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THEORY OF PROCESSES, I

OToMAR HAJEK, Praha

(Received November 15, 1965)

INTRODUCTION

For a variety of reasons it appears desirable to generalize the concept of an ordinary
differential equation as far as possible. To indicate the motivation briefly, one might
mention — in a purely subjective order of preference — discontinuous forcing terms
and generalized solutions of various types, discontinuous feed-back, equations in
contingents in connection with differential inequalities and control problems,
difference-differential and functional-differential equations, and differential equations
in function spaces as convenient interpretations of some partial differential equations.

Separately, each of these theories is, of course, perfectly adequate to its own main
problem, and all use a similar terminology and arsenal of primitive notions. Con-
siderations of generality (i.e., of economy and elegance) then emphasise the need of
a wider theory, including all the preceding as special cases. Usually, this type of
problem is solved by an approach primarily abstract, or rather axiomatic.

In selecting suitable properties to serve as axioms one returns, of course, to the
basic model, viz. ordinary differential equations dx/d6 = f(x, 0) in euclidean
n-space. In the study of these objects, one is usually concerned with situations in
which most of the following conditions are satisfied (pertaining to the initial value
problem):

1° local existence of solutions,

2° indefinite prolongability of solutions (i.e. global existence),
3° unicity of solutions,

4° autonomness (i.e., f(x, ) independent of 6).

There are, of course, many other quite reasonable requirements, both general and of
special character; e.g., continuous dependence of solutions on initial data, f| (x, 6)
linear or periodic in x, f(x, 0) periodic in 6, boundedness of solutions, etc.
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In several cases, the axiomatic approach to differential equation theory has already
been exploited with considerable effect. Thus, corresponding to equations which
satisfy 1° to 4°, A. A. Markov defined the so-called dynamical systems (in metric
spaces; see [15, chap. V—VI] for a detailed exposition). Some results on dynamical
systems without unicity were obtained in [2] and [14]; and concerning objects
exhibiting 1° to 3°, the flows, in [8]. The Liapunov theory was extended by Zusov
to objects with 1° and 2° only; see [19, chap. IV] and also [17] (terms: general
systems and generalized flows, respectively). In overcoming 2°, the local dynamical
systems, i.e. objects exhibiting 1°, 3° and 4°, were introduced and studied in some
detail, [7], [9]- Finally, the present author obtained some unpublished results
concerning the local flows, with properties 1° and 3°, and also concerning objects
with property 3° only.

Paradoxically, the logical next step is to eliminate all of the reasonable properties
1° to 4°; let us attempt to motivate and then describe informally what remains.

In undefined (but, it is hoped, suggestive) terms, assume given a physical law; in
some manner this should determine all of the possible behaviour of each member
from a given set of individual physical systems. This behaviour is to be characterized
by specifying the phases or states of the physical systems at various times. A familiar
instance is Newton’s law of motion for, say, one-dimensional movement of a particle
in a given field of force; the individual physical systems are mass-invariant particles
moving subject to the law; and the phase space is R?, with coordinates interpreted as
abscissa and velocity of a given particle at given time. (This is an example of a deter-
ministic physical law; however, indeterministic laws will also be considered.)

For our purposes, the physical systems themselves are immaterial: we shall only be
concerned with their behaviour, i.e. with their phase-time characterisations. There
will be no restrictions on the nature of the physical law nor on that of the phase space;
however the time-variable will be real-valued (occasionally even this can be avoided;
see [9, chap. IX], or also topological transformation groups).

In this situation, the fact that it is possible for some system (among the given
physical systems) to be in state x at time « and in state y at a previous time f < «
will be described by means of a relation between the pairs (x, «) and (y, ). The
following two properties then appear both reasonable and fundamental.

(i) Ata given time, each system can be in at most one state. The formal version of
this condition will be termed the initial-value property.

(ii) This consists of two reciprocal requirements as follows. If it is possible for
some system to change from state z at time y to state y at § = 7, and if it is possible
for some (other) system to change from this state y at 8 to state x at a = f, then it is
required that it also be possible for some further system to change from the original
state z at y to the final state x at o. Conversely, if a system changed from state z at y
to x at «, then, at each intermediate time f with o = f = 7, it must have been in some
state y; however little more than mere existence may be known about y (in particular,
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it need not be uniquely determined by (z, y),  nor even by (x, «), (z, y), f). After
formalization, this requirement will be named the compositivity property.

It is precisely the relation described above, between the phase-time pairs (x, oc) and
(», B), which forms the abstract counterpart of the physical laws, and is the subject
of axiomatisation. Thus if properties 1° to 3° are assumed, then one may introduce
maps , T}, the so-called movements, such that (x, «) is related to (y, f) iff x = ,T;y;
or equivalently, a single map T, with x = T(«, y, B) representing the same relation.
Conditions (i) and (ii), and also 4° if required, are reflected in appropriate properties
of T. A similar treatment is possible even if 2° is omitted: one replaces the map T
by a partial map. The method usually adopted in circumventing 3° is to use a multi-
valued map for T (loc. cit.). Thus the obvious suggestion for the most general case is
to apply, in a similar manner, a multivalued partial map for 7, or in other words,
a relation between x and the triple («, y, ). However, it appears preferable to consider
the more symmetric “transferred” relation between pairs (x,«) and (y, §); this
description is adopted in the present paper (the term process chosen for this concept
is borrowed from mathematical statistics).

An entirely different approach is also possible. In place of the relations just
described one may choose as primary objects of study the phase-time characteristics
of the individual physical systems, the so-called solutions. For less imprecise formula-
tions, connections with processes and further comments, see section 2.

Some further explanatory remarks are in place here. In all the reasonable require-
ments listed previously, the topology of R" enters only into boundedness and con-
tinuous variation of solutions. Similarly, in local dynamical system theory it was
useful to separate out the purely “dynamical” properties from the topological or
mixed ones, [9]. In the present exposition it is also preferred to treat complex
problems piecemeal; even though the topological considerations are of utmost
importance, they are first separated from the abstract theory and deferred to a later
paper (perhaps the analogy between this situation and that of abstract and topological
groups is not too far-fetched). Secondly, in differential equation theory, theorems are
often formulated in futuro, for positive time only. In analogy there were introduced
the auxiliary concepts of unilateral (or semi-) dynamical systems and semi-flows;
again, this will be paralleled here.

Finally, some technical remarks. Sections are divided into items, and some of
these into sub-items; these are referred to by numbers, with item or section number
given first in cross-references (thus item 3 of section 2 is referred to as 2.3 outside
section 2, and as 3 within section 2; the references to its sub-item 4 are then 2.3.4°
and 3.4° respectively). Within sections some displayed formulas are numbered separate-
ly, and referred to in similar fashion. Some conventions and notation, mainly concern-
ing relations, are given in the Appendix, but used consistently without explicit
reference; thus the reader may find it simpler to read the Appendix cursorily first. The
extremely useful trick of treating the exercises also as a repository of minor results
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and examples is adopted here; the author sees no advantage in reserving this facility
to monographs.

This first paper is rather singular in that the principal results are not the proposi-
tions it contains (however, theorem 4.12 does seem important) but rather the state-
ment that the generalizations exhibited are interesting and useful. Most of the proofs
are so trivial that it seemed unnecessary to present them otherwise than as, at most,
suggestions.

1. PROCESSES

1. Assume given a set P, and also a subset R = R'. The set R is ordered by the
natural order relation = inherited from R!, and in particular one may speak of
intervals in R (i.e. the non-void order-convex subsets of R?; this includes the singletons
i.e. the degenerate intervals).

Now consider any relation p on P x R, i.e. between P X R and P x R, with the
property that

(1) (x,@) p (v, B) implies o= B.

Then p defines a system {,p, | o = f in R} of relations ,p; on P, in the following
manner:

) xppy iff (x,0)p (1, B);

these ,p; will be called the individual relations of p. It is obvious that, conversely,
any system {,p; | « = Bin R} of relations on P defines, by (2), a relation p of the type
described above, and that the two procedures are mutually inverse.

This notation and conventions will be used freely; thus e.g. a relation ¢ may be
defined merely by prescribing the individual relations ,q,, etc.

2. Definition. p is a process on P over R iff P is a set, R = R!, p is a relation on
P x R with (1), and the following two conditions are satisfied:

1° ,p, = 1 for all axeR,

2° PpopPy = 4, forall « = f =7 in R.

In this context, 1° may be termed the initial-value property, and 2° the compositivity
property. A number of examples and intended applications is given in the exercises to
this and the following section; however it is appropriate to exhibit the basic inter-
pretations at this point.

3. (Example) Consider a differential equation

: dx
3 — = f(x, 0
o & _ fe,0

162



in euclidean n-space, with continuous f : D — R"and D an open set in R"*1; of course,
this equation is completely determined by f. The classical solutions of (3) are partial
maps s : R! —» R” such that domain s is an interval in R!, either degenerate or with

Edo_ s0 = f(s0, 0) for all fedomains

(here and in similar situations henceforth, the derivative is taken with respect to
domain s; thus it may well be only a left derivative, etc.). With the differential equation
one associates the process p, in R” over R, defined by setting x ,p; y (for x, y in R,
a = B in R) iff there is a classical solution of (3) assuming the values x and y at a
and f respectively. Processes obtained in this manner, with the exhibited assumptions
on f, will be termed differential.

4. (Example) In distant but possibly familiar analogy, let

(4) fk(xk+ 15 xk) =0

be a finite-difference equation, with partial maps f, : R*" — R". The solutions of (4)
are, of course, sequences {x, |j < k < i in C'} such that (4) holds for j < k < i.
The associated process p, in R” over C, is defined by setting x ;p; y iff i 2 j in C*
and there is a solution as above with x; = x, x; = y.

5. In both these cases, conditions 1 (1) and 2.1° are satisfied trivially, and 2.2°
follows from an appropriate concatenation property of solutions. These examples
may also indicate the role of the sets P and R : P is a convenient set containing the
carrier of the process, and may be enlarged without affecting the process essentially;
and R serves only to specify the scope of the independent time variable, principally
in the betweenness relation entering into the compositivity property 2.2°. It will be
necessary to define these and a number of further notions related to processes formally.

6. Given a process p in P over R, occasionally P may be termed the phase-space
of p; elements of P (of R) may be called phases (time-instants, respectively).
The domain D, carrier C and parameter-domain B of p are defined thus:

D = domain p, C = proj, [D], B = proj,[D].

(The symbols D, C, B, possibly with indices or primes, will usually be reserved for
this purpose.) In vague terms, one may say that while R specifies the set in which the
time-variable is allowed to vary, B is the set of time-instants actually needed in
describing p; similarly for P and C.

It is immediate that

DcCxBcP XR;
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iff D = C x B then p and D will be termed cartesian; iff C = P then p and C will
be termed full. Iff R is isolated in R, then p is said to have discrete time; and to have
continuous time iff R = R%.

7. Even at this stage a reasonable amount of information concerning these con-
cepts is available from the axioms 2.1°—2°. This is presented in the current and
following items; throughout there is assumed given a process p in P over R.

