(v.(x —a))=e™ ' or
v.(x — a) = 0.1t follows that either (y — f(a)) : (v.(x —a)) Z e 'orv.(x —a) =
=0,ie zeH(c,v,r,e).

y) Similarly the relations z = [x, y] € S(f) — P(c, w), z€ Qc, r), x ¢ A(e) imply
zeH(e, v, 1, ¢).

Combining a), B), Y) we obtain the inclusion
V(r) = B(r,e) U H(c, v, 1, ¢) .
According to 5b) and 9 we have |B(r, ¢)| = 2r|A(e) N Q(a, r)| and |H(c, v, 1, €)| =
= v, &) r"*'. Hence
rm™EOlY(r)| £ 2r ™ A(e) n Q(a, )| + 1(v.e) foreach ¢>0,r >0,

so that lim r“(’"“)lV(r)I =0, i.e. ce Z(P(c, w) A S(f)).
r—0+
b) Let us consider the following cases (for given & > 0):
) x € P(a,v) — Q7(f, f(a)), xe D. Then (x — a).v < 0, f(x) > f(a). It follows
that either (x — a).v = 0 or (f(x) —fla):(v.(x — a)) <0 <et,
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B) Similarly the relations x € @7(f, f(a)) — P(a, v), x € D imply (f(x) — f(a)) :
(v.(x—a)=s0<et

y) Finally the relation x € E,, — D implies x € A(e).

Combining o), B), y) we obtain the inclusion

W(r) < (A(e) n Qa, r)) U {x € E,, (x —a).v=0}.
Therefore
r""‘lW(r)‘ < r "A(e) n Qa, )] foreach &>0,r>0,

whence

lim r~"W(r)| =0, ie. ae®R(P(a,v) A Q (f.f(a)).

ro0+

The proof of the last part of our theorem is similar.

16. Theorem. If w = [v, t] € E,,..1, t + 0 is an F-normal of the set S(f) at a point
¢ =la, b]eE,.,. then the following statements hold:

o) t > 0;

B) a € #(E, — D).

Proof. Let A” denote the set of all x € E,, such that {x} x (E,..; — P(c, w))i =
< S(f)and let A~ denote the set of all x € E,, such that {x} x (P(c, w))s < E,.,; —
— S(f). Clearly E,, — D = A™.

For each r > 0 put
AM(r)= A" nQa.r), A(r) = A" 0 Qa, 1),

B*(r) = {z=[x,y],x€E, yeE;th—v.(x —a) <ty <th—v.(x —a)+r},
B (r) = {z=[x.y].x€E,,yeE;,th—v.(x —a)—r <ty <th—v.(x — a)},

+(r) = B+(r) (A+(;') x E ) C_(r) = B_(r) N (A“(r) X E,) s
V(r) = (P(c.w) A S(f)) n Qc, 7).

Suppose z [x y]eC*(r). Then |z — c| = (|Jx — a]* + |y = b]?)* = (]x - al* +
+ i 2)<1(1—i—”2([v]~}-1)2)—a)rlfweput(u—(l
+ |1” 2(|v] + 1)2) Further (z —¢).w = (x —a).v + #(y — b) > 0, whence z ¢
€E,.; — P(c,w). Since x e A*, we have z € S(f). It follows that C*(r) = V(wr).

Similarly C™(r) = V(wr).
The set B*(r) is measurable, whence by 5a)

Ic*(r)] = fw )I(B+(r)):| dx = (|1 rz* ()] = |1 At ()

where Z*(r) is a measurable cover of A*(r). Similarly |C~(r)| = |¢| ™" r|4™(r)|. Hence
remAT () o A()] S TN (ICH(R)] + [CT(r)]) S 20 Ot |V (wr)] -
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By assumption a € Z(P(c, w) A S(f)), so that lim r™"|4*(r) n A~(r)| = 0, ie.
r-0+
aeR(AT U A). Since E,, — D = A~, we have a € Z(E,, — D) and the proof of f)
is complete.

Since ae Z(A* U A7), there exists a point xo€E,, — (A" U A7). According
to the definition of A~ and A" there exist y, and y, such that [x,, y;] € (P(c, w) N

N S(f)), [x0s ¥2] € (B s — (P(e, w) U S(f)))- Hence we have x, € D, yy < f(xo) <
<y (xo—a).v+ 1y, —b) =0, (xo0 —a).v+ t(y, — b) > 0. It follows that
V2 — y1 >0, 4y, — y;) > 0, whence t > 0.

Remark. Let w be an F-normal of S(f) at ¢ = [a, b]. Put g(x) = f(x) for
xe D — {a}; g(a) = b. Clearly w is an F-normal of S(g) at ¢. Therefore we assume
in the following sections that b = f(a).

17. Theorem. If w = [v, 1] is an F-normal of S(f) at ¢ = [a, f(a)], then —v is the
approximate gradient of f at a.

Proof. Choose ¢ > 0. Foreachr > 0,0 < n < 1 put

A(r) = T(f,a, —v, &) 0 Qa, r), A(r n) = A(r) — Qa, yr)

A*(r,n) = A(r.n) 0 {xe D, f(x) — f(a) + v.(x — a) > ¢|x — a|},

A (r,n) = A(r,n) n {xe D, f(x) = fla) + v.(x — a) < —¢|x — a}.

