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PRODUCT OF SPECTRAL MEASURES

Icor KLUVANEK and MARTA KovARikovA, Kosice

(Received February 2, 1966)

One of the interesting questions of the spectral theory of operators can be formulat-
ed as follows: If 4, B are commuting scalar-type spectral operators (in the sense of
[3]), is every operator from the algebra generated by A and B a scalar-type spectral
operator, too? Some significant results concerning this question are already known
(see [5], [8]) but they were obtained by relatively complicated tools. The following
approach to this problem seems to be more natural.

Let E, F be the resolutions of identity (i.e. spectral measures) for operators A, B,
respectively, defined on the g-algebra of Borel sets in the complex plane p. Suppose
that on the g-algebra of Borel subsets of the space p x p there is constructed a spectral
measure G such that

(1) : Ge x o) = E(o) F(o)

for every Borel set ¢, 0 = p. Then A = [,., 4 dG(4, p) and B = [, pdG(2, p).
Hence for arbitrary polynomial f of two variables we obtain that f(4, B) =
= [,xpf(4 1) dG(2, p). It is evident that if the construction of the spectral measure G
is possible, then the solution of the given problem presents no difficulty. We can
expect that the solution of the existence question of spectral measure G will enable us
to solve some other problems.

In the present paper the conditions for the existence of the spectral measure G
with required properties are given. Evidently, it is not necessary to suppose that E
and F are resolutions of identity for some given operators and the complex plane p
will be replaced by a more general case of a g-compact Hausdorff space.

1. In the whole paper X will stand for some fixed Banach space, X’ for the dual
space to X and B(X) for the algebra of all linear bounded mappings of X into X.
Besides, we treat X as a subset of X”, i.e. we shall not distinguish between the points
x € X and their canonical images in X”. Similarly for other spaces (X" etc.).

Let I' = X' be atotal set and let & be an algebra of subsets of some set S. A spectral
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measure in X of class (.5” ,)isa B(X)-valued function E defined on & with the follow-
ing properties:

(i) <E()x,x") is o-additive on & for every x e X and every x' eI (I-weak
o-additivity);

(ii) there exists a constant K such that ||E(c)| < K for every o€ (uniform
boundedness);

(iii) E(o, 0 0,) = E(a,) E(o,) for every oy, 6, € & (multiplicativity) and E(0) = O,
E(S) = I, where 0 is the zero-operator and I is the identity operator in B(X).

Let S be a locally compact topological space and & be an algebra of its subsets.
A spectral measure E in X of the class (9’, I') is said to be regular if, for every x € X
and x" eI, (E() x, X'y is a regular numerical measure on & (in the sense of [4;
I11.5.11]).

2. Let # and & be an algebra of subsets of a set R and S, respectively, and let
I' = X' be total. We say that two commuting spectral measures E and F in X of the
classes (#, I') and (&, I'), respectively, fulfil the condition (B), if

(B), the Boolean algebra of the projection operators generated by E(g), ¢ € 2,
and F(o), o € &, is uniformly bounded, i.e. there exists a constant L > 0 such that
| " E(e;) F(o,)| < L for every finite system of mutually disjoint sets ¢; X o,

i=1

where 0, € R, 0,€ &.

3. Let Rand S be some o-compact Hausdorff spacesand T= R x S.Let %, ¥, T
denote the o-algebra of Baire subsets of the space R, S, T, respectively. The supposi-
tion “R, or S is o-compact” is necessary and sufficient for the system of all Baire
subsets of R, S, respectively, to be an algebra [6; Exercise 51.2].

We shall designate the set {o X 0 : 0 € %, 0 € &} by 2 and 2 the algebra generated
by 2. That is,

92={Uog; x0;:0; X 0,€? mutually disjoint, neN},
i=1

i

where N stands for the set of all positive integers. It is known [6; Exercise 5.3] that 7~
is the o-algebra generated by 2.

4. Let E and F be two commuting spectral measures in X of the classes (%, I)
and (&, I'), respectively. We define the B(X)-valued set-function G, on 2 by

Gole x 0) = E(¢) F(5), 0€?®, ce¥.