By particular choice of time-instants in the compositivity property (y = p, etc.) one
obtains that x ,p, y implies x .p, x and y ;p, y. There follows a useful description of
the domain,

(5) D ={(x,a)eP x R:x,p,x},

and also
range p = D = domain p ;

in particular, p is completely determined by its partialisation p ] D. From (5) it also
follows that

(6) C={xeP:x,p,x forsome aeR}, B={aeB:x,p,x for some x € P} .

In particular, p is cartesian iff, for each o € B, ,p, is the identity map of C.

According to (5) (and from 2.1° and 2°), each process p is a (special type of ) partial
order on the corresponding domain; it is this partial order which is meant when one
says that a function e.g. increases along p. More precisely, a partial map f: P x
X R — A into a partially ordered set A4 is termed increasing along a process p in P
over R iff f | D is an increasing map between D (endowed with p as partial order)
and A. Similarly for non-increasing maps, etc. As a familiar example, each Liapunov
function of a differential equation is a non-increasing function into R! along the
associated differential process.

8. Next, consider the relation r on B with a r f iff x ,py y for some x, ye P (on
transferring p from (P x R) x (P x R) to P x R x P x R, this reduces to r =
= proj, 4 [p]). From compositivity, « r f implies o r § and 0 r § for all 6 € R with
o = 6 = B; and then the relation ~ obtained from r by transitivization and then
symmetrization (ie. 1, = rur?u... and ~ = r; U r{') also has this property.
Now, ~ is an equivalence relation on B (e.g. r is reflexive by (6)), and we have just
shown that the equivalence classes modulo ~ are intervals in R; these will be called
the interval-components of p or B. Iff there is at most one interval-component of p,
then p is said to be extensive.

In particular, then, the parameter-domain of any process p in P over R decomposes
into disjoint intervals of R; these have the property that if o, f§ are in distinct interval
components, then x ,pg y for no x, y in P. It follows that the process p may well be
studied separately over each interval-component; this will be formulited more
precisely in the following paper, using the concept of a direct sum.
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Finally, consider a relation 7" between a partially ordered set R’ and R!;if ¥’ o proj,
non-decreases along a process p (i.e. x ,pp ¥ implies ' = 'f) then ¢’ ] B is a partial
map; using the r and ~ above it is easily shown that then r’ | I is non-decreasing for
every interval-component I of p.

9. Given a process p in P over R, a relation s between P and R will be called
a solution of p iff

) sxscpupt
and domain s is an interval in R. (We re-emphasise that degenerate intervals are
allowed, and that domain s is to be an interval in R, not necessarily in Rl.) In this
situation, for any « € domain s, one may say that s is a solution through (s, oc), or
through s at .

Evidently, (7) may be formulated thus: x s« and y s f with « = B imply x ,p; y;
in particular, from the initial-value property it follows that s is a partial map R — P
with

(3) (so) .pg (sB) forall a>=p in domains.

Conversely, each partial map s : R —» P with (8) and domain s an interval in R is
a solution of p.

10. From the definitions it follows directly that s = D for all solutions s of p;
conversely, each element of D is contained in some solution (e.g. with degenerate
domain; apply (8) and 2.1°). Thus D coincides with the set-union of all solutions
of p. Furthermore, from the construction in 7 it follows that the domain of any
solution of p is contained within some interval-component of p.

The solution system S of a process p in P over R is defined as consisting of all
solutions of p. Obviously S has the following properties:

1° Each s € S is a partial map R — P with domain s an interval in R,
2° For any s € S and interval I in R intersecting domain s, also s | IeSs,

3° If s4,s, €8S, the domains of s; intersect and s, U s, is a partial map, then
s{ Us,ES.
Here 2° may be termed the partialization property, and 3° the concatenation property.
Of the slightly less elementary properties of S one may note the following:

4° If {s;} is a monotone family in S, then UUs; € S.

5° Let s : I — P be a map with I an interval in R and the property that to any «,
in I there is an s’ € S with sa = s'a, sf = s'f; then s € S. In particular, from 4° and
the Zorn lemma it follows that each solution of p is contained in at least one maximal
solution.
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11. Given a process p in P over R and an (x, «) € D, it is natural to inquire about
the set of 0’s such that x’ 4p, x for some x” € P. Some information is directly available:
according to the compositivity property, such §’s constitute an interval in R contain-
ing o as left end-point, and entirely contained within the interval-component of o.
This suggests the following definition.

Let p be a process in P over R; the escape time &(x, o) of (x, o) € D is defined as
(10) e(x, «) = sup {0 e R' : x’ yp, x for some x' € P}

(with the supremum taken in the extended real line); some properties of the escape
times are immediate:

1° If o < 0 < ¢(x, «) and 0 € R, then there exists an x’ € P with x’ 4p, X; as a partial
converse, if x’ op, x then @ < 0 < ¢(x, @). In particular, o < &(x, o).

2° Let I be the interval-component containing o; then g(x, «) < supI < sup B <
SsupR = +o0.

3% ¢ non-increases along p, i.e. x ,pg y implies &(x, «) < &(y, f). (In 3° and also
often elsewhere, &(x, o) is interpreted as the value at (x, «) of a map & from D into the
extended real line.)

12. Some special situations may now be separated out. There is still assumed
given a process p in P over R, and, possibly, an (x, a) eD.

Iff o < &(x, ), then p is said to have local existence at (x, «); and iff this obtains
for all elements of D, then p is said to have local existence. The negation of this
property will also be named separately: (x, o) is an end-pair iff o = &(x, «); and iff
this obtains at all elements of D, then the process p will be termed trivial.

Iff &(x, o) = sup B, then p is said to have prolongability at (x, «); iff this occurs
at all elements of D then p is said to have prolongability; and iff s(x, cx) = sup R for
all (x, «) € D, then the process p will be termed global, or to possess global existence.

The terminology chosen has an unfortunate defect: the reader is requested to
resist the temptation of asking, of what is local existence asserted.

13. Next, some simple consequences will be exhibited. Note, e.g., that prolongabili-
ty may, but local existence cannot, occur at an end-pair; and if B contains at least two
interval-components, then p cannot have prolongability. If an interval-component I
has sup I €1, then each (x, sup I) € D is an end-pair. A relation pon P x Ris a trivial
process iff p = 1. A process p is cartesian with prolongability iff

1c = (pg) ' oupp forall o= p in B,

where 1 is the identity map of C (for an assertion or globality merely replacz B by R).
If a process has prolongability, then it is extensive (in the sense of 8).
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14. Lemma. If p is a process and x ,py y with o = &(, B), then (x, ) is an end-pair.

This follows directly from 11.1° and 3°. In particular, for processes with local
existence, one has the following version of 11.1°: For given (x, «) and 6 there is X’ ¢p, X
for some x" e P iff o < 0 < &(x, a).

15. The definition of semi-flows and semi-dynamical systems (cf. 4.18; and also
that of continuity of a process, to appear in the third paper of this series) is intimately
connected with two concepts closely related to the process; it will be convenient to
introduce these at the present point.

Assume given a process p in P over R. To p one assigns, first, the relation ?
between P and R x P x R defined by

xt(ey,p) iff (x,2)p(v,B);

t will be termed the relation associated to p. Evidently ¢ is obtained from p by trans-
ferring from (P x R) x (P x R) to P x (R x P x R); in particular, p is uniquely
determined by ¢ and conversely (and several authors prefer ¢ to p as a medium of
description). Obviously range t = C, and

domain t = {(o, y, B) : x ,py y for some xeP}.
Then 11.1° may be formulated thus:

(1) {63 8): (1 B)eD, f<a< ey p}
< domaint < {(o, y, B) : (», B) €D, B < o < &y, B)} -

The second concept is a relation d, to be called the projection of p, and defined as
the relation between R and P x R with

ad(y,p) iff x,pgy forsome xeP.

Evidently d can be obtained from p or ¢t via the projection proj,s4 : P X R X P x
x R - R x P x R and appropriate transfers. Obviously

ranged = B, domaind =D, ad(y,f) iff (o y,p)ecdomaint,

i.e. iff there is an x € P with x ,p, y.

16. A process p in P over R is said to possess unicity iff the associated relation ¢
is a partial map R x P x R — P. An evident necessary and sufficient condition for
this is that every individual relation ,ps be a partial map P — P, i.e. that

Ppolapp) ' =1 forall «=p in R.

In this case the individual relations .Pp are also called motions (of p or ¢).
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An independent description of such processes will be useful. Let P be a set, R = R
and let there be given a partial map t : R x P x R — P; for all « = f in R define
partial maps ,p; : P — P by

Py = Uy, B).

Then ¢ is the associated relation of a process in P over R (necessarily with unicity,
and with the ,p, as individual relations) iff the following two conditions are satisfied:

1° ,ppx = x for all (x, ) € P x R such that ,p, x is defined,
2° ppogpyX = p,xforalla = f = yin R whenever either side is defined.

In particular, this implies that ,p, x with fixed (x, a)e P x R is defined for all # e R
in an interval (possibly degenerate) with « as left-end point.

17. Next we shall exhibit a localisation of the unicity property, in a manner similar
to that employed for local existence. Thus, let p be a process in P over R, and consider
an (x, a) € D; now define the extent of unicity

(12) O(x,0) =sup{AeR' :a <0 <4 uep,x, vep,x imply u = v}

(the supremum is taken in the extended real line; observe that one may have §(x, a) =
= +oo even if R is right-bounded). Some properties of this characteristic are
immediate or easily established:

1° 0 < (x,0) < +o0

2° Ifa £ B <y < 8(x, ), then y yp, x, z ,p, x imply z ,p; y

3° If x,ppy with B < o< 8(y, ) then 5(x, o) = 8(y, ) and &(x, o) = &(y, B);
hence -

4° § non-decreases along p.
5° If 5(x, ) < 400, then there exist 6 € R with arbitrarily small 6 — 5(x, a) = 0
and also u, vin P with u = v, u 4p, X, U ¢p, X; in particular

a < 8(x, ) < &(x,x) < supl

for the interval-component I containing «.

6° If 5(x, @) = &(x, ) < +oo then 6 = g(x, &) has 6 > « and there exist u + v
in P with u ¢p, X, v op, X. If « = &(x, «) then §(x, &) = + 0.

18. Some special situations may now be separated out; there is assumed given
a process p in P over R, and, possibly, and (x, «) € D.

Iff « < §(x, «), then p will be said to have local unicity at (x, a); and iff this for
all elements of D, then p is said to have local unicity. Iff (x, @) = +oco, then p is
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said to have (global) unicity at (x, «); evidently p has unicity in the sense of 16 iff it
has unicity at all elements of D.

To each (x, a) e D one may assign a uniquely determined solution t,x of p as
follows: set (t,x) A = x" iff X' ,p, x and also « < 0 < 4, u 3P, X, v ;p, X imply u = v,
Then t,x satisfies condition 1.9 (8) (cf. 17.2°), and its domain is an interval in R of the
form [o, o) or [, '] with

e(x, @) if O(x,0) = +o0
o« = min (g(x, @), 6(x, x)) = <

5(x, o) if 8(x,%) < +oo

(cf. 17.5°). Hence t,x is a solution of p (indeed, the only solution with the indicated
domain), to be termed the characteristic solution of p through (x, o).

