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CHARACTERIZATION OF FOURIER-STIELTJES TRANSFORMS
OF VECTOR AND OPERATOR VALUED MEASURES

Icor KLUVANEK, KoSice

(Received March 1, 1966)

Let S be a locally compact Abelian group, X its character group, 4 = %(Z) the
system of Borel sets in Z and X a Banach space. A function ¢ : S — X is called the
Fourier-Stieltjes transform of a vector measure m : & — X, if ¢(s) = [{s, o> dm(o)
for s € S. It is proved in Section 3 that a function ¢ is the Fourier-Stieltjes transform
of a vector measure if and only if the set {[f(s) o(s)ds| |f]. <1, fe L(S)} is
relatively weakly compact in X (f denotes the Fourier transform of f). Another
necessary and sufficient condition for ¢ to be a Fourier-Stieltjes transform is the
relatively weak compactness of the set {[¢(s) du(s) | |2]. < 1, ne M,}, where M,
is the algebra of all discrete measures on S. The results just mentioned constitute
“vector” generalizations of analogous theorems of W. F. EBERLEIN [8].

The results of Section 3 are used in Section 4 to express a representation U : S —
— L(X) of S in the form U(s) = [{5s, o) dP(v), where P : % — L(X) is a spectral
measure and L(X) denotes the algebra of bounded linear operators on X. Such an
expressing is possible if and only if, for every x € X, the set {[f(s) U(s) x ds | | f]» =
<1, feI!(S)} or, equivalently, the set {[U(s) x du(s)| |2]o £ 1, peM,(S)} is
relatively weakly compact in X. This is an extension onto an arbitrary Banach
space of Ambrose’s [ 1] generalization of a classical theorem of M. H. STONE (see e.g.
[18; 36E]).

Sections 1 and 2 are introductory. Section 1 contains some results concerning vector
and operator valued measures and representation of some transformations in form
of integral with respect to such measures. In Section 2 some sufficient conditions are
given for a vector-valued function to be integrable and for a representation of a group
to be equivalent to the representation of its group-algebra.

In Section 5 the results of Section 4 are applied to give some criteria for an operator
to be spectral in the sense of DuNForp ([5] or [6]).
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1. VECTOR AND OPERATOR MEASURES

Let S be a locally compact Hausdorff space. Let %,(S), %,(S) and 4(S) (in short
B, B, B) be the g-ring generated by all compact G; sets, all compact sets and all
open sets, respectively. We call %, the system of Baire sets, %, the system of Borel
sets in a restricted sense and # the system of Borel sets.

This terminology is slightly different from that of [9]. But for some purposes of
the Harmonic Analysis it is very useful if every continuous function is Borel measur-
able. For instance we wish to integrate characters with respect to some finite measure
on 4 (see also [10]).

Let X be a Banach space, X' its dual. L(X) will stand for the algebra of all con-
tinuous linear operators on X.

Let # be a ring of sets. A function m : # — X will be called a vector measure if it
is o-additive. A function P: % — L(X) will be called an operator measure if it is
o-additive in the strong operator topology, i.e. if, for every x € X, P() x is a vector
measure. It is known that if £ is a o-ring then every weakly g-additive function on £
is a vector or operator measure. An operator measure is called multiplicative if, for
E,Fe®, P(EnF)= P(E)P(F). A spectral measure is a multiplicative operator
measure whose domain £ is an algebra, i.e. S € %, and P(S) = I, where is the identity
operator on X,

A vector measure m : %, — X is said to be regular (¢ denotes 0, 1 or is omitted)
if, for every E € 4, and ¢ > 0, there exists a compact set C € %4, and an open set
Ue %, such that C = E < U and |m(F)| < & for every F < U — C, Fe %, (sce
[7; 111.5.11] or [3]).

An operator measure P : & — L(X) is said to be regular if, for every x € X, the
vector measure P( ) x is regular.

‘Lemma 1. Let m, : B, — X be a Baire measure. Then m, is regular and there
exists a unique regular vector measure m : % — X such that m(E) = mo(E) for
Ee 4,.

Proof. It is proved in [3; Theorem 4] that m, is regular. It is proved further
(Theorem 5) that there exists a unique regular vector measure m, : %4, — X coinciding
with m, on %,. Following [13; Theorem 3.1], there exists a set S, € %, such that
my(E) = m,(S, n E) for every E € ;. As for every S; o S,, S; € %, the relation
m,(E) = m,(S, n E) holds also for every E € 4,, and every set of %, is contained
in an open set of %, we can choose a Baire set for S.