Since G, is additive on 2, it has a unique additive extension on all 2 (denoted by G,
again) defined by

@) G(s) = ¥ Ele) Flo)



whenever 7 € 2 has the form t = |J ¢; x ¢;with mutually disjoint members. The addi-
i=1

tivity of G, and the commutativity and the multiplicativity of E and F imply the mul-

tiplicativity of G, on 2.

Now we should like to prove that G, is I-weakly o-additive on £ and extend it to
some multiplicative and I'-weakly o-additive B(X)-valued function G on Z thus to
a spectral measure in X of the class (7, I') satisfying (1).

The uniform boundedness of spectral measure (i.e. condition (ii)) implies readily
that condition (B) is necessary for the existence of such an extension.

5. We consider only spectral measures defined on the o-algebra of all Baire sets in
a given space. The following theorem states, however, that any spectral measure in X
of the class (%, X") (it is the most interesting case from the point of view of spectral
theory) can be uniquely extended to a regular spectral measure of the class (%1, X,
where £, is the o-algebra of all Borel subsets of the space R.

Theorem. Let H,, be a spectral measure in X of the class (%, X'). Then in X there
exists exactly one regular spectral measure H of the class (#,, X') coinciding
with Hy, on A.

Proof. Given x € X, there exists a non-negative g-additive measure v, on Z% such
that

) tim [Ho(o) x| = 0
vo(a)—0

(see [2] or [4; 1V.10.5]). Realizing that v, is a g-additive non-negative measure on the
algebra of Baire sets, it follows that it is regular on £ [6; Theorem 52.G] and there
exists exactly one regular non-negative o-additive measure v on %, with v() = v,(0)
for every ¢ € # [6; Theorem 54.D].

Introduce a pseudo-metric in 2, by d(e4, 0;) = v(¢; A 02), 01, 02 € Z;.

According to regularity we may conclude that # is a dense subset of £, in the
introduced pseudo-metric [6; Theorem 50.D]. Moreover, by (3), H( ) x is a uniformly
continuous map of # into X. Thus, according to a well known theorem (e.g. [4;
1.6.17]) there exists exactly one uniformly continuous map h, on %, satisfying h.(¢) =
= H,(o) x, ¢ € #. It can be proved easily that, for every ¢ € %, hx(g) depends linearly
and continuously on x € X. Thus, for every ¢ € ,, there exists an operator H(p) €
€ B(X) such that H(g) x = h,(¢), ¢ € #,. Since H( ) x is uniformly continuous on %,
it follows that

@ Jlim J1(g) ] = 0.

This relation implies easily that H( ) x is regular and c-additive on £, so that
<H(') x, x") is also regular and o-additive on %, forall x e X, x' € X'
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We must still prove the multiplicativity of H on £%,. Let 7., 7, € #, be two arbitrary
sets. Let ¢ > 0 and x € X be arbitrary. The uniform continuity implies that there
exists § > 0 such that |H(o,)x — H(o,) x| < ¢ for every oy, 0, €%, for which
V(o4 A 0,) < 8. The density of 2 in #, implies the existence of sets ¢y, 0, € % such
that v(t; A 01) < 18, (15 A 05) < 36. Since (ty N 1,) A (03 N e2) = (11 A Q1) L
U (t; A 02), we have also v((t; N 1,) A (0 N 0;)) < & and therefore [|H(z;)x —
— H(o,) x| < & [|H(ty) x — H(g,) x| < e and |H(ry n 1,) x — H(oy 0 02) x| < e.
These relations and multiplicativity of H on £ imply

[H(zy n 7)) x — H(zy) H(z,) x| £ ||H(ty n 1) x — H(oy 0 02) x| +
& )] [ x — B(en) <] + 1(E)] (e x — (o) <] < (1 + 2K,

where K is the constant from (ii). Hence, H(t; n 7,) = H(r,) H(t,) for all 7y, 7, € £,.
We have proved that H is the spectral measure in X of the class (2, X') with the
required properties.