19. The next step is a result concerning a situation analogous to that of 14. Thus,
let p be a process in P over R without global unicity at a given (y, f) € D; for con-
venience, set o = 5(y, B) < +o0ands = tsy. Then there are possible three mutually
exclusive cases:

1° There exists an x € P with x ,p; y, whereupon either 6(x, ) = a (i.e. local
unicity does not obtain at (x, oc)), or

2° There exist u; % u, in P with

(u;, o) p (0, 0)
for j = 1,2 and all § in domain s.

3° One has x ,py y for no x € P. Then 6(y, f) > B, and there exist 0, \ « and

u;; * u;, with
(uij» 6:) p (56, 6)

forj=1,2, all i, and all 0
in domain s. In particular,
o€ B — R (thus if R is closed
in R, then 3° cannot occur).

Note that in case 1°, domain
tgy is right-closed, and right-
open in 2° and 3°. Fig. 1 may
aid in visualising the situation.
Also observe that if, for some
process p, 2°and 3° are ex- B
cluded in some manner, then +
local unicity of p implies glo-
bal unicity of p; thus one has

| S
b3

the situation familiar from
differential equation theory. Fig. 1.

169



20. Processes are a particular type of relation, and thus the natural inclusion-
relation between processes is well-defined. We shall now list the implications of a rela-
tion

(13) pcyp

between a process p in P over R and a process p’ in P’ over R’ (objects associated
with p’ will be distinguished by primes). Note first that (13) yields no a priori inclusion
relations between P, R and P’, R'. As for the concepts introduced in 1, 6 and 15,
one has

oPp<qpp foral «=2pf in R, DcD', CcC', BcB,
tct', dcd.

Each interval-component of p is contained within some interval-component of p'.
If R = R’ (or B = B') then S = S’ for the corresponding solution systems, i.e. each
solution of p is a solution of p’; however in the case that R # R’ and B = B’ there
seems to be, in general, no relation between S and S’ (also see example 2.3).

For the escape times one has

e(x,a) < &(x, ) forall (x,a)eD;

thus if p has local existence at (x, o) € D then so does p’ (and conversely, each end-pair
of p’ in D is an end-pair of p). If B = B’ and p has prolongability at (x, «) € D,
then p’ also does; if R = R’, D = D’ and p is global, then so is p’.

For the extents of unicity one has

8(x, a) = 6'(x,«) forall (x,a)eD.

In this case, then, p has local or global unicity at (x, o) € D if p’ does; also note that
this yields
&'(x, 2) < 8(x, a) < &(x, @) < €(x, o)

iff 6(x, o) < 400 (cf. 17.5°).

21. (Exercises) 1° Given a process p, one may define for (x, «) € D,

Oy(x,0) =sup{AeR' : 212020 =a, yop,X, Vope, Yy imply y 4p,x}.
Interpret and study the characteristic 64, in particular in connection with the charac-
teristic ¢ and 6, and also with negative unicity (cf. 3.14).

2° Treat similarly
Sx(x, o) =sup{AeR' : 120 =a, y,pyu; u;4p,x for i =1,2 imply u; = u,}.

3° In the situation of example 3 show that the domain of p is domain f = D; and
that the interval-components of p are the components of B = proj, D as a subspace
of R (hint: p has local existence). Formulate unicity and globality of p in terms of
the differential equation (3).
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4° In example 3 verify that the classical solutions of (3) are solutions of p in the
sense of 9. Hence show that p determines (3) completely in the sense that f can be
reconstructed from p. (Hint: f may be defined by (3) using solutions of p.)

5° Continuing in 4°, prove that also conversely each solution of p is a classical
solution of (3). (Suggestion: It is required to show that (d/d0) s@ = f(s0, 0) for each
non-degenerate solution s of p; by definition, whenever 8, — 0 in domain s, there
exist classical solutions s, with s0, = s,0,, s0 = s,0. Then, if 6, + 0,
s0, —sO 5,0, — s,0

= " = £(5,0, 0,
0, — 0 0, — 0 St )

by a mean-value theorem, for some 0, — 6. Since f was assumed continuous, one need
only prove s,0, — s0, e.g. using local boundedness of f.)

The following examples are intended to indicate applications of the concept of
a process to situations rather different than those of example 3 (also see the exercises
to section 2). In 6°—8° we shall need the notation x; for the A-translate of a map x, i.e.

x;0 = x(0 + 1) for 0 + Aedomainx.

6° A difference-differential equation (with retarded time, [6, chap. V]) in R%,

dx
(14) w - f(x6, x(6 — 1), 0),

is specified by a continuous f: R* - R and t > 0. The solutions of (14) are con-
tinuous maps s : [ — 1, 0] » R' with —o0 < f < « < + o0 and such that

;—650=f(50,s(0——r),9) for <0< a;

finally, the initial value problem for (14) is to find, to given e R' and continuous
y :[ =1, 0] = R, a solution s of (14) as above and with y < s, i.e. such that

s =y0 — ) for p—1<0=P.

This initial value problem may be conveniently and adequately described by means
of a process p in C'[—t, 0] over R as follows: For x, y in C'[—7,0] and & =
in R'let x ,p; y iff x = s,, y <= s, for some solution s of (14). Prove that the relations
«Pp on C'[—1, 0] thus defined are the individual relations of a process p. (Hint: the
non-trivial part of the verification consists in showing that, if s is a solution as above
and s : [y — 7, ] - R! a second solution with s@ = s'0 for f — © < 0 < B, then
s U s’ is again a solution of (14), and in particular has a derivative at f.)

7° Describe in what sense the preceding problem reduces to that of 1.3 on replacing
7 > 0 by 7 = 0. (Hint: prove first, that a solution s of (14) has a continuous right
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derivative at f; and second that a continuous function with a continuous right
derivative has a continuous derivative.)

8° In the situation of 6° show that every solution x of (14) defines a solution s of p
by s0 = x, [ [—=7,0]; conversely, prove that every solution of p has this form.
Assuming that local existence of solutions obtains for (14) [6, V, § 2], verify that p
describes (14) completely (hints: parallel 5° and 4°). Describe the relations between
unicity and prolongability for (14) and for p.

9° Generalize 6°—8° to functional-differential equations with retarded time [10]
of the form

= (x| [-=.01.0)

with continuous f: C'[—7,0] x R' > R! and © > 0; and also to partial maps f
and n dimensions. Finally, obtain similar results with [ —1, 0] replaced by (— oo, 0].

10° Consider a numerical process, defined [1,1I, 2.1] by specifying sequences of
(normed) linear spaces X, and of partial maps f, : X; X ... x X; > X;4, (k =
= 1,2, ...). The solutions of such a numerical process 4~ = ({X,}, {fi}) are sequences
{sihp=1 withw £ +o0 and s ¢ = fi (51, ..., 5) forall k < w.

To define an appropriate process, take the set P of all finite sequences {x,}] with
neC!' and x,e€ X, for 1 < k < n; and then define relations :pj on P as follows:
letx,p;yiffi = j = 1in C', x = {x}i, y = {3}, and also

(15) xp =y for 1=k=j, Xy =fix1,..0x) for j<k<i.

Show that these ;p; are the individual relations of a process p in P over C!; and that
the solutions of p coincide with “solutions starting from a k-th step” of -

11° Modify the preceding construction for the case that the second relation in (15)
is replaced by
[Xer1 = filxps-nx) | S 1 for j<k<i;

also relate with “approximative solutions” of _j~ with given error bounds {5,}}.
(Hint: introduce new norms in X, trivial iff §, = 0.)

12° Consider stochastic processes defined as follows (cf. [4, XV, §§ 13 — 14]; the exam-
ple is taken over from [9, IX, 1.9.4]). Let B be a Boolean s-algebra, and Ly the set of
o-additive measure functions m on B; endowed with the obvious linear operations,
partial order and norm |m| = sup |mx — my|, L; becomes a Banach lattice.

Xx,yeB

Also let P be the set of probability distributions on B, i.e. of m € Ly with m = 0,
ml = 1. Then a stochastic process of Markovian type on B over R = R! is a system
{«Ty|« = B in R} of linear maps ,Tj : Ly — Ly with ,T;[P] = P (i.e., the ,Tj are
positive and norm-preserving), and such that

17;=19 aTﬂ"[}Ty:dT:l
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for all @ = B = y in R. Verify that the , T} are the motions (cf. 16) of a process on P
over R, which is full, cartesian, global and with unicity.

13° Let p be a process in P over R, measurable with respect to an atomic Boolean
o-algebra B of subsets of P (in the sense that ,p; '[X] € Bfor all X € B, « = § in R).
With p, B one may associate a “nonlinear stochastic” process defined as follows (the
summations below are to extend over atoms Y of B): For « = f in R and proba-
bility distribution x on B one defines ,Tj; x iff

(16) 0<dx,p;' [Y] < 400,
Y

whereupon the value of , T, x at any X € B is to be

(Tpx) X Ygxx“pl;l[Y]
alpX =

Yxapy ' [Y] '

Then, evidently, ,T; x is again a probability distribution on B. Show that the ,T; are
the individual relations of a process with unicity in the set of all distributions on B,
over R. (Hint: now the compositivity property reduces, after some manipulation, to

xopy; toapy  [Z1= X xup ' [Y]5
Yeups~1(Z]
and this follows from »p; ' o ,p; ' [Z] = sp; " [.p; ' [Z]] and o-additivity of x.)
Also observe that, for f = « in the parameter-domain of p, one has

0<Yx,.p ' [Y]S)xY=1,
Y Y

so that, under appropriate continuity conditions on p, (16) subsists even for small
|oz - ,B], and hence the constructed process has local existence.

14° Let G be an oriented graph, [3, chap. I]; on its set V of vertices define rela-
tions ;p; (for i, j € C'), by letting x ;p; y iff there is an oriented path in G from x to y
incident with precisely i — j 4+ 1 vertices. Verify that the ;p; are the individual rela-
tions of a process p in ¥ over C'. (Also see 4.17.22°.)

15° Let g € C'[0, + ), and consider the following incomplete boundary value
problem for u:
2
(17) d*u

W-%q.u:O, u0 =0.

For o 2 B > 0 define a relation ,p; on R' by letting x ,p, y iff x = ua, y = uf for
some solution u of (17). Verify that these ,p, are the individual relations of a process p
in R over (0, +0). Observe that p adequately describes all the boundary value
problems obtained on augmenting (17) by a second boundary condiiion ux = y
(¢ > 0,y in R"); and that in quite reasonable cases p does not have unicity.
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2. SOLUTION SYSTEMS

1. In this section we shall consider the family of solutions of a process from
a different point of view, by studying a slightly more general concept.

Definition. S is a solution system in P over R iff Pis a set, R = R!, and S satisfies
conditions 1.10.1°—3°; members of S will be termed solutions of S. (The use of the
term ““solution” here is quite formal; in particular it is not implied that the members
of S are solutions of differential equations or processes in the sense used previously.)

2. With each such solution system S one may associate a process in P over R, at
present conveniently denoted by pr S, by letting (x, o) pr S(y, p) iff « = B in R and

x=s0, y=sBf forsome seS.