Define the vector measure m : # — X by m(E) = m,(So n E) for E€ &. It is
easy to see that m is a regular vector measure coinciding with m, on %,.

Let m’ and m" be two regular measures on 2 such that m'(E) = m"(E) for E € %,,.
Put m;(E) = m'(E) and m}(E) = m"(E), E € #,,1 = 0, 1. Then m; and m; are regular
measures on B,. As my = m{, [3; Theorem 5] implies that mj = my, i.e. m'(E) =
= m"(E) for all E € %,.
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Let us suppose now that Ee Z# is a set such that m'(E) + m"(E). Denote & =
= |m'(E) — m"(E)|. It follows from the regularity that there exist compact sets C’
and C” such that C' < E, C" < E and forevery F, C «c FcEor C" <« F c E
we have either |m'(E) — m'(F)| < 4 or |m"(E) — m"(F)| < %e. Then by putting
C=CuC with regard to ¢ < |m'(E) — m'(C)| + [|m"(E) — m"(C)]| <& we
obtain a contradiction.

Corollary 1. If m : # — X is a regular vector measure, then there exists a o-
compact (even Baire) set Sq such that m(E) = m(E 0 So) for E € .

Corollary 2. Let m be a function on B, or % with values in X such that {m( ), x">
is a regular scalar measure for every x" € X'; then m is a regular vector measure.

Proof. It is well known [7; 1V.10.1] that m is a vector measure. Let m, be the
restriction of m to %,. According to Lemma 1 there exists a unique regular vector
measure m; on %, or & coinciding with m, on %,. It is evident that the measures
(m,( ), X'y, x" € X', are regular and coincide with (mo( ), x"> on %,. The measures
{m().,x"> ,x"€X’, also possess the same property. It follows that (m(),x') =
= {(m,( ), x") for x" € X'. Therefore m = m,.

As for integration with respect to vector measures we refer to [7] and [14] (in [7]
the domain of the vector measure is supposed to be a g-algebra, in [14] it may be an
arbitrary §-ring).

Integral | f dm of a scalar-valued function f with respect to a vector measure m is
the element of X such that

< jf dm, > - jf(s) a¢m(s), x'>

The semi-variation [|m| of a vector measure m : # — X is defined [7; 1V.10.3] by

I (8) = sup | Y. % m(E))

for every E € #, where the least upper bound is taken over all finite systems Eq, ..., E;
of disjoint subsets of E belonging to 2 and complex numbers |o;| < 1.

If Z is a o-ring, then ||m| is finite on .

If P is an operator measure and f a scalar function, then [f dP is defined as the
element of L(X) for which

< ff dP) x = ff(s) aP(s) x

Now let Cy(S) stand for the set (Banach algebra) of all continuous functions
vanishing at infinity.

for every x' € X'.

for x e X.
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Lemma 2. Let D be a dense linear subspace of Co(S). Let & : D — X be a linear
mapping and let the set

® {2(N)]flo = 1.7 D}

be relatively weakly compact in X.
Then @ is a bounded operator and there exists a unique regular vector measure
m: B — X such that

®) a(f) = Jf dm

for every f € D. Moreover, |®| = |m] (S).
Conversely, if there exists a vector measure m : B — X such that (2) holds,
then (1) is a relatively weakly compact set.

Proof. If the set (1) is relatively weakly compact, it is bounded and, consequently
@ is a bounded operator. D being dense, ® can be extended onto all Cy(S) without
change of norm. The extension of @ to C,(S) will be also denoted by .

Being a subset of the closure of (1) and convex, the set {&(f) | [|f]|. < 1,1 € Cyo(S)}
is also relatively weakly compact in X [7; V.6.1].

For the case that S is a compact space the lemma is proved in [7; VI.7.3].

Suppose S is not compact. Denote § = S U {0} the one-point compactification
of S. C(8) stands for the space of all continuous complex functions on S. For every
e C(S) there exists a unique function f e Cy(S) such that f(s) = f(s) + f(o) for
s€S. Put &(f) = &(f). It is easy to see that {8(F) | | 7] = 1. FeC(8)} = {&(f) |
| “ f Hoo <2 fe CO(S)} hence & is a weakly compact operator. According to [7;
VI.7.3] there exists a unique regular vector measure i : %’1(8 — X such that
&(f) = [fdri. Define m,(E) = m(E) for every E e %,(S). Since every function
feCy(S) is B,(S)-measurable, ¢(f) = [f dm,. Since for every x’ € X',

©) (@(f), x> = jf(s)d<m1(s), Y,

it follows from classical theorems on the uniqueness of scalar measure that m, is the
unique regular vector measure on %, for which (3) holds.