6. Theorem. Let E and F be two commuting spectral measures in X' of the classes
(2, X) and (&, X), respectively. Let them satisfy condition (B).

Then in X' there exists exactly one spectral measure G of the class (7, X)
satisfying (1).

Proof. Let G, be the function on 2 defined by (2). For arbitrary x' € X" and x € X
we define

(5) Ao (1) = (Go(m) x', xy, 1€2.

Let {o,} be a sequence of mutually disjoint sets from &, ¢ = U ¢, and o € &. Then
1

n=

A o0 X 0) = (Go(o x 0) X', x) = (E(g) F(o) x', x) =
= 21<E(Q") F(o)x', x)y = 21)""""(9" X o).

Hence 1, (¢ x o) is o-additive as a function of g for every fixed o € &. Similarly it
can be proved that lx,,x(g x o) is g-additive as a function of ¢ € & for every fixed
0 € #. Condition (B) implies the existence of a constant L > 0 such that [|Go(x)] <
< L,me 2. Thus |4, (n)| < L|x'| |x] forallz € 2, x' € X', x € X. All assumptions
of Theorem 2 from [9] are fulfilled so that 4,. . is o-additive on 2 and there exists
exactly one o-additive function p,. , on & such that

(6) ﬂx’.X(n) = Ax’,X(n) , mEL.
At the same time
) |t 2] = L] ]

remains valid for every te .
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Using (3) we conclude that for every t €7, p,. (1) is a bounded linear form on
X’ x X. Thus, there exists a unique operator G(‘C) € B(X") such that {G(7) x’, x) =
= p,. (1), x' € X’, x € X. (5) and (6) imply that G defined in this way satisfies (1). It
follows from the definition of G that G is X-weakly o-additive on 9. We shall finish
the proof by showing that

(8) G(ty N 12) = G(1y) G(12)

whenever 7, and 7, are in 7.

By a straightforward computation using the commutativity of E and F and the
additivity of G we may conclude that (8) is valid for every 7, 7, € 2.

Let 7, be an arbitrary element of 2. We denote .#, the system of all sets t, € 7
such that (8) is valid. It follows that 2 < .#. Due to the o-additivity of (G( ) x’, x,
1 is a monotone system. Consequently, 7 < .#, [6; Theorem 6B].

Now, let 7, be an arbitrary element of 9. We denote ., the system of all sets
7, € 7 such that (8) is valid. It follows from the preceding section that 2 < .. The
fact that .#, is a monotone system implies that 7 < . ,.

We have proved that (8) is valid for every ,, 7, € 7.

7. Corollary. Suppose that E and F are two commuting spectral measures in X
of the classes (%, X') and (&, X'), respectively. Let them satisfy condition (B).
Then in X" there exists exactly one spectral measure G of the class (7, X') such
that

) - G(e x o) = E(0)" F(o)", ¢eR, ce¥.

Proof. We denote E” the mapping of # into B(X") defined by E"(0) = E(e)’,
g€ AR. F" is defined analogously. Then E” and F” are commuting spectral measures
in X” of the classes (%, X') and (&, X'), respectively (see e.g. [4; VI1.3.3]). E” and F”
satisfy condition (B), hence by the theorem 6 there exists exactly one spectral measure
G in X" of the class (7, X') satisfying (9).

8. Theorem. Let E and F be two commuting spectral measures in X of the classes
(2, X') and (&, X'), respectively.

Then in X there exists a spectral measure G of the class (7, X') such that (1) is
satisfied if and only if, for every x € X, the set N(x) = {Go(n) x : m € 2} is relatively
weakly compact in X. (G, is the function (2) from 4.)

Proof. Let N(x) be relatively weakly compact for every x € X. Then N(x) is
a bounded set and the system {Go(n) ;7€ 2} of continuous linear operators is
uniformly bounded in the uniform operator topology (see e.g. [4; 11.3.27 and IL.1.11]).
We conclude that E and F satisfy condition (B). By Corollary 7 there exists exactly
one spectral measure H in X” of the class (77, X') such that H(n) = Go(n)", n € 2.
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We want to prove that there exists a spectral measure G in X of the class (.9' , X ’)
such that G(n)" = H(r), te 7.