Quite obviously S; = S, between solution systems implies prS; = prS, (not
necessarily both in the same or over the same sets).

It should be emphasised that this is one of the most important methods of con-
structing processes (or rather, solution-complete processes, see 4). In particular, each
of the examples described in item 10 is also an instance of a process; thus one may
speak of the process associated with a regulated system as in 10.14°, by invoking
automatically the above construction of pr S.

3. Secondly, in 1.10 there has been assigned a solution system to each process p;
denote it by sol p (both in P over R, say). For processes over a fixed set R, evidently
Py < p, implies sol p, < sol p, (cf. 1.20); and furthermore,

(1) poprsolp, ScsolprS.

In the terminology of [4, IV, § 6] this shows that, for a fixed set R = R', the two
maps sol and pr define a Galois connection between the class of all solution systems
over R and that of processes over R (ordered by set-inclusion and inverse relation-
inclusion, respectively). In particular — and this is also obvious directly — one has
that always

(2 _ sol p = sol prsolp, prS = prsol prS

4. In the same situation, consider the first relation in (1); iff equality obtains, i.e.
iff p.= pr sol p, then the process p will be called solution-complete. Thus a process p
is solution-complete iff, whenever x ,p; v, there exists a solution s of p with x = sa,
y = sf. The concatenation property 1.10.3° then yields a formally stronger version:
If p is a solution-complete process and

(xi+1’ai+1)p(xi, “i) for i=1,2,...,n—1,

then there exists a solution s of p with x; = sa; for all i.
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From the construction of characteristic solutions in 1.18 it follows directly that
every process with unicity is solution-complete; and so is every process with discrete
time, as may be shown directly. However, not all processes are solution-complete,
as indicated in the following

5. (Example) Let P be the set of all rationals in R'; and consider the process p
in P over R' defined by its individual relations thus: x ,p, x for all (x, x) e P x R,
and for o > f

x.ppy iff |x —yl<a—f.

It is then easily verified that p is indeed a process (however < cannot be replaced
by <; also, p is global cartesian full). From 1.9 (8) it is seen that each solution of p
is Lipschitzian and hence continuous in the natural topologies; also, P is totally
disconnected, so that each solution of p is constant. However, there exist very many
x # yin P with x ,pg y, and therefore p is not solution-complete.

Also note that if this process is altered to a process p’ merely by restricting its
time-variable to P (thus p’ = p, p’ is in P over P), then p’ is solution-complete
(cf. 10.5°), and no non-constant solution of p’ is a solution of p.

6. The following assertions are direct consequences of the Galois connection
exhibited in item 3. For any solution system S, in P over R, the process pr S is
solution-complete; and every solution-complete process is of this form. In particular,
pr sol p is solution-complete, and in fact it is the largest solution-complete process
q < p over R; thus pr sol p may be termed the solution-complete (lower) modifica-
tion of p.

Analogous assertions hold for process-complete solution systems, defining these
by the requirement S = sol pr S. Then 1.10.4° is necessary, and 1.10.5° necessary
and sufficient, for process-completeness of a solution system S.

In particular, given a solution system S in P over R, the process-complete (upper)
modification S, = sol pr S of S may be described as follows: S, consists of all
maps s : I - P with I an interval in R and such that, for any « = f in I, there is an
s' € S with sa = s'a, sp = s'p.

7. The requirements on a solution system suggest the following method of con-
structing solution systems from more elementary objects.

As usual, let P be a set and R < R, but now assume that S is any system of partial
maps satisfying the first requirement (i.e. each s € S is a partial map s : R - P with
domain s an interval in R); such a system might be termed a solution system sub-base.

Now let S, consist of all interval-partializations of members of S, i.e.

So={s|I:seS, Iinterval in R} ;

if Sy = S, then S will be termed a solution system base. As the next step, let S;
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n

consist of the appropriate concatenations of members of S, i.e. se S, iff s = U s;
i=1

with s a partial map, s; € S, domain s;,, intersects domain s; fori = 1,2,...,n — 1.
Then, evidently, S, is the least solution system in P over R containing S.

8. The Galois connection between solution systems and processes was exhibited,
among other reasons, to emphasise that these two concepts are at commensurable
levels of generality. It is recognised that a reader familiar with differential equation
theory may well prefer the approach via (bases of) solution systems, and consider the
processes as an auxiliary concept obtained by means of the procedures described
in 7 and 3. If this attitude is adopted, the theory of processes as presented here could
be, at the very least, interpreted as the theory of solution-complete processes (cf. 6).

9. Finally, some terminological notes. Iff p is a process and its solution-complete
modification (i.e. the process pr sol p) has some property £, then it will be said that p
has property & of solutions; thus one may speak of local existence of solutions,
unicity of solutions, etc. Observe e.g. that a process with unicity necessarily has
unicity of solutions, but that the converse assertion does not hold (thus the process
described in example 5 has unicity of solutions but not unicity). For some of these
questions apply 1.20 to the relation pr sol p < p.

10. (Exercises) 1° Prove that the domains of p and prsol p coincide. More
generally, define suitably the domain of a solution system S, and ascertain whether
then the domains of S and pr S, and also of p and sol p, coincide.

2° Let S = S’ be solution systems in P over R; show that pr S = pr S’ is equivalent
with S’ < sol pr S.
3° Verify that the processes defined in 1,3, 1.21.5° and 1.21.6° are all solution-

complete. Interpret 1.21.2° and 1.21.4° as asserting process-completeness of some
solution systems.

4° For processes, localize solution-completeness to individual pairs (x, o) e D,
by defining appropriately the extent of solution-completeness A(x, a); obtain the
elementary properties of 4, including 6 £ A, and A < e¢or 1 = +o0.

The next two exercises are due to I. VRKOC.

5° Prove that every process p over a countable set R = R! is solution-complete.
(Hint: Assuming x,p, y, well-order the interval [B,a] in R:0, =B, 0, = a,
05, 0,4, ... Then, using compositivity, define maps s, with domain s, = {0k| 1=
Sksn}l,s,a=x,88=y,8%Xs,<pup s, <s,.,. Finally verify that (s,
is a solution of p as required.)

6° Prove that every process in a finite set P is solution-complete. (Hint: modify the
proof procedure suggested in 5° to a transfinite induction.)
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7° Suggest reasonable definitions of positive and negative unicity for solution
systems S, and compare with the corresponding concepts applying to pr S.

8° For solution system with positive unicity (cf. 7°) show that property 1,10.4° is
equivalent with process-completeness.

11. (Exercises) To avoid repetition, in these exercises Q denotes a set, La Banach
space, d/df strong differentiation in L, | d@ (strong) Lebesgue integration in L.

1° Given a partial map f:L x R' > L (not necessarily continuous), define
a system S of partial maps R! — Lthus: s € S iff domain s is an interval in R!, either
a singleton 0 with (59, 8) € domain f, or non-degenerate with

) ;_0 50 = £(s6, 0)

for all 6 € domain s. Prove that S is a solution system with property 1.10.4°; its
members may be termed the classical solutions of (3).

2° Modify 1° by requiring all se S to be continuous, but with (3) only almost
everywhere in domain s (the generalized solutions of (3), [5, 1L, § 1]).

3° If one replaces d/d6 in (3) by some “generalized differentiation procedure” D,,
under what natural conditions on D, can one still obtain the conclusions of 1° and 2°7
(E.g. may one take for D, a first-order linear differential operator, or the right
derivative, or for L = R! the upper derivative?)

4° Given a partial map f : L x R! — L, define a system S of partial maps R! —» L
thus: s € S iff domain s is an interval in R! and

) s — s = J ﬂ £(s0, 6) do

for all « = B in domain s. Prove that S is a solution system with property 1.10.4°; its
members are termed the Carathéodory solutions of (3) [16, I, § 1.5]. Show that these
are precisely the absolutely continuous generalized solutions of (3).

5° Verify that the domains of the solution systems described in 1° and 4° (cf.
10.1°) coincide with domain f.

6° Replace [ d6 in (4) by an appropriate “‘generalized integration procedure”.

7° Extend example 1.3 to phase-spaces which are differentiable n-manifolds of
class C!; also define the corresponding Carathéodory and generalized solutions.

8° Modify the procedures indicated in 5°—10° so as to apply to difference- and
functional-differential equations (cf. 1.21.3° and 1.21.5°).

9° Let orientor field mean a partial map F of L x R! into the system of subsets
of L. Define the solutions of an orientor field F as continuous partial maps s : R! —» L
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with domain s an interval and such that each accumulation point of

sA — s0
A—0

as A— 0 in domains

is in F(s0, 0) for all 6 € domain s, [18].

Prove that the solutions of F constitute a solution system with property 1.10.4°;
also define generalized solutions of F (loc. cit.) and Carathéodory solutions (e.g.
via 4°).

10° Show that the differentiable solutions of an orientor field F from a solution
system base; member of the corresponding solution system (cf. 7; these are the piece-
wise differentiable solutions of F) may be termed the classical solutions of F. Apply
to implicit differential equations f(dx/d6, x, ) = 0 with given partial map f: L x
x L x R! - 0, and to differential inequalities.

11° Consider a regulated system, conventionally written as
dx
5 . — = f(x,u,0), ueU,
) )

completely specified by a partial map f: L x Q@ x R' - Land by a system U of
partial maps R' — Q; on its own, U is to constitute a solution system base in Q
over R! in the sense of 7 (its members are termed the regulators or forcing terms
of (5)). The classical solutions of (5) are defined as partial maps s : R' - L with
domain s an interval in R!, etiher a singleton 6 with (59, uf, 0) € domain f for some
u € U or with

d
— 50 = f(s0, ub, 0
50 = f(s0. u0.0)

for some regulator u € U and all € domain s.

Prove that the classical solutions of (5) constitute a solution system base. Interpret
the solution system obtained from this base as the classical solutions of a regulated
system as in (5) with a suitably extended set of regulators. Define, and prove similar
results for, the Carathéodory and generalized solutions. (Rather extensive generaliza-
tions of the important concept of a regulated system will be given in the second paper
of this series.)

3. CATEGORIES OF PROCESSES

1. The category Proc of processes may now conveniently be introduced as follows
(for the concept of categories see e.g. [13]). Its class of objects is to consist of all
triples (P, R, p) with p a process in P over R; the morphisms

1) r:(P,R,p)—> (P, R,p) in Proc
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are to be those relations r between P’ X R’ and P x R which satisfy the morphism
condition

(2) repor tcp;

and composition in Proc is to be the set-theoretical composition of relations (as in the
Appendix). Finally, the natural order-relation between processes is carried over into
a quasi-ordering relation on the objects of Proc; i.e., one defines (P, R, p) < (P, R, p')
iff p = p’ (no inclusion relation between P, R and P’, R’ is implied; however then
the inclusion D < D’ between the corresponding solution spaces does extend to
a morphism in Proc).

2. Assuming (1), obviously one has
r[D] =D’

Next, r fulfils (2) iff r | D does, so that the morphism condition depends only on the
behaviour of » on D. As concerns this behaviour, there is a rather unexpected con-
sequence of (2): If r satisfies (2), then r | D is a partial map. To see this, merely observe
that (2) is equivalent with isotonicity of r | D as a relation between D’ and D partially
ordered by p and p’ respectively (cf. 1.7), and then apply the lemma on isotone rela-
tions.