According to Lemma 1, m, can be extended uniquely to a regular measure m : # —
— X. For this measure m the relation (2) will be true. It follows from (2) that |®] =
Im] (5)

If there exists a vector measure m : & — X such that (2) holds, then according to
[14] the set {[fdm | |f]., < 1, fis m-integrable} is relatively weakly compact in X.
The set (1) is its part and, therefore, it is also relatively weakly compact.

Corollary. Let X be a weakly complete Banach space. Let D be a dense subspace
of Co(S) and & : D — X a bounded linear mapping. Then (1) is a relatively weakly
compact set in X.
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Proof. According to [7; VI.7.6], {&(f)| | f]l., < 1, /€ (8)} is a relatively weakly
compact set (notations as in the proof of Lemma 2).

Lemma 3. Let P : # — L(X) be a regular operator measure and D be a dense
subalgebra of Cy(S). If

(@) J}g dp = jfdPJg dpP

for f, g € D, then P is multiplicative.

Proof. It follows from density of D and continuity of integral that (4) holds for
every f, g € Co(S).

If C,, C, are compact G; sets, then there exist decreasing sequences {f,}, {g,} of
functions in Cy(S) such that 0 < f,(s) £ 1, 0 < g,(s) < 1 and yc,(s) = lim f,(s),
Xc,(s) = lim g,(s) for s € S. By passing to limits in scalar integrals using (4) we obtain
(P(C; n Cy) x,x"y = {P(C,) P(C,) x, x) for every x € X, x' € X', i.e. P is multi-
plicative on the system of all compact G; sets. By a direct computation it can be seen
that P is multiplicative on the system of all sets of the form C;, — C,, where C, and C,
are compact G;. As every set of the ring # generated by compact G; sets is a finite
union of disjoint sets of the form C, — C,, the multiplicativity of P on £ can be
also easily deduced.

For E € &, let J ; be the system of all sets F € # such that P(E N F) = P(E) P(F) =
= P(F) P(E). The system ./ is monotone and contains %, hence &, < .y (sce
[9; Theorem 6B]). For a fixed F € %, let .  be the system of all sets E € 4 such that
P(E N F) = P(E) P(F) = P(F) P(E). The system . is also monotone and contains
R, ie. By = Mg We have proved that P is multiplicative on %,,.

From the multiplicativity of P on 4%, there follows the multiplicativity on the
whole % according to [15; Theorem 5]. (In [15] the space S is supposed to be o-
compact, but because of Corollary 1 of Lemma 1 this supposition presents no loss
of generality.)

2. REPRESENTATIONS

We use the symbol M(S) for the set of all finite regular complex measures on A(S).
M(S) may be identified with Co(S)’, the dual space of Co(S).

A function f : S — X is called weakly p-measurable for p e M(S) if, for every
compact set K < S and ¢ > 0, there exists a compact set K; < K such that
|u| (K — K,) < ¢ and f is weakly continuous on K, (|u| is the variation of ). The
strong measurability is defined analogously.

A function f: S — X is said to be scalar p-measurable if, for every x' € X', the
function s — {f(s), x') is u-measurable. All these definitions agree with [2].
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Lemma 4. Let pe M(S) and f: S — X be a bounded function, | f(s)| < k for
s € S. Let one of the following conditions be satisfied:

(a) f is weakly p-measurable.

(b) [ is scalar pu-measurable and X is a reflexive space.

(C) fis scalar p-measurable and, for every compact set K = S, f(K) is contained
in a separable subspace of X.

Then f is p-integrable, i.e. there exists an element ff du € X such that, for every
x" € X', the equality

©) < ff an, > - j CA(5). x> dufs)

holds. Moreover || [f dp| < k|u| (S).

Proof. (a) We proceed similarly as in the proof of Proposition 8 in [2; VI.1.2].
Let S, be a g-compact set such that |u| (E) = Ofor E€ 8, En S, = 0. S, being o-
compact and f weakly measurable, there exist disjoint compact sets K,, n = 1,2, ...,

0

and a |p|-null set N such that S, — N = U K, and f is weakly continuous on every K,,.
n=1

Hence the sets f (K,,) are weakly compact. According to the Krein-Smulian theorem
[7; v.6.4] the closed convex envelope B, of f(K,) is also weakly compact. From the
Corollary of Proposition 5 in [2; VI.1.2] there follows the existence of an element
z, € |p| (K,) B, for which

(2 ¥ = J ) x> du(s)

for every x" € X’. Hence |z,| < klyl (K,)- The convergence of the series 2 |1 (K,)

implies that of 2 z,. Denote z = z z,; hence ||z| < k|y| (S). From the well known
n=1

theorems on integration it follows that z = [fdp, i.e. (5) holds.