For x € X we denote NG; the closure of N(x) in the weak topology of the space X.
By hypothesis and Eberlein-Smulian theorem [4; V.6.1] ]\T(ﬂ is weakly compact.
We denote .# the system of all sets = for which there exists G(r) € B(X) such that
G(r)” = H(r) and G(r) x 6_1\7(7) for every x € X. It is obvious that 2 < /.

Let {r,} be a monotone sequence of sets from .# and let © = lim, t,. There exists
a sequence {G(t,)} of operators from B(X) such that G(z,)” = H(t,) and G(z) x € N(x),
x € X. Since H is a spectral measure it implies the existence of lim, (H(z,) x”, x') for
every x € X', x" € X". Thus, the sequence {H(t,)x"} is weakly* fundamental for
every x” € X". Therefore the sequence {G(r,) x} is weakly fundamental. Consequently
the sequence {G(r,)x} is weakly convergent and since lim, (H(z,) x", x'> =
= (H(7) x", x'>, there exists G(t) € B(X) such that {G(z) x, x') = lim, {G(t,) x, x">
for every x' € X' and G(t)" = H(t). Obviously, G(z) x € N(x). Thus, 7 € # and the
system ./ is monotone. The fact that 2 is a ring implies that 7 < . [6; Theorem
6B].

Thereby we have proved that on 7 there exists a function G with values in B(X)
such that G(t)” = H(z). Thus, G is the required spectral measure.

On the other hand, let there exist a spectral measure G in X of the class (P/" , X ’)
satisfying relation (1). Then G(n) = Gy(n), = € 2. If x is an arbitrary element of X
then G( ) x is a o-additive X-valued vector measure. Following [2], the set N,(x) =
= {G(7) x : Te T} is relatively weakly compact in X; hence N(x) (as a subset of
N(x)) is relatively weakly compact in X, too.

9. Theorem. Let X be a sequentially weakly complete Banach space. Let E and F
be two commuting spectral measures in X of the classes (#,X') and (¥, X'),
respectively, satisfying condition (B).

Then in X there exists exactly one spectral measure G of the class (7, X') with
property (1).

Proof. The assumptions of Corollary 7 are satisfied so that there exists exactly
one spectral measure H in X” of the class (77, X”) such that H(n) = G(n)", n € 2.

We denote .# the system of all sets t € 7 for which there exists G(r) € B(X) such
that G(t)” = H(t). Obviously 2 < .#. Let x € X be arbitrary. Let {z,} be a monotone
sequence of sets from ./ and let t = lim, 7,. Then the sequence {G(t,) x} is weakly
fundamental for the same reasons as in the proof of Theorem 8. Due to the weak
completeness of the space X, {G(t,) x} is weakly convergent so that there exists G(t) €
€ B(X) such that <G(t) x, x') = lim, {G(x,) x, x'), for every x’ e X', and G(r)" =
= H(t). Hence, 1€ /.

We may apply now the trick used several times already and we obtain that on
there exists exactly one B(X)-valued function G that is a spectral measure in X of the
class (77, X') such that (1) is valid.
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10. If X is a Hilbert space then two commuting spectral measures E and F with
values in B(X) satisfy condition (B) in all cases [12]. For Banach spaces in general,
however, condition (B) need not be satisfied as S. KAKUTANI proved in [ 7]. Moreover,
even the reflexivity of the space X does not guarantee the validity of the condition
(cf. [10]). (It is, however, satisfied if X is an L -space; cf. [11].) The supposition that
this condition holds, is therefore certainly not redundant.

11. In the sense of the terminology introduced in [3], an operator 4 € B(X) is said
to be a spectral operator of the scalar type of the class (&, I'), if there exists a spectral
measure E of the class (y , T ) in X such that

(10) A= J 1dEQ) .

We assume that & is an algebra of Borel subsets of the complex plane p. Itis known
[3] that the spectral measure E is determined uniquely by the operator 4 and is
called the resolution of identity for A.