3. Thus in treating morphisms in Proc it suffices to consider only the special rela-
tions just described. Explicitly, given the objects from (1), a partial map r : D —» D’
is a morphism in Proc iff

(x,@) p (v, B) implies (r(x, @) p’ (r(y, B))

whenever (x, «), (y, B) are in domain r.

Some minor modifications will also be useful. A relation #’ between P’ and P will
be termed admissible relative to (P, R, p) — (P’, R, p’) in Proc iff the relation ' x 1
between P’ x R and P x R is a morphism in Proc. From 2 it then follows that r’ [ C
is a partial map into C’, and the morphism condition reduces to

x,pgy implies (r'x),pj (r'y)

for all x, y in domain r’. Similar remarks are to apply to relations " between R’ and R,
admissible relative to (P, R, p) » (P, R, p’) in Proc (using 7 x r"); by convention,
morphisms in Proc may also be termed admissible.

Useful sub-categories may be obtained from Proc by restricting its class of objects,
e.g. to processes with unicity or to full processes, or by restricting or even fixing the
phase spaces P; and also by restricting its morphisms, €.g. to maps between the phase
spaces.
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4. The following lemma describes the action of a morphism in Proc on the solutions
of the processes involved; later, this will be seen to be the basis of the abstract coun-
terpart of transformation theory for differential equations.

Fundamental lemma. Given a morphism (1), if s is a solution of p with domain r[s]
an interval in R', then r[s] is a solution of p'.

As a partial converse, given the objects in Proc indicated in (1) and a relation r
between P’ x R’ and P x R with the property that r[s] is a solution of p for each
solution s of p, then r is a morphism in Proc provided that p is solution-complete.

In verifying the condition from 1.9 for r[s] to be a solution of p’, i.c.

fs] x rfs] = prup™t,

possibly only the meaning of r[s] requires any explanation. Here r is a relation
between P’ x R and P x R, and s is a particular type of subset of P x R; thus r[s]
is the set of all (x, ") e P’ x R’ with

(x', o) r(se, ) for some aeR.
5. In this and the following two items there is assumed given a morphism
r:(P,R,p)—(P,R,p’) in Proc.

According to 2 one need only consider the case of r a partial map; and since this
maps into the product P’ x R’, one has partial maps r’, ¥ with

(3) v r=(,r"), "Y:PxR->P, r":PxR-R.
From r[D] = D' it then follows that
¥[D] = C’", r[D] < B;

also, directly from 1.1(1), r” non-decreases along p.

In the situation of 4, r[s] is the set of all points
(¥'(s0, 6), r"(s0, 8)) for 6edomains ;

and the fundamental lemma also asserts, loosely speaking, that r’(s@, 0) depends only
on the value of r"(s@, 0). Furthermore,

domain r[s] = range r"[s] ;

thus if s and r” are continuous in some convenient topologies, and if both R and R’
are intervals in R!, then necessarily domain r[s] is an interval.
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6. Now assume in addition that domain r > D. Then u 4p, X implies
r(x, a) £ '(u, 0) < limsup r"(u, 0) < &' o #(x, ),

taking the limsup over all (u, ) with u gp, x and 6 ~ &(x, @) (recall that r” non-
decreases along p). (According to 1.11, ¢ may be conceived as a mapping, where
upon &' o r denotes the corresponding composition of maps; a similar remark applies
to analogous situations elsewhere.) In particular, if r"(u, 0) is independent of u, then

4) r(e(x, o) — 0) £ &' o r(x, ) .

Hence, if domain r = D and r” strictly increases along p, then (4) may be written as
e< 1" 'oe or and

1° If p has local existence at (x, o) € D, then p” has local existence at r(x, o) (and
conversely, each counter-image of an end-pair is an end-pair);

2° If #"(u, 6) is independent of u and sup, 1’ = sup B’, and if p has prolongability
at (x, a) € D, then p’ has prolongability at r(x, &) (for globality, replace B and B’
by R and R’ respectively).

7. To obtain results on unicity assume that r(x, «) is independent of x (i.e. r" =
= g o proj, for some g : R - R’), and instead of domain r o D require that r be
one-to-one. It then follows easily that

(5) r(8(x, o) + 0) = & o r(x, @)

for (x, ) € D. Hence, assuming r is one-to-one and r”(x, o) independent of x,

1° If " is right-continuous at 0, then p has local unicity at (x, «) € D if p’ has local
unicity at r(x, «);

2° If r” is bounded on bounded subsets, then p has global unicity at (x, «) € D if p’
has global unicity at r(x, a).

For the purposes of the following section, the reader may find it useful to apply
the results of items 5 to 7 to the two special cases of admissible relations indicated
in 3; and in particular to observe that the condition on domain r[s] appearing in the
fundamental lemma is satisfied automatically if either r =+ x 1, or r =1 x 1"
with R = R’ = R! and r” a continuous map R* — R!,

8. To each process one can assign, in a one-to-one manner, an object rather richer
in content; its appearance may already be recognised in the definition of solutions
1.9 (8).

If p is a process, then the symmetrisation g of p, i.e.

(6) qg=pup’,

will be termed the bi-process induced by p. Naturally, various properties of p imply
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some properties of g; and an independent description of these objects is in place. We
only remark that the bi-processes which are induced by processes as in (6) indeed
have the properties 1° to 3° listed below.

9. Let g be a relation on P x R (as usual P is a set, R = R'); and define the
individual bi-relations of g as follows: for any o, f in R (not necessarily with « = f)
let ,g; be the relation on P with

x4y iff (x,2)q (. B).

(Of course, these describe the relation g completely.) Then g is called a bi-process in P
over R iff its bi-relations satisfy these three conditions:

1° ,q, = 1 for all e R,
2° .4y 0 44, = .4, Fforall, yin R and all f € R between o and y,
3% oy = (49,)"" for all o, fin R

(the initial-value, compositivity and symmetry properties, respectively). Note that 2°
need only be required for « = f = y, and 3° for o = f.

Given a bi-process g in P over R, one defines a process p in P over R by specifying
its individual relations, ,p; = ,4; for « = B in R; then (6) is fulfilled. The process p
is said to be induced by g, or obtained by restriction of g. It may be useful to observe
that x ,q, y iff either « = p and x ,p; y, or f = « and y 4p, x; and that a process is
a bi-process iff it is trivial.

10. For bi-processes one may now repeat, formally, the definitions (cf. 1.6 to 1.10)
of the objects D, C, B, interval-component, solution, S; each of these coincides with
the corresponding object of the induced process. As an example, a relation s between P
and R is defined to be a solution of a bi-process g in P over R iff domain s is an interval
in R and

sxscq (g=quqg™');

according to (6), s is a solution of g iff it is a solution of the induced process.

Next, for each bi-process one may repeat, formally again, the definitions (cf‘ 1.12
to 1.16) of the associated bi-relation, bi-projection, characteristic solution, local and
global unicity. Now, however, the resulting concepts are distinct from those of the
induced process.

Finally, in complete analogy with 1, one may introduce the category Bipr of bi-
processes, and again prove the fundamental lemma 4 in this new setting. However it
is no longer true that a morphism is necessarily a partial map (one cannot apply the
lemma on isotone relations, since bi-processes are not partial orderings); and indeed
counter-examples are easily constructed. That the fundamental lemma remains valid
for bi-processes is therefore rather surprising. Henceforth we assume that all this has
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been performed; note that, as yet, the escape times, local existence, etc., of a bi-process
have not been defined.

It may be observed that the morphism condition in Bipr, ie. r: (P, R, q) -
- (P’, R, q’) in Bipr, in terms of the processes p, p’ induced by g, g’ respectively, is
ropor tcp upt.

11. The procedure described in 8, of assigning the induced bi-process to a given
process, is easily recognised as the action of a covariant functor % : Proc — Bipr on
the objects of these categories. The procedure of restricting a bi-process to a process
is the inversion of % on the class of objects, but this is not the action of a functor
Bipr — Proc (loosely speaking, a relation may be admissible in Bipr but not in
Proc, e.g., the change of orientation of R' described below).

12. Next we shall describe, rather formally, the procedure of orientation change.
Let r be any relation between P° x R’ and P x R; here P, P’ are sets, R, R’ subsets
of R'. Define a new relation —r between P’ x —R’ and P x —R, (here e.g. —R =
= {—a:ae R}, etc.) in the evident manner:

(x, —a’) —r(x, —a) iff (x',a)r(x,0).

It is quite obvious that —(r;or,) = (—ry)o(=ry), (=r)"' = —r7!, — —=r=r,
etc.

Now define a self-inverse covariant functor 0 :Bipr — Bipr, the orientation-
changing functor, by setting O(P, R, p) = (P, —R, —p) for objects, and Or = —r
for morphisms. Furthermore, the diagram

Proc Proc
gl lﬂ
Bipr — Bipr
may be made a commutative square on introducing an orientation-changing functor
O : Proc — Proc defined by '
O(P,R,p)= (P, =R, —p™"), Or= —r.

In greater detail, a process p over R and its orientation-changed process p’ = —p~*
over —R are related thus:

Dy =(_ap-p)”' for a2 p in —R;

and similarly for bi-processes, where the right side may also be written as _,p_; (for
all o, B in —R).
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13. It is now obvious that the self-inverse orientation-change of R!, suitably
restricted to a subset R = R', is an admissible map in Proc and Bipr relative to
(P,R,p) > (P, =R, —p~"). Results concerning the objects D, B, etc., associated
with p then follow immediately; e.g. the (otherwise obvious) relation between solu-
tions of p and those of —p~* follow from a two-fold application of the fundamental
lemma: s is a solution of p iff s,

s'(—0) = s for 6edomains,

is a solution of —p~1,

14. Next there will be defined the escape times and extents of unicity for bi-
processes, and some further terminology introduced.

Let g be a bi-process, p the induced process, and p’ = —p~! the orientation-
changed process; let ¢, 6 correspond to p, and &', 8’ to p’. For any (x, «) in the domain
of g (i.e., of p) set

ef(x, o) =e(x, ), &7 (x,0) = —¢(x, —a),
0 (x, ) = (x, @), 67 (x, ) = —&"(x, —a).

These will be called, respectively, the positive and negative escape times and extents
of unicity, of both ¢ and p.

Using these one can define the positive and negative variants of local existence,
prolongability, globality, local unicity and unicity, for both ¢ and p. The conjunction
of e.g. positive and negative prolongability of g will be termed prolongability of g
(but not of p, since this has already been defined), or also bilateral prolongability
of ¢ and p. Similar conventions are to apply to the remaining concepts, viz. local
existence (at a pair), prolongability (at a pair), globality, local or global unicity (at
a pair). Finally, an end-pair of p will be termed an end-pair of ¢; and (x, ) is a start-
pair of q or p iff (x, —«) is an end-pair of p’.

The direct descriptions, in terms of p, of these concepts are quite straightforward;
e.g.