(b) If f is scalar y-measurable and X is a reflexive space, the integral on the right
hand of (5) exists for every x’ € X" and depends linearly and continuously on x’. The
existence of [f du e X such that (5) holds, follows readily.

(c) If condition (c) is satisfied, then f is y-measurable according to [2; IV.5.5] and
hence also weakly y-measurable. Now we can use the proved part (a).

A function F : S —» L(X) is called weakly, strongly or scalar p-measurable if, for
every x € X, the function s — F(s) X possesses the corresponding property.

JF dp stands for the operator in L(X) such that

<<J‘F d”) ® x’> = J(F(s) x, x'> du(s)

for x € X and x" € X'. Evidently, [F du is determined uniquely by F and p provided
it exists.
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From now on let S be a locally compact group. In this case M(S) is a Banach
algebra with respect to usual linear operations and with respect to convolution as
a multiplication in M(S). The convolution of elements y, ve M(S) is the unique
element p % v e M(S) satisfying the condition

©) frames - j jf(so au(s) (i) = j £(st) dv(e) du(s)

for every f e Co(S) (see [10; 19.10]).
The norm in M(S) is defined by el = 1ul (S).

A representation of the group S in X is a mapping U : S — L(X) such that U(st) =
= U(s) U(t) for s, te S and U(e) = I, where e is the identity element in S (see e.g.

[10)).

Lemma 5. Let A be a subalgebra of M(S). Let U : S — L(X) be a representation.
Suppose that the operator T(p) = [U dp exists for every p € A.

Then T:pu— T(u) is a representation of the algebra A, i.e. a homomorphism
of A into L(X).

Proof. The operator T(n) depends linearly on y. Hence it suffices to prove that
T(p = v) = T(w) T(v) or, equivalently, (T(u * v) x, x> = {T(n) T(v) x, x'> for x € X,
x'eX'.

Let U'(s) be the adjoint operator to U(s). Hence U'(s) e L(X'), s € S.

Let u, ve 4, x € X, x" € X’ be arbitrary. Then according to (6),

(T(p=*v)x,x'y = j(U(s) x, X'y dp # v(s) =
- J f CU(st) x, x> d(e) du(s) = I CU(s) U() x, x'> dv() du(s) =
= J:[( U(t) x, U'(s) x> dv(t) du(s) = f(T(v) x, U'(s) x") du(s) =
- j CUGS) T() x, x> dp(s) = <T(w) T() x, x> .

Remark. The proof of Lemma 5 is almost the same as in [10; 22.3], where it has
been used for the case that X is a reflexive space. It is explicitly mentioned in [10]
(p. 336 foot-note 1) that the proof is based on reflexivity of X. In [10] a representation
U:S - L(X') is considered (for technical reasons) and if X were not reflexive, it

could not be guaranteed that U'(s) € L(X).
The following theorem is a consequence of Lemma 4 and Lemma 5.
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Theorem 1. Let U : S — L(X) be a bounded representation of a locally compact
group S. Suppose |U(s)| < k for se S. Let A be a subalgebra of M(S). Suppose
one of the following conditions be fulfilled.

(a) U is weakly p-measurable for every e A.

(b) X is reflexive space and U is scalar p-measurable for every p e A.

(c) U is scalar p-measurable for every pe A and, for every x € X and every
compact set K < S, U(K) x is a subset of a separable subspace of X.

Then for every pe€ A there exists a unique operator T(u) = [U(s) du(s) € L(X).
The mapping T: p— T(u) is a bounded representation of A in X with |T| < k.

The case (b) of this theorem is the same as Theorem 22.3 in [10].

3. FOURIER TRANSFORMS OF VECTOR MEASURES

Let S be alocally compact Abelian group and X its character group. (F or terminolo-
gy and basic facts of Harmonic Analysis we refer to [18].) The value of a character o
at a point s € S will be written as {s, o).

For pu e M(S) we put
Ao) = f<377r> dus) -

For a subset 4 = M(S) we use the symbol A for the set {fi | u € A}.