Theorems on the product of spectral measures allow us to obtain in a simple way
results concerning computation with such operators. In the sequel we denote & the
g-algebra of all Borel sets in the plane p.

Let A, Be B(X') be commuting operators of scalar type of the class (&, X). Let
the resolutions of identity E, F for A, B satisfy condition (B). Then every operator
from the algebra generated by operators A, B is a scalar-type operator of the class
(S, X).

According to [3] E and F commute. We construct (by Theorem 6) spectral
measure G in X' of the class (77, X), where 7 is the system of Borel sets in p X p
such that G(o; x 6,) = E(,) F(0,), 6,, 06, € #.Since A = [,,4dG(4, p) and B =
= [,x, 1 dG(2, p) it follows that

(1) £(4.8) = j 10 1) 46(2, 1)

for arbitrary polynomial f of two variables. By the equation (11) we define f(4, B)
even for arbitrary bounded Borel measurable function f of two variables.

-The resolution of identity Hj for the operator f(4, B) is given by

(12) Hyo) = G{(A 1) : f(L, w)ea}), oe&,

(see [3; Lemma 6]).

Under the supposition that X is a weakly complete Banach space, the assertions
referred to formerly are valid also for scalar-type spectral operators 4, B e B(X) of
the class (9, X'). Hence, if A and B commute and their resolutions of identity E
and F satisfy condition (B) then all operators from the algebra generated by A4, B
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are scalar-type spectral operators of the class (&, X'). This follows from Theorem 9.
Operators f(A4, B) and their resolutions of identity are given by (11) and (12). From
this statement we can obtain the result of S. R. FoGUEL (proved in [5] by other
methods) which guarantees that 4 + B and AB are scalar-type spectral operators
if 4 and B are commuting scalar-type spectral operators, 4, B € B(X), X a weakly
complete Banach space and resolutions of identity for 4 and B satisfy condition (B).

As we can see from the above mentioned process this result remains valid also for
unbounded scalar-type spectral operators introduced in [1] (they are operators of
the form (11) such that E has not a compact support).
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Pesrome

ITPOU3BEAEHUE CIIEKTPAJIBHBIX MEP
WUI'OPb KIITYBAHEK u MAPTA KOBAPXUKOBA (Igor Kluvanek, Marta Kovatikova),

Kouune

ITycte R 1 S — 0-KOMMaKTHBIE JIOKAJIBHO KOMMAKTHbIE XaycIopGhoBEI MPOCTPaH~
crBa u T = R x S. O6o3nauuM 4epe3 %, &, J COOTBETCTBEHHO g-aireGprl Gope-
JIeBBIX HOAMHOXECTB mpocTpancTsa R, S, T. X — mpocrpancrBo banaxa.
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Teopema. ITycmy E u F — 0se Kommymupylowue cnexmpaivHsie Mmepul Kaacca
(Z,X) u (¥,X) ¢ X'. Ilycmv Gyresa aizebpa, noposcdennas npoexmopamu E(o),
F(o), 0 € R, 6 € &, pasHomepHo ozpaHuyena.

Toz0a 6 X' cywecmeyem oona u moavko oora cnexmpansuas mepa G kaacca (7, X),
8bINOAHAIOWAA PABEHCINBO

(1) Glo x 0) = E(@)F(o), ¢€®, ce&.

Teopema. ITycmv E u F — 0se xommymupyrowue cnexmpaivivie mepw Kiaccd
(Z, X Yu (¥, X)sX.
Toz0a 6 X cywecmeyem cnexmpaavhaa mepa G xaacca (7,X’), evnoansowasn (1)
n
mo20a u moavko mo2oa, koz20a 047 6CAKUX X € X muoocecmso écex cymm Yy, E(g;) *
i=1
- F(o;) x 0aa arbvix g, €R, 6,€ S, 20e 9; X G; NONAPHO He hepeceKaiomcs u n —

a1060e Hamypaivioe YUcA0, OMHOCUMEALHO €Aa60 Komnakmuo 6 X.
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