¢ (x,a) = inf{feR':x,p,x" forsome x'eP},

57 (x,) =inf{ieR':0 2022 x,ppu, X,ppv imply u =uv},
(x, o) is a start-pair iff x ,py X" for no 6 < «, x" € P.

15. (Exercises) 1° Describe property 1.1 (1) as a morphism condition. (Hint:
define a suitable process in R' and consider proj, : P x R — R%.)

2° Let p’ and p” be processes in P’ and P” respectively, both over R, and consider
the relations ,pg on P = P’ x P” defined by

(x/’ xn) aPp (yr’ y//) lﬁ‘ xr ap;’ y/ , x// ap;; y// .
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Show that these ,p; are the individual relations of a process p in P (the direct product
of p’ and p”); obtain results on the solutions of p, p’, p".

3° In the situation of 2° show that the natural projections
proj, : P —» P', proj, :P—> P”

are admissible in Proc relative to suitable morphisms.

4° Let p be a process in P over R, and = a process in R over R’ with the property
that & ,mg 7 implies & = 0. For « = f in R’ define relations ,g; on P x R by

(xs é)aqﬂ (y: 17) IH x{ pr,ya éanﬂn'

Show that these ,q, are the individual relations of a process g in P x R (the skew-
product of p and 7), and obtain results on the solutions of g, p, . Also treat admissi-
bility of various projections of P x R x R'.

5° Let p, q be differential processes in R", associated with

dx dy

- = X, 0 y T & > 0

g =~ 0, — o =90.0)

respectively (the assumptions on f, g are as in 1.3); also, let partial r = (+', ") :
: domain f — domain g be a differentiable map. Prove that r is admissible relative to

(R*, R', p) > (R, R',q) in Proc
iff

a "
((dxr”sf) + ’é‘) golr = (dxr',f) + dor' s

where d,, d, denote the appropriate differential operators. (Hint: since p, q are
solution-complete by 2.8.3°, the admissibility of » may be characterised as solution-
preservation, as in the fundamental lemma.)

6° Consider the direct product, the skew-product and orientation change for
differential and functional-differential processes.

7° Assume given P, R < R%, and a system {,q; | @, B in R} of relations on P with
the initial value and symmetry properties as in 9.1° and 9.3°. Show that the ,g,
possess a strong form of the compositivity property (cf. 9.2°), viz. 44 o 34, = .4, for
unrestricted o, 8, y in R, iff they are the individual bi-relations of a global bi-process
with unicity.

8° In the situation of 1.21.9° show that a necessary condition for negative local
existence to obtain at a pair (x, )€ C'[ —7,0] x R' (i.e. that (x, &) is not a start-
pair) is that x have a continuous derivative in some left-neighbourhood of 0.
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4. SPECIAL TYPES OF PROCESSES

1. In this section several interesting types of processes will be examined. In each
case (excepting only that of 14) there will also be exhibited a characterisation in terms
of the admissible relations introduced in 3.3; the object of this is to bring to bear all
the results of the preceding section.

To illustrate, the processes to be described in items 2.4 and 13 are instances of the
following situation: a process p in P over R is said to admit the relation r if r is
admissible (in the sense of 3.3) relative to

(1) (P,R,p)— (P,R,p) in Proc.
Thus, at least for morphisms, the condition is that
xppy, (X )r(x,a), (V,B)r(y,B) imply X' ,pj ¥ .

The fundamental lemma 3.4 then gives a necessary and sufficient condition for r to
reproduce the solutions of p; one also has that the domain of p is r-invariant in the
sense that r[D] = D, etc. The definition may, of course, be carried over to the
category Bipr.

2. Let p be a process in P over R; then p is said to admit the period t iff t € R! and

(2) a—tPp-1 = oPp = a+:iPp+=c forall « Z ﬁ in R.

Obviously this condition is equivalent to the requirement that the two assignments
6 — 0 + 7 be maps R — R admissible relative to (1). In particular, if s is a solution
of p, then so are the partial maps s, and s_, obtained by “translation”:

(3) 5.0 =s(0 + 1) forall 0+ tedomains;

and for solution-complete processes, this condition characterises admissibility of
period 7.
Next, § € R implies 0 + 1 € R; also, from 3.6 (4) and 3.7 (5) it follows that

4 gx,o+ 1) =¢e(x,0) + 1, (x,0+71)=26(x0) +7.

Hence local existence, etc., obtains at (x, « + 7) iff it obtains at (x, «).

3. Relative to a process p admitting period 7, define t-periodic pairs (or pairs
admitting period 7) as the pairs (x, o) with

(x, o+ |t p(x, )

(and then, from (2), also (x, @) p (x, @ — |t])). Let (x, o) be a t-periodic pair; then (4)
yields the following results:
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1° If 7 # 0 then g(x, «) = +o00,

2° If0 < |t| < &(x, &) then &(x, a) = + oo, whereupon the characteristic solution s
through (x, «) is positively |c|-periodic in the sense that s§ = s(0 + |¢|) for all § = o
in R.

Next, it is easily shown that the set of periods admitted by any given process p is
an additive subgroup T of R!. The set of periods admitted by a pair, relative to p, is
by definition a subset of T, and indeed an additive subgroup of T (but it may well be
a proper subgroup, e.g. trivial).

If a process p admits a period 7, then the orientation-changed process —p~! also
admits period 7 (and the t-periodic pairs correspond via (x, &) <> (x, —)). Thus one
may also speak without ambiguity of bi-processes admitting a period.

4. A process p in P over R is termed stationary iff it admits all periods 6 € R
(nothing is required of 6’s not in R). Reducing the definition, the condition is that

a—6Dp—0 = oPp = o+oPp+o foralla = fand OinR.

In particular, R is an additive subgroup of RL. If s is a solution of p then so are all s,
for arbitrary 0 € R (cf. (2); and for solution-complete processes, this latter condition
characterises stationarity). The following lemma is easily established.

5. Lemma. Let p be a stationary process in P over R. Then
1° p is cartesian; moreover D = C x R, and hence B = R if p % 0;
2° p is either extensive or trivial;

3° for every (x, ) e D,
(5) e(x, o) = g(x, 0) + o5 8(x,a) = &(x,0) + a.

(In proving this, 1° is straightforward; for 2° obtain a description of the interval-
component containing 0 showing that it is an additive subgroup of R, hence trivial
or unbounded; and for 3° apply (4).) From 1° it follows that x € C iff (x, 0) € D.

Thus if local existence obtains at (x, «), then it also obtains at all (x, «") for arbitrary
o’ € R; and similarly for prolongability, local and global unicity, t-periodicity. In
particular, p has local existence iff ¢(x, 0) > 0 for all x € C, globality iff &(x, 0) = +oc0
for all xe C etc. Hence all these properties concern individual elements x € C
rather than pairs (x, «) € D; by convention, they are thus reduced, and we speak e.g.
of local existence at a point x € C of the escape time ¢, = &(x, 0) of an x e C, etc.
Since change of orientation preserves stationarity, this convention may be made to
apply to the negative and bilateral variants of the mentioned properties; thus e.g.
one has the negative unicity extent §, of an x € C, etc.

187



6. In items 6 to 9 we shall examine the effect of stationarity on several of the con-
cepts introduced previously.

First, the individual relations of a stationary process p in P over R satisfy ,p; =
= ,_pPo for all @ = f in R, and hence depend on a single parameter « — f = 0;
an independent description of such objects is quite feasible.

Let there be given a set P, an additive subgroup R of R' (we shall write R, =
= {xeR:a = 0}), and also a system {g,|ae R,} of relations g, on P with the
following two properties:

1° g4 = 1,

2° deoqdp = qa+ﬁ for a, ﬁ in R+:
(the initial value and semigroup property, respectively). Then

oPp = u-p for «=p in R

defines the individual relations of a stationary process in P over R. Conversely, given
a stationary process p in P over R, (6) defines g, for 8 € R, unequivocally and then
the system {q, | o € R, } satisfies conditions 1°—2°.

7. Next we shall introduce a concept whose relation to the g,’s of 6 is similar to
that of a process or its associated relation to the individual relations. Thus, let p
be a stationary process in P over R, and define g, by (6) for all @ € R,. Then the
relation g between P and P x R, with

xq(y,a) iff xq,y

will be termed the dynamical relation associated with p (or with {g,|xeR,}).

This seems to be the most economical manner of specifying stationary processes.
In this situation one has x ,p; y or x t («, y, B) iff X g,—p y or x q (y, « — B); also

ad(y, B)iff (v, « — p) e range g, range g = C, etc. The analogue of 1.15 (11) is

{(x,2)eC x R, : 0L a<e¢} cdomaing = {(x,0)eC x R, :0 S a < ¢}

The process p has local existence iff the former of these inclusions is an equality; it is
global iff domain ¢ = C x R,; it has unicity iff g is a partial map P x R, —» P
(or C x R, — C), or also iff each g, is a partial map P — P (or C — C).

Obviously, all this may be carried over to bi-processes, by replacing R, by R, the
semigroup condition 6.2° by the group condition g, o 5 = q,+ for o, f in R either
both non-negative or both non-positive, and defining the corresponding dynamical
bi-relation.

8. Given a stationary bi-process p in P over R and an x € C, consider the periods

admitted by x (i.e. by the pair (x, 0) € D, cf. 5); these constitute an additive subgroup
of R, and hence one has the following alternatives.
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9. Lemma (and definition). For each x in the carrier of a stationary bi-process p
in P over R there obtains precisely one of the following alternatives:

1° X gpo x iff 0 = O; then x is termed aperiodic;

2° there is a least positive 6 € R with x ¢p, X; then x is said to have primitive
period 0;

3° the set of all 0 € R with x ¢po x is a non-trivial subgroup of R, dense in R*;
then x is termed feebly critical,

4° x 4po X for all @ € R, and x is termed critical.

If all elements of the carrier of p are aperiodic, then p itself is called aperiodic;
and similarly for primitive periods, feeble criticality, and criticality. An elementary
example of a feebly critical stationary process appears in [9, II, 4.7].

10. Let p be a stationary process in P over R. A subset X < P is termed positively
invariant iff gpo [X] = X for all @ = 0 in R; negatively invariant iff it is positively
invariant relative to the orientation changed process, i.e. iff (4p0) ' [X] = X for all
6 = 0in R; and (bilaterally) invariant iff it is both positively and negatively invariant.

It is then easily shown that positive invariance is preserved under general unions
and intersections (e.g. P and 6 are positively invariant) so that each subset X <= P
has a positively invariant hull and kernel; and that a set is positively invariant iff its
complement is negatively invariant (hence similar assertions also hold for negative
invariance and invariance). There even are constructive descriptions: e.g. the positively
invariant hull of an X < P is U ¢po [X].

6z0

Next, a subset X < P is termed time-convex iff

U )" [X]opp[X] = X,

azpzy

i.e.iff x,, x, € X imply x € X for all x € P with x; ,p; X 4p, x,. It can be shown that
the time-convex subsets coincide with the intersections of positively and negatively
invariant subsets (i.e. with the differences of positively invariant subsets).