We consider L'(S) (the measure omitted in the notation is a fixed Haar measure
on S) as a subalgebra of M(S). We do not distinguish between a function f e L'(S)
and the measure p e M(S) for which du(s) = f(s) ds, i.e. for which [¢(s) du(s) =
= [o(s) f(s) ds, @ € Cy(S), where [...ds denotes integration with respect to the
fixed Haar measure.

A vector-valued function ¢ : S — X is called a Fourier-Stieltjes transform if there
exists a regular vector measure m : #(Z) — X such that

(™ : o(s) = J<s:;> dm, seS.

More precisely, ¢ is called the Fourier-Stieltjes transform of m.

If there exists a regular vector measure m such that (7) holds, then it is unique.
This follows from the uniqueness theorem for Fourier-Stieltjes transforms of scalar
measures. Namely, it follows from (7) that

®) (o(s), x> = J (570> ddm(o), x'
for x’ e X'. ,
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Theorem 2. A function ¢ : S — X is a Fourier-Stieltjes transform if and only if ¢
is weakly continuous and

©) { jf@ 0(s)ds| | 7] < 1, S u<s>}

is a relatively weakly compact subset of X.
Proof. Define the transformation @ : L'(S) > X by

(10) o(f) = j 1(5) o(s) ds, feL(s).

Since f = g is implied by f = 4, (10) defines the transformation @ unambiguously.
By Lemma 2 it follows from the relatively weak compactness of the set (9) that
there exists a regular vector measure m : () — X such that

f 1) o(s) ds = #(f) = jf*(co dm(o)

for every fe L'(S).
For the integral [{s, o) dm(c) existing for every s € S, we can write

< jf@ o(s) ds, > _ jf(a) oo 5 =
- J gf(s) oo ds)d<m(")’ X7 = ff (S)< G, o dm(a), x'))ds

for every f e I'(S) and x" € X". Hence

(11) o(s), X'y = J<E,—a> d¢m(a), x'

almost everywhere on S. From the weak continuity of ¢ we deduce that (11) holds
everywhere and, hence, (7) is valid.

Conversely, let (7) hold. Evidently, ¢ is a bounded function. We prove first that ¢
is (strongly) continuous. Let {s,} be a net converging to s,. Let ¢ > 0 be fixed. There
exists a compact set K < X such that |m(E)| < }e for E€ B(X), En K = 0. Since
{84, 0 — {89, o) uniformly for o € K, there exists «, such that ](sa, oy — <8, a)l <
< ¢/(2|m| (K)) for & = «, and ¢ € K. Then

Jo(s) — o(s0)] = ]| [(<on02 = 2) ante

<

=

+ =

f ({85 0> — <50, 0)) dm(o)
K

f (50 0> = (50, 03) d(o)

|

éW]]mII(K)+2Z=E

for a

Y
&

269



Due to continuity and boundedness of ¢ the integral ff (s) (P(S) ds exists for every
f e L'(S). We have further

jf(s) Cole) x> ds = jf(s) ( j G5 dm(o), x/>>ds -
- j( j 1) G o ds>d<m(a), X'y = f 7(0) dm(o), x°y

for every x" € X'. Using Lemma 2 we obtain the relatively weak compactness of the
set (9).

Corollary 1. If ¢ is the Fourier-Stieltjes transform of a vector measure m, then the
mapping @ : L'(S) — X defined by (10) is bounded and |®| = |m| (S).

Corollary 2. If X is a weakly complete space and the mapping @ defined by (10)
is bounded on L'(S), then ¢ is a Fourier-Stieltjes transform.

Proof. We use the Corollary of Lemma 2.

Corollary 3. If ¢ is a Fourier-Stieltjes transform, then it is bounded and strongly
continuous.

Remark. If we replace the weak continuity of ¢ by scalar measurability, then from
the relatively weak compactness of (9) we can deduce the existence of a regular
vector measure m such that (11) holds for every x" € X" almost everywhere on S.

Theorem 2 gives a characterization of Fourier-Stieltjes transforms in terms of the
algebra L'(S) of absolutely continuous measures on S. The following theorem presents
such a characterization in terms of the algebra of discrete measures. Moreover, the
system of measures with finite supports will suffice for a characterization.

For se S, the symbol &, will stand for the measure on %(S) defined by 5(E) =
= cg(s), where c is the characteristic function of E.

Let M,(S) be the set of all measures u € M(S) which can be written in the form
(1) p=Yas,,

where s; € S and a; are complex numbers such that )’ [ail < 0. M,(S) is a subalgebra
of M(S). =t

The set of elements u € M(S) such that only a finite number of a;s are different
from zero will be denoted by M ().
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Theorem 3. A function ¢ : S — X is a Fourier-Stieltjes transform if and only
if it is weakly continuous and

(13) { }p(s) au(s) | 1Al < 1. ueMM<s>}

is a relatively weakly compact subset of X.