B* {z=[xy] x€E,yeE.,0<y—fla)+v.(x —a) < ¢x—all,

B~ ={z=[x,y].x€E,. yeE,0>y— f(a) + v.(x—a) = —slx—a]} ,

C*(r,n) = B an(A"(r,n) x E,), C(r,n) =B~ n (A (r,n) x Ey),

v(r) = (P(c, w) A S(f)) n Q(c, r) .
Suppose z = [x, y] € C*(r,n). Then xe D, f(x) — f(a) + v.(x — a) > ¢g|x — al,
0<(z—c).w=y—fla)+v.(x —a)<elx —al|, |x — a| < r. It follows that
z2€E, — Ple,w), y < f(x) (ie. ze S(f)), |z — ¢| = (|x = a|* + |y — f(@)*)* £
S(x—aP+(efx —al +|o.(x = a))?)* < |x — a|(1 + (e + [v])?)* £ or with
o = (1 + (¢ + [v])?)* Hence C*(r, n) = V(wr).

Similarly C™(r, n) = V(wr).

The set B is measurable, whence by 5a)

=] Eac=e] feodor,

Z*(r) Z*(rm)

It

where Z*(r, n) is a measurable cover of A*(r, n) such that Z*(r, #) = E,, — (a, yr).
Hence |C*(r, n)| = enr|Z*(r, )| = enr|A*(r, n)|- Similarly |C™(r, n)| = enr|d™(r, n)|.
Since A(r) = A*(r,n) U A™(r, n) U Qa, yr), it follows that
rrrA)] < (At (e )| + AT () + 0 S
= B ([ ) e )] e
< 2677 T OV (r)| + 1™
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Making first r - 0+ and then 1 - 0+ we obtain
lim r_"‘[A(r)i =0, ie. aeT(f a, —v,¢)).
r—-0+

18. Theorem. If w = [v, 0] is an F-normal of S(f) at ¢ = [a, f(a)], then a e
€ #(P(a, v) — D).

Proof. Foreach r > 0 put

A(r) = (P(a,v) — D) n Qa, 1), B(r) = A(r) x {f(a) — r,f(a) + 1),
V(r) = (P(c, w) A S(f)) 0 Qc, 7).
Suppose z = [x, y] € B(r). Then z¢ S(f),(z —¢).w=(x —a).v =<0 and
|z = ¢| = (]x — a|> + |y — f(a)|]?)* < 2*r. It follows that B(r) = V(2*r). According

to 5b) we have |B(r)| = 2r|A()| Hence r"A(r)| = 27'r~ " D|B()| <
< 271+ DIy(2%)| for each r > 0. Consequently

lim r~"|A4(r)| = 0, ie. ae%(P(a,v)— D).

r->0+

19. Theorem. If w = [v, 0] is an F-normal of S(f) at ¢ = [a, f(a)], then the
function f possesses an improper approximate gradient in the direction of the
vector —v at a with respect to each set M such that a e #(M — D).

Proof. Choose ¢ > 0. For each r > 0 put

A(r) =M A U(f,a, —v,8)) n Qa, 1),

A4(0) = A) 2 Pla ), A7) = A() — Pla o),

B*(r) ={z=[x,y], x€E,, yeE;, (x —a).v <0,
flay—ew.(x—a)<y<fla)—e'v.(x —a)+r},

B (r)={z=[x,y],x€E,, yeE;,(x —a).v >0, v
fla)—ev.(x —a)—r<y<fla)—etv.(x —a)},

CH) = B0 (A7) x Ex), () = () 0 (4°() x Ey),

V(r) = (Ple;w) AS(f)) 0 Qe, 1)

Suppose z =[x, y] € C*(r). Then xe M, xe D, (x —a).v <0, f(a) — e 'v.
(x—a)<y<fl@)—ew.(x—a)+r (f(x) —fla):(—v.(x —a)) <& " Tt
follows that f(x) < f(a) — ¢ 'v.(x — a) < y. Furtherwehave |z — ¢| = (|x — a|*> +
by~ @) S (- a (oo — ) S 1+ (1 o] =
= or with o = (1 + (1 + & '[v|)?)*. Hence C+(r) c V(cor)

Similarly C™(r) < V(wr).
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The set B*(r) is measurable, whence by 5a)
|c*(n)] =J (B*(n)z] dx = r[Z*(n)] = r|4* ()]
Z*(r)

where Z*(r) is a measurable cover of A*(r). Similarly |C™(r)| = r|47(r)]. It
follows. that. 4| < r-(4°()] + [4-()) = om0 + [ () 5
< 2r~™*V|V(wr)| for each r > 0. Hence

lim r~"[A(r)] =0, ie. ae®MnU(f,a, —v,¢).

r-0+
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. Pesrome

ATIIIPOKCUMATUBHBIN OUOPEPEHIIMATL 1 HOPMAJIb ®EJIEPEPA
WUPXU MATBICKA (Ji¥i Matyska), [Tpara

Ilycte f — dyHKUMs, ompelesieHHas B HEKOTOPOH dYacTu mnpocTpaHctBa E,,
u nyctb S(f) — mHOXecTBo Touek M3 E, ., KOTOpBIC HAXOMATCS HUXKe rpaduka
¢yHkiu f. B craTbe mokazaHo, 4To QyHKIMs f UMeeT B TOYKE d alIpPOKCHMATHBHBLH
guddepenuman v. (X — a) Torga M TOJNBKO TOrAa, Korga MuokectBo S(f) umeer
B Touke [a, f(a)] HopMans ®enepepa [ —v, 1]. Manbine NOKa3aHo, YTO MHOXKECTBO
S(f) re Moxet umeTs HopMaie Penepepa [v, — 1], u uccienyercst noseaeHue QyHk-
uuH f B OKPECTHOCTH TAKOM TOYKH 4, 4T0 MHOXecTBo S(f) umeer B Touke [a, f(a)]
Hopmanb Penepepa [v, 0].
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