11. Speaking rather vaguely, every process may be made stationary; or better, the
study of general processes can be reduced to that of stationary processes. Since the
penalty for this is passage to a different phase-space, it need not always be useful to
perform the reduction. The procedure is the abstract analogue of the familiar transi-
tion from a non-autonomous differential equation dx/d@ = f(x, 6) in n-space to the
autonomous

dx dé
e, 8, =1
do Je9) do

in (n + 1)-space.
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Lemma (and definition). Let p be a process in P over R, let R, be the additive
subgroup generated by R in R'. Then the relations ,q, (« = p in Ry) on P x R
defined by

(%, &) o5 (vsm) iff xepyy, E—a=n-—2p

are the individual relations of a stationary aperiodic process q in P x R over R,,
called the stationarization of p.

Obviously g describes p completely: one has x ,pg ¥ iff (x, @) ,49Pp+0 (v, B) for
some (or all) 6 € Ry. Also observe that the carrier of g is precisely the domain of p,
that the escape times and extents of unicity of a pair (x, a) relative to p coincide with
those of the point (x, a) relative to g, etc.

Now assume that R = R,, i.e. that R itself is a subgroup of R!. Then, for every
solution s of p and « € R, the relation

{(s6, 0, 0 — a) | 6 € domain s}

is a solution of g, and conversely, every solution of g has the indicated form.

In this connection, subsets of P X R, invariant relative to g are termed the integral
sets of p (often in the context of integral manifolds), and one may even define positive
and negative integrality.

12. Let G be a group (written additively, even though commutativity is not
assumed), and let there be given a process p in G over R. Then p is called additive,
or compatible with the group structure, iff

XiaPp Vi for i=1,2 implies (x1 - xz) «Pp ()’1 - )’2)

(whereupon also x;,p; y; for i =1,...,n implies (3 mx;)ps (3 my;) for all
integers my, ..., m,).

This condition may be described in terms of admissible relations as follows.
Construct an auxiliary process ¢ in G x G over R as the direct product of p with
itself (cf. 3.15.2°); and also the natural group mapping r: G x G - G, r(x, y) =
= x — y. Then p is additive iff r is admissible relative to (G x G, R, q) - (G, R, p)
in Proc.

In particular, if s,, s, are solutions of p with a common domain, then s, — s, is
also a solution of p (and for solution-complete processes in a group, this condition
characterises additivity). Hence and from 1.10.5° each interval-component of p is
the domain of a significant solution of p, the constant 0. Next, each a-cut of D, i.e.
the set {x € G : (x, @) € D}, is a subgroup of G.

(7)  Foreacho e R one has o € Biff (0, «) € D, whereupon (0, o) = max &(x, ) =
= sup I, §(0, @) = min &(x, «)

with I the interval-component containing o (and letting (x, &) vary only within D).
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In particular, prolongability occurs at all (0, «) € D if p is extensive; p is trivial iff all
(0, «) € D are end-pairs; p has local or global unicity iff (0, «) > 0 or 6(0, &) = +oo0,
respectively, for all o« € B.

Additivity is preserved on changing orientation; hence one may speak about linear
bi-processes.

13. A pseudo-scalar product in a group G is a bilinear map [, ]: G x G > R!
such that [a, x] = 0 for all x € G implies a = 0. Two processes p, g in a group G
will be termed adjoint (relative to a pseudo-scalar product [ , | in G) iff

X apﬁ Y, u zxqﬂ v lmply [x9 u] = [y> U] .

In the following theorem it will be shown that unicity and existence, in opposite
orientations, are related in an interesting manner.

14. Theorem. Let p, q be adjoint additive processes, p full. If p has positive
global existence, then q has negative global unicity.

Proof. Take any a = f and v with 0 ,q; v; by the assumptions on p, to any y
there is an x with x ,p; y. Adjointness then implies 0 = [x, 0] = [y, v], and then
v = 0 since y was arbitrary. Thus 0 ,g, v only for v = 0, i.e. g has infinite extent of
negative unicity as asserted.

Corollary. Each global full additive bi-process, self-adjoint relative to some
pseudo-scalar product, necessarily has bilateral unicity.

15. A process p in P over R is said to be f-symmetric iff f is a symmetry of C, in
the sense that f is a map C — C such that f - f is the identity of C, and p admits the
relation f; the latter condition is, of course, that

x,ppy imply (fx),.ps (fy).

Similarly, p is termed f-antisymmetric iff f is a symmetry of C and f is admissible
relative to (P, R, p) > (P, =R, —p~') in Proc (for —p~! see 3.12); the latter con-
dition reduces to

Xoppy implies (fy) —pp-.(fx).

For any solution s of p one then has that f - s is again a solution of p in the first
case, and that f o 5 - 0 is a solution of p in the second (with o the orientation change
of R, ie. the assignment 0 — —0); for p solution-complete, these conditions
characterise the corresponding relation between p and f. Furthermore,

e(fx, o) = e(x,0), O(fx, ) = d(x, )
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in the first case; and in the second,
et(fx,a) = e (x,a), & (fx,a) =e*(x, @),
0F(fx,0) =07 (x, ), 6 (fx, o) = 6%(x, ).

Both f-symmetry and antisymmetry are preserved under orientation change; thus
the property may well be applied to bi-processes.

16. Finally, consider processes with discrete time (cf. 1.6), say p in P over R. The
condition on R may be expressed, less concisely but possibly more naturally, by saying
that the permissible time-instants constitute a sequence in R! without any accumula-
tion points in R!; essentially, then, they may be identified with some consecutive
integers.

Slightly more formally, there is a partial map ¢ : C! —» R which is strictly increas-
ing, onto, and with domain ¢ an interval in C!. The corresponding partial map
1x¢:Px C'— P x R may be made an isomorphism in Proc by defining an
appropriate process in P over C!, induced by p via ¢; and this latter may then be
identified with p.

Thus, let p be a process in P over C!, and consider the following individual rela-
tions of p:

4w = wPa-1> 4n = .Pn (fornecCl).

The g, may be termed the transition relations of p. These individual relations
describe p completely, since for n > m in C* one has

wPm = qdnoldp-y0.-c0fpyiy;

and if p is full, then of course all g, = 1.

17. Now we will review some of the concepts introduced in preceding sections in
the present special case. There is sup X = max X for every bounded subset X of C;
this may be applied to 1.11 (10) and 1.17 (12) to obtain the following assertion:
if &(x, @) < 400 then there exists an end-pair (indeed an end-pair y, f with x ,ps ¥,
B = s(x, a)). Hence, every process with local existence and discrete time is global.
Results similar but more significant, viz. prolongability theorems, will be obtained
later by replacing the time-discreteness assumption by various other versions on the
processes concerned.

Returning to the time-discrete process p in P over C!, a similar application to the
definition of time-extents yields that in 1.19, only case 1° is possible; thus every
process with local unicity and discrete time has global unicity. In this connection, in
example 1.4, if the finite-difference equation (4) has the special form x;,; — x; =
=f ,-(x,-), then obviously the corresponding process does have local unicity.
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Next, it is quite obvious that every process with discrete time is solution-complete.
In the fundamental lemma 3.4 as applying to processes over C!, the condition on
domain r{s] is equivalent with the following: with r = (+', "),

[r"(e,n) = F(p,n = 1) S 1 if x,p,—y .
In terms of the transition relations, p admits period t € C! iff
dn-1 = 4n = qn+: fOI' all ne Cl 5

and hence p is stationary iff the ¢, are independent of n (whereupon Pm = qg " for
n > m).

18. It is now in place to exhibit the precise connections between the concepts
introduced in this paper and several related concepts defined previously (for references
see the introduction). However, all continuity requirements will be ignored; the same
effect may be obtained by taking the discrete topologies for P and R!.

1° A dynamical system in P is the dynamical bi-relation (cf. item 7) associated
with a full global stationary bi-process with unity in P over R!. Thusif f: P x R! -
— P is the dynamical system and p the process, then one has

xppy iff x=f(y,0—p).

A unilateral dynamical system (in another terminology, a semi-dynamical system)
in P is obtained from the above on replacing bi-relation and bi-process with relation
and process respectively (the bilateral requirements of globality and unicity are of
course replaced automatically by the positive variants, see 3.10 and 3.14).

2° A local dynamical system in P is the dynamical bi-relation (cfA item 7) associated
with a full stationary bi-process with unicity and local existence in P over R!. In the
notation of [9], if T: P x R} — P is the local dynamical system and p the process,
then one has

xppy iff x=yT(x - p).

A local semi-dynamical system in P is obtained from this on replacing bi-relation
and bi-process by relation and process respectively.

3° A flow in P over R (R = R') is the associated bi-relation (cf. 3.10) to a full
global bi-process with unicity in P over R. Thus if ,T; : P — P are the motions of the
flow and p the process, then one has

xppy ff x=,Tyy.

A semi-flow in P over R = R! is obtained from this on replacing the terms bi-
relation and bi-process by relation and process respectively.
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4° In analogy with the generalization 2° of 1°, one may define a local flow (and
a local semi-flow) in P over R = R! as the associated bi-relation (or relation) of
a full bi-process (or process) with unicity and local existence in P over R.

5° A generalized flow in P is the relation associated with a full global process
in P over R%.

6° An unilateral dynamical system without unicity in P is the dynamical relation
associated with a full global stationary process in P over R!,

12. (Exercises) 1° Let p be a bi-process with unicity and 0 # 7 e R'. Show that
every solution of p can be extended to a t-periodic solution iff p admits period , p
is bilaterally global and all pairs in D are t-periodic.

2° Let p be a process with unicity admitting a period t. Prove that there exists
a positively |t|-periodic solution through (x, «) iff is a t-periodic pair.

3° Show that a process p admitting a period = # 0 is completely characterised by
the individual relations ,p, with indices restricted as follows: 0 < f < t and either
fSaZtora=pf+r1.

4° Given a process p in P admitting period 7, consider the process ¢ in P over C!
obtained by “sampling” p in the sense that ,q,, = ,.P.... Show that g is stationary, and
examine other relations between g and p.

5° Show that, relative to a stationary process, the set of points of prolongability,
of local existence and of start-points are all negatively invariant.

The following three exercises are connected with the classification introduced in
lemma 9 of points in the carrier of a stationary process.

6° Prove that the classification of 9 is independent of orientation change.

7° Every stationary deterministic physical law on a countable phase space and with
continuous time is either completely immobile or admits at most a type of Brownian
movement; more precisely, every point in the countable carrier of a stationary bi-
process with unicity over R! is either critical or feebly critical or a start-end point.

8° Consider a stationary process with unicity. Show that the set of z-periodic
points is positively invariant, and obtain results on the critical points, etc., as in 9.
Also classify further the aperiodic points, as indicated by the following terms: leading
to a critical (feebly critical, primitively periodic) point, ultimately aperiodic.

9° Generalize lemma 11 as follows. First show that the skew-product of processes p
and n as in 3.15.4° is stationary iff 7 is stationary; then interpret the construction of
lemma 9 as that of a suitable skew-product.

10° Prove that (x, ) is a T-periodic point relative to the skew-product of a process p
with a stationary process 7 iff ¢ is t-periodic relative to 7. Then apply to lemma 11.
The following four exercises are connected with theorem 14.
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11° Formulate adjointness in terms of admissibility relations. (Hint: use the process
in R associated with dx/df = 0.)