Proof. The relatively weak compactness of the set (13) implies its boundedness and
the boundedness of ¢. Hence [o(s)dpu(s) exists for every pe M(S), in particular,
{f(s) o(s) ds exists for f e L'(S).

Define the transformation @ : M(S) - X by &(4) = [o(s) du(s) for ue M(S)-
@ is defined unambiguously since p is determined uniquely by 4. It follows from the
supposition on weak compactness of (13) that the restriction of @ to M,(S) is conti-
nuous, i.e. there exists a constant k such that

| f ¢(s) du(s)

i

= “‘p(ﬁ)“ = kllﬁlim, fre My(S) -

i
Hence,

= <o), x> = k|| 4]

U«p(S), x> du(s)

for every x" € X'.
According to [8; Theorem 1] the function {¢( ), x') is a Fourier-Stieltjes transform,
i.e. there exists a measure m,. € M(Z) such that

{op(s), x"y = J(E,Tr) dm,(o), seS, x'eX'.
Consequently
(o(a), 'y = j((p(s), Xy dus) = [a(o) dm, (o)

for pe M(S), x' e X'.
Let AP(X) denote the uniform closure of M,,(S). ® being continuous on M,,, it
can be extended uniquely to a continuous transformation on AP(X) denoted also by .

Evidently,
@(g). x> = [o(o) dm. (o)
for every g € AP(X). Moreover, the set
(14) {2(0)[ o]~ = 1. g € AP(2)}

is relatively weakly compact being a subset of the closure of (13).
We wish to prove that the set (9) is relatively weakly compact. By the Eberlein-
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Smulian theorem and the relatively weak compactness of (14) it suffices to prove that
(9) is a subset of the weak closure of the set {®(g) | [|9]., < 2, g € AP(X)}.

Letf e L'(S), | f|l» < 1. Let, further, x; e X', i = 1,2,..., j,and ¢ > 0 be arbitrary.
There exists a compact set K; = X such that |m,.| (£ — K,) <3¢, i=1,2,...,j

J
Put K = U K;. AP(Z) being a uniformly closed self-adjoint algebra which separates
i=1
the points of X, by the Stone-Weierstrass theorem there exists a function g € AP(Z)
such that f| (o) = g(a) for o € K. Moreover, the set of real-valued functions belonging
to AP(Z) is a lattice (see e.g. [18; Lemma 4D]); hence, g may be chosen so that
[Regl.. = 1, img].. < 1. ic. o], <2

Fori=1,2,...,j, we have

Ko(), x> — <B(g), x| = } j(ﬂa) 9(0)) dm, (o) <

< j (6) = o(0) am. (7

w00~ de)am. o) <«

Hence, &(f) belongs to the weak closure of {®(g) | [g]. < 2, g € AP(2)}. It follows
that (9) is a relatively weakly compact set and, by Theorem 2, that ¢ is a Fourier-
Stieltjes transform.

Conversely, let ¢ be the Fourier-Stieltjes transform of a vector measure m : (%) —
— X. Then &(ft) = [fi(o) dm(c), p € M(S) and, by [14], the set | [g(o) dm(a)| |g]., <
< 1, g m-integrable} is relatively weakly compact, hence the set (13), being its subset,
is relatively weakly compact, too.

Remark. Theorem 3 may be stated also in the following form. A necessary and
sufficient condition for a function ¢ : S - X to be a Fourier Stieltjes transform is

the relatively weak compactness of the set of all vectors Z a; o(s ), where a; are

complex numbers, s;€S,i=1,2,..,k; k=1,2,..., such that sup | Z als, o)[
oeX i=

< 1. In this form it is closer to the formulation given in [8] for the case when X is
the complex number field.

Corollary 1. If X is a weakly complete space and if there exists a constant k such
that | fo(s) du(s)| < k|4 for 1 e My(S), then ¢ is a Fourier-Stieltjes transform.

Proof. If there exists such a constant, then the set (13) is bounded. Similarly as in
the proof of Theorem 3 we show that the set (9) is a part of the weak closure of
a multiple of the set (13), hence it is also bounded. By Corollary 2 of Theorem 2, ¢ is

a Fourier-Stieltjes transform.
@
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4. FOURIER-STIELTJES TRANSFORMS OF GROUP-REPRESENTATIONS

In this section we use Theorem 2 and Theorem 3 to obtain conditions for the
existence of spectral resolution for a given group representation. We use the notations
of Section 3.

If a representation U : S — L(X) can be written in the form

(15) U(s) = J(ﬁ) dP(s), seS,

where P : #(2) — L(X)is a regular spectral measure, then the measure P is determined
uniquely by U. Indeed, for every x € X and x" € X', we have

U(s) x, x"y = f{s, oy d{P(o) x, x")

and the scalar measures (P( ) x, x') are determined uniquely by their Fourier-Stieltjes
transforms.

Theorem 4. Let U:S — L(X) be a weakly continuous representation of the
group S. Suppose, for every x € X, the set

(16) {ﬂﬂ%@xﬁHmhélde@%

be relatively weakly compact.

Then there exists a regular spectral measure P : %(X) — L(X) such that (15)
holds.

Conversely, if there exists an operator measure P : B(Z) — L(X) such that (15)
holds, then, for every x € X, the set (16) is relatively weakly compact and U is
strongly continuous and bounded.

Proof. The weak compactness of (16) implies the existence of a constant k such
that

(1) W@wwﬁgwmw-

By Theorem 2 and its Corollary 1 there exists a regular vector measure m, : B(2) - X
such that

U(s) x = J‘<E,—a> dmyo), xeX,
and |my(E)| < k|x]| for every E € #(Z). The function P : #(%) — L(X) defined by
P(E)x = m(E), Ec #(X), xe X, is a regular operator measure such that (15)
holds.
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Since by Lemma 5
J(f xg)(s) U(s)ds = jf(s) U(s) ds jg(s) U(s) ds

and [f(s) U(s) ds = [f(c) dP(c), the transformation f — [f(c) dP(c) is multiplicative
on L'(S). It follows by Lemma 3 that P is a multiplicative measure.

If we substitute the neutral element of S for s in (15), we obtain that P(X) = I.
Hence P is a spectral measure.

The converse part of the theorem is a consequence of Theorem 2.

Corollary. If X is a weakly complete space and U : S — L(X) a weakly continuous
representation of the group S, then there exists a spectral measure P : B(X) —» L(X)
such that (15) holds if and only if there exists a constant k such that (17) holds.

Remarks 1. If the assumption of weak continuity of the representation U in
Theorem 4 is replaced by the measurability of (U() x, x') for every x € X, x" € X,
then there exists a regular spectral measure P : (%) — L(X) such that

UE) % x> = j G755 dCP(o) x, x'>
for almost each s € S.

2. If X is a Hilbert space, the assumptions of Theorem 4 are fulfilled for every
bounded weakly continuous representation U : S — L(X). In fact, for every bounded
representation U in a Hilbert space X there exists by [4] an operator 4 € L(X) such
that A~' € L(X) and the representation s — V(s) = A~! U(s) A is unitary. However,
if Vis a unitary representation, then, by [18; 26F and 32B], || [f(s) V(s) ds| = [|/] .-
Hence, (17) is valid for k = 1 = || 4] ||47"|.

Theorem 5. A weakly continuous representation U : S — L(X) can be written in
the form (15), where P : B(X) — L(X) is a regular spectral measure if and only if
the set

(15) { f U(s) x du(s)

is relatively weakly compact for every x € X.

Il % 1, we M)}

Proof. From the weak compactness of the set (18) we deduce the boundedness of
the representation U. Then we canproceed analoguously as in the proof of Theorem 4,
only we use Theorem 3 instead of Theorem 2.

Corollary. If X is a weakly complete space, then a weakly continuous representa-
tion U : S — L(X) can be written in the form (15) if and only if there exists a con-

stant k such that || [U(s) du(s)| < k|2 ., for every pe M (S).
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5. APPLICATIONS

Theorems of Section 4 shall now be used to obtain some results in the Spectral
Theory of operators, namely to obtain criteria for an operator to be spectral in the
Dunford sense ([5] or [6]).

For example we use Theorem 5 for the case that S = N, where N is the additive
group of integers with the discrete topology. Then ¥ = K, where K is the multiplicative
group of all complex numbers of magnitude 1 topologized as a subset of the plane.

Denote 4 the system of finite subsets of N.

The following theorem is a direct consequence of Theorem 5 (in its formulation a;
denote arbitrary complex numbers).

Theorem 6. Let Te L(X) and let the set

(19) {Ya,T'x|sup|Y a,"| £1, neN}

nen |z]|=1 nen
be relatively weakly compact for every x € X. Then the spectrum o(T) of Tis a subset
of K and there is a spectral measure P : B(K) — L(X) such that

(20) ™ = J‘Z" dP(z), neN.