12° Show that for linear processes in an abelian group with finite rank, local
existence implies uniform local existence, in the sense that 1nf e(x oc) > 0 for each
« € B (with (x, &) varying in D only).

13° Using 7° prove a local variant of theorem 14: for adjoint linear processes,
g and full p, in an abelian group with finite rank, positive local existence of p implies
negative local unicity of g. (Suggestion: from the proof read off that f < 6, (0, «)
implies inf ¢, (x, o) < o.)

14° Consider the differential equation dx/df = f(x, 6) in R* with (discontinuous)

2x/60 for 0 +0,
f(x,é)):lo for =0,

and define the associated process p as in example 1.3. Verify that p is indeed a process,
cartesian, full, transitive, linear, self-adjoint (for this also see 21°), but without local
existence or local unicity.

The remaining exercises are concerned with the differential process p in R” associat-
ed with a differential equation dx/df = f(x, 0), under assumptions as in 1.3. Then
necessary and sufficient conditions on f for p to be of the special types investigated
in the present section may be obtained from 3.15.2°; or, possibly more satisfactorily,
from the fundamental lemma in the manner indicated in 3.15.2°.

15° p admits period t iff f(x, 0) is t-periodic in 0.
16° p is stationary iff f (x, 0) is independent of 6.

17° x, is a critical point (with p stationary) iff f(x,, 6) = 0; p is r-symmetric (for
differentiable r) iff

f(rx, 0) = (d.rx, f(x, 0)),
where d, is the differential operator as in 2.15.5°.

18° p is r-antisymmetric (for differentiable r) iff

—f(rx, —0) = (d.rx, f(x, 0)) .
19° p is additive ifff(x, 0) is linear in x.

20° Let p and g be additive differential processes in R", associated with

A0) x , d— B(6) x

respectively. Then p, g are adjoint relative to the pseudoscalar product defined by
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a non-singular matrix U, i.e. [x, y| = (x, Uy), iff B(d) = —UAT(0) U™"; in parti-
cular for the natural scalar product ( , ) one has the usual condition B(6) = —AT(6).

21° Verify that the process of 1.21.14° is stationary with discrete time. Show that
the correspondence thus set up is an iso-functor between graphs (and edge-preserving
maps) and stationary processes over C' (and admissible carrier maps). (Hint: inter-
pret ;po as the set of edges.)

22° Let G be a separated topological group, p an additive process in G over an R
closed in R!, and assume that all solutions of p are continuous. Prove that, for each
« € B, either 6(0, a) = o or §(0,a) = +oo. (Hint: apply the remark in 1.19 and
4.12 (7))

APPENDIX

The purpose of this section is only to introduce, informally, some possibly not
quite standard notation and conventions.

Euclidean n-space is denoted by R”, the set of real integers by C!. The cartesian
product of sets X, Yis denoted by X x Y; the notation for the natural projections is
as in

proj; : X X Y—> X, proj,: X x Y- Y.
The obvious natural maps between
(XxY)xZ, Xx(YxZ), XxYxZ

will all be termed transfers; e.g. R"*™ is obtained by a suitable transfer from R” x R™.

A relation between sets X and Y is merely a subset of X x Y(thus we do not
distinguish between relations and their graphs); a relation on X is a relation between X
and X. For relations one may then use much of the notation and concepts carried
over from sets (also see [4], chap. X, § 2); however, if the elements x, y are in a rela-
tion r, we prefer to write x r y instead of (x, y) € r. Thus there is relation-inclusion as
a partial ordering, with r < ' iff always x r y implies x r' y; and also joins and meets
of relations

. ’
rur and Ur;; ror and r;.

Between given sets there is a least relation 0 and a greatest relation I. The relation
inverse to r is denoted by #~1; thus x r y iff y r~* x. If the set X is obvious from the
context or given in advance, the identity relation on X is denoted by 1: thus x / y iff
x = y e X. For some pairs of relations r, ' the composition r o ' is defined (with
xror yiff x ruandur' yfor some u) in such a manner as to form a category.

Let r be a relation between X and Y, and »’ a relation between X’ and Y’. The
cartesian (or rather direct) product r x r’ is the relation between X x X' and Y x Y’
defined in the obvious manner: (x, x") r x ¥’ (y,y)iff xry and x'#' y'. If Y =Y’
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in this situation, then one may also define the relational product (r, ¥'); this is the
relation between X x X’ and Y with (x, x') (r, ') y iff x r y and x" ¥ y.

Next, all maps can be represented, canonically, by relations: with each map f: X —
— Yone associates, in a one-to-one manner, the relation denoted again by f between Y
and X (in this order), and defined by y f x iff y = fx. The reason for this choice is
that then the natural composition of maps corresponds to the natural composition
of the corresponding relations.

Several concepts commonly applied to maps are then carried over to relations by
analogy. Thus, if r is a relation between P and Q, then for each subset X of Q one
defines

r[X]={yeP:yrx forsome xeX}, r|X=rn(Px X)),
the image of X under r and the partialization of r to X, respectively. Also

range r = r[Q] = proj, [r], domainr = r~'[P] proj, [r].

1(:1

In the same situation, the relation r will be termed a partial map iff ror~
(this is usefully abbreviated to: partial map r : Q — P). Next, r is a multiple-valued
map iff 1 = r™' o r (or equivalently, domain r = Q); one-to-one iff r™! o r = 1 (or
equivalently, r~' is a partial map); onto iff 1 < r o r~' (or equivalently, range r = P,

or r~! is multiple-valued).

Lemma. Let r be a relation between partially ordered sets; if r is isotone in the
sense that

xry, xX'ry and y=y imply x=x',

then r is a partial map.
(This is trivial: x r y and x" r y imply, via y = y, that x = x’ and symmetrically
x' = x.)

Finally, a relation r on a set is termed reflexive iff 1 < r, symmetric iff r = r~1,
transitive iff 7 o 7 < r. The symmetrization of r is then r$ = r U r™ ", the transitiviza-
tionof ris rT =ru(ror)u(roror)u..;easily, ST = rTS. It may be useful to
emphasise that the composition operation is o even for partial maps; that the value
of a partial map at an element is written as fx, with round parentheses used primarily
to comply with the usual conventions on precedence.
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Pesrome

TEOPU S ITPOLIECCOB I
OTOMAP T'AEK (Otomar Héjek), Ilpara

Hacrosimas pabota — mepBas U3 cepuM paboT 10 aKCUOMATHYECKOH Teopuu Iud-
(epeHIMANTBHBIX ypaBHERUH. 30eCh CHOPMYIMPOBAHBI OCHOBHBIE ONPeIEIICHNUS, dJIe-
MEHTapblHe CBOMCTBA ¥ (yHAaMEHTaJIbHBle WHTepnperamuu. Ciexyromue paboTs
OTHOCATCS. K HEKOTOPHIM KOHCTPYKIMSM IIPOIIECCOB, HATIP., HAVMMEHbBLIEH HIDKHEH
IrpaHu CeMeWCTBa IPOLECCOB KaK abCTPaKTHON (hopMe PeryIupoOBaHHOM CHCTEMBL,
K KATErOPUYECKUM KOHCTPYKIWSIM (TIPOU3BEIEHYE IIPOLECCOB, (hakTop-Ipolecc,
WT].); Oajee, K HEMPEePBIBHEIM MPOIECCaM M BOIPOCAM BBELCHVSI TOIIOJIOIMHU B Ce-
MeiicTBe mporneccoB — abcTpakTHas (opMa HOHSATHS BO3MYILICHWS CHCTEMBI; H,
HaKOHeI K HeKOTOPBEIM BOIPOCAM TEOPUU JIMHEHHBIX IPOIECCOB.
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Iyctsb fasbt MuoxecTBO cocTosHuii P 1 061acTh ompeieJICHNS IepEMEHHOTO Bpe-
MenM R < RY; rorpa npouecc p B P nag R onpepessiercss kak oTHoenue B P X R,
T.c. Mexay napamu (x, o) u (y, f) 25eMeHTOB MHOXecTBa P x R, Takoe, 4ro 0°
(x, %) p(y, B), ecyn Toeko o = B, 1° w3 (x, o) p (, B) npu o = B caemyeT x = y
(Ha"ayipHOE yeroBue), 2° p TPAH3UTHBHO, U, HAOGOPOT, U3 (x, 2) p (2, y) cienyer mis
nroboro f e R mexay o u y cymectsosanue y € P c (x, o) p(y, f) p(z, y) (ycnosue
KOMITO3UTUBHOCTH).

HMuddepenmuansroe ypasuenne dx/d0 = f(x, 0) B mnpocrpamcree R oroxne-
cTByIsieTest ¢ mporteccom p B R™ may RY, onpenesnennsivm tak: momaraem (x, o) p (v, B),
€CJTI CYLIECTBYET DEINCHME S TaHHOTO YPABHEHUS C X = S, y = sf. AHAJOTMUHBIM
06pa3zoM onpesIeIAFOTCs MPOLECCHl, MPUCOeAUHEHbIE K qu(depeHIMaIbHBIM YpaBHe-
HUSIM C PaspBIBEEIMU IPABBIMU YaCThbMH, K nub(d. ypaBHEHMAM B MpPOCTPAHCTBAX
Banaxa, K ypaBHEHMSAM B KOHTHHI€HTaX, K M. ypaBHEHUAM, comepKaluM peryJis-
TOPEL, K 0000meHHbIM petienusM nudd. ypasrenuit. s nudd. ypauenuii ¢ 3a-
a3IBBAIONMM apryMeHTOM (M BoOOIIe, K (YHKUMOHAIBHO-TU(dEpEHIMANILHBIM
YDABHEHUSIM C 3aIa3bIBAHUCM) CTPOMTCS COOTBETCTBYIOMMIL IIPOLECC B (DYHKIHMO-
HaybHOM mpocrpancTse. (Cm. 3agaun K 1. 1 1 2.)

Ha aGcTpakTHBIE IPOLECCHI IIEPEHECEHB] B 1. 1 HEKOTOPEIE OCHOBHBIC IIOHATHUS M3
teopuu 1udd. ypaBHEHUH, HATIP., ONPEIEIICHBI pelleHus MPOIecca, ¢AMHCTBEHHOCTD,
nra. CucreMa BCeX pelleHui mpolecca u3yyeHa abcrpaktao B 1. 2. B 1. 3 BBesena
KaTeropust MPOIECcoB, 1 e¢ MOPPUIMBL MHTEPIPETUPOBAHBL KAK aHAJOTH TpaHCchop-
manuit 1udd. ypaBHenUil; TakKke HAOIIONAETCS BIMSIHUE MOP(QU3MOB Ha €JUHCTBEH-
HOCTh U NPOJOJIKAEMOCTh. B II. 4 yKa3aHBL crieualibHble KJIACCHI MPOIECCOB, CO-
OTBETCTBYIOIIME, HATIP. , CTAIMOHAPHEIM (aBTOHOMHBIM) CHCTEMAM, JIMHEHHBIM D .
cyucreMaM, Tudd. cucreMam ¢ CHMMETPHEI.
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