Conversely, if o(T) = K and if (20) holds for n = 1, then (19) is a relatively
weakly compact set for every x € X.

If, for Te L(X), the assumptions of Theorem 6 are satisfied, i.e. (19) is relatively
weakly compact, then |T"| = O(1), n » +oo. The class of operators T, called
weakly almost periodic, such that T" is bounded has been introduced by E. R. LorcH
[19]. It has been investigated also by G. K. LEAF [17] together with some generaliza-
tions. Operators for which there exists a spectral measure P : Z(K) — L(X) such that
(20) holds are called pseudounitary. They were introduced in [16].

For operators in weakly complete spaces the criterium of Theorem 6 can be
simplified.

Corollary. If X is a weakly complete Banach space, then Te L(X) is a pseudouni-
tary operator if and only if there exists a constant k such that

| ¥ aT] < ksup |} a2
nen |z|=1 nen
for arbitrary complex numbers a, and ne N
An operator Te L(X) is said after S. KaNTOROVITZ [11] to be pseudohermitian if
there exists a spectral measure P : B(—o0, o) — L(X) such that T = [s dP(s).
Applying Theorem 4 to the additive group S = (— o0, 00) we obtain the following
theorem.
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Theorem 7. An operator Te L(X) is pseudohermitian if and only if the set
(21) { j () eTx ds| |l < 1, FeL(—co, oo)}

is relatively weakly compact for every x € X.

Proof. In the investigated case ¥ = (—oo, c0). By Theorem 4 the relatively weak
compactness of the set (21) is the necessary and sufficient condition for the existence
of a spectral measure P : #(—o0, 0) — L(X) such that

(22) esT =Jei‘” dP(s), se(—o0, o).

It is proved in [11] (p. 170, from (2) to Remarks on p. 171) that from (22) the
pseudohermiticity of T follows.

Corollary. If X is a weakly complete Banach space, then an operator Te L(X)
is pseudohermitian if and only if there exists a constant k such that

‘ jf(s) e ds

The result of this Corollary has been obtained using other methods by S. KANTORO-
viTZ in [12], and for reflexive spaces in [11].

< k|fllo, feLi(-w, ).
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Pesrome

XAPAKTEPU3ALIA TTPEOBPA3OBAHUI ®VPLE-CTUJITHECA
BEKTOPHBIX U OIIEPATOPHBIX MEP

UT'OPBh KJIYBAHEK (Igor Kluvanek), Kommie

Ilycte S — noxanpbHO KoMmakTHasi abemeBa rpunma, X — JgyajgpHas TpyIma
rpynnsl S, # — cucteMa GOpesieBCKUX MHOXeCTB B X M X — mpocTpaHcTBo Banaxa.
Oyukiug ¢ @ S — X HasbBaercs mpeobpazoBanueM Dypbe-CruwiiTheca, ecnu Cy-
IeCTBYeT BeKTOpHas Mepa m: % — X Takas, 4ro ¢(s) = [(s, o) dm(c), se€ S.
Joxa3seIBaeTCs, UTO @ SABJLIETCA MpeodpasoBanreM Pypbe-CTHIITLECA TOTIA U TOJNBKO
Torza, ecim muoxkecrso {[f(s) ¢(s)ds | [|f]. = 1, fe L!(S)} orrocurensHo criabo
KOMIAkTHO B X. JIpyruM He0OXOOUMBIM U JOCTATOYHBIM YCIOBUEM SBJIAETCS OTHO-
cutenbras cradas kommakrHocTs MHOXecTBa { [¢(s) du(s) | [All, < 1, p e My}, rae
M, — MHOXeCTBO BCEX [UCKPETHBIX Mep Ha S.

ITycts L(X) — anreGpa Beex JIMHEHHBIX HEIPEPHIBHBIX ONEPATOPOB HAa X ¥ MyCTh
U:S - L(X) — npencrasrenye rpymst S. ITotom U(s) = [<s, o) dP(0), s€ S,
rae P HexoTopas cmekTpajibHas Mepa Ha % ¢ 3HayeHMssMH B L(X) Toraa U TOIUIKO
TOr/a, eci Juist Beskoro x € X muoxecrso { [f(s) U(s) x ds| | f]|. < 1, fe LX(S)}
wm muoxkectso { [U(s) x du(s) | [|4].. < 1, # e My} oTHOCHTeNBHO CTaGO KOMIAKT-
HO B X.
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