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0. INTRODUCTION AND NOTATION

The classical theory of differential equations considers the system

xy = fit, Xy, .o %), x4(7) = &4
0.1)
Xp = fulls X150 %), X(7) =&,

where f;, ..., f, are continuous in a domain D of the space of ¢, xi, ..., x,, and
[v, & eess vf,,] € D. Proofs of fundamental theorems are carried out by investigation of
an equivalent system of integral equations

x,(t) = & + ffl(s, x4(5), - X4(s)) ds
02) e
xfl) = & + _[ 5, 31(8)s v () s

by means of elementary theorems of integral calculus and Ascoli’s theorem on
relative compactness in the space of continuous functions. Hence, the solutions are
continuously differentiable functions. '

In order to widen the scope of the theory, CARATHEODORY in his book [3] investigated
the system (0.2) under following more general conditions; here we take n = 1 for
simplicity. Let the function f(¢, x) be Lebesgue measurable in t and continuous in x,
and suppose that there exists a Lebesgue integrable function m, on an interval con-
taining 7, such that |f(t, x)] < m(t). It is shown that under these assumptions there
exists a solution of (0.2) on an interval containing t, which is absolutely continuous
there so that equality in corresponding (0.1) may hold only almost everywhere. Basic
theorems of this theory are also given in the book [4].
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It is of interest to inquire into the usefulness of more general integrals in these
questions. First, it is natural to insert the condition m(f) < f(t, x) < M(t) with e.g.
Perron integrable or even Denjoy-Chincin integrable m and M, instead of the above
condition | f(t, x)l < m(f); in this last case, of course, differentiation is considered
in the asymptotical sense. In order to carry out these generalizations simultaneously,
it is useful, and may be useful for other questions of analysis, to give an axiomatic
definition of the integral. We show that axiomatics given here permits to prove
necessary limit passages. Further, the basis of Carathéodory proofs consists in the
fact that the mapping ¢ — fo @, where (fo @) (1) = f(t, ¢(t)), is from continuous
functions to measurable functions and that this mapping is continuous in the sense
that lim ¢; = ¢, pointwise implies lim fo ¢; = fo ¢, pointwise. Instead of this
mapping, it will be convenient to introduce here the notion of the Carathéodory
operator; in our sense, this is a continuous map from the space C to the space S
with the additional property of possibility “to take part of it” on arbitrary intervals.
Thus, both factors of the compound mapping ¢ — [:f . ¢ are here axiomatized.

Now, existence and uniqueness results, and some theorems on continuous depen-
dence on a parameter forming the central part of this paper, are established in this
more general case. In a sense, the present paper shows the natural frame of the
Carathéodory theory, and may serve as a certain axiomatization of it. At the end,
some complementary remarks and unsolved problems are given.

The main results of this paper were reported on September 7, 1966 on the con-
ference EQUADIFF II held in Bratislava.

The author wishes to thank Prof. J. MAR{k and Dr. I. VRKOC for their most valuable
hints, especially concerning sections (10,1,1), (10,1,3) and (10,5,1).

In what follows, the symbol = stands for implication. Instead of “‘if and only if”,
we write “iff . The letter n denotes a fixed integer 21, #” = {1, 2,...}. " is the set
of all real n-tuples [x,, ..., x,]; instead of ', we write merely #. For x € #",
|x| I[xl, e X, ]| = max {ixll means that x; < y; for each
i=1,...,n For ceR, lete denote the pomt [&, ..., €] € ®#" It is clear that |x] <e
iff —E < x <% A cube K in #" is the set of the form <ay, a; + 6) X ... x
x {a,, a, + 6, with [ay, ..., a,] € #", § > 0. The interior of a set 4 in " will be
denoted by A4°. We put # = # U {—0} U {0}, with usual algebraic and order
properties. A mapping f defined on 4 will be sometimes denoted by f ! Aorx—
— f(x), x € A; however, — denotes also convergence in various spaces, and +> stands
for non-convergence. For § = B < 4, f l B denotes the reduction of f on B. Given
FlASf| Ay fo| A Te N, we write f| A = f,]A1 ®...0f |4, iff 4,,...

., A, are non-empty mutually disjoint sets such that U A;=Aand f | A, =f; l A,
i=1

i =1,...,r. If Vis a proposition, {x € 4; V(x)} denotes the set of all x € 4 such that
V(x) is true Further, if f is a mapping defined on 4, {f(x); V(x)} denotes the image
by f of {x € 4; V(x)}. A mapping with values in Z resp. 2 is called a scalarvalued
resp. finite function. If f is a mapping from A to &", we also speak of the vector
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function f, and denote f = [fl, .‘.,f,,]; the finite functions f;, i = 1, ..., n, are called
the components of f. The function having a constant value £ on a domain considered
will be denoted by & We say that a vector function s defined on <a, b} is a step func-
tion, iff there exist intervals (= non-empty connected subsets of .02) I, ..., 1, and
EeR", i =1,...,r such that sl(a, by = &, II1 ®...® ¢ |I,. If f is defined on
A x Band y e B, then f(., y) denotes the function on A with value f(x, y) at x € A.

1. INTEGRATION

In this section we introduce the concept of the integral in an axiomatic way. Our
interest is focused here on the notion more general than that one used later in differen-
tial equations.

Let p be a continuous nondecreasing function on a closed interval {a, b) = Z; it
is-then possible to introduce fundaments of the theory of the Lebesgue-Stieltjes
integral, e.g. measurability, convergence a.e. (= almost everywhere), etc. The symbol
#(a, b; p) stands for the set of all functions f on <{a, b} with finite Lebesgue-Stieltjes
integral {? f dp; here and in the sequel, p denotes also the measure corresponding to
the above function p. The Lebesgue measure on 2 will be denoted by 4. To include
some usual generalizations of the Lebesgue-Stieltjes integral, we introduce integration
as follows.

(1,1) Definition. Let p be a continuous nondecreasing function on a closed interval
{a, by. An s-integration on {a, b) with respect to p is a correspondence assigning
to each closed interval {c, d) = <a, b) a class & = F(c, d; p) of scalarvalued
p-measurable functions defined on {c, d) so that to each fe #(c, d; p) there cor-
responds a finite real number, denoted by [f, [¢fdp, or (#) [¢fdp and called the
F-integral of f over (¢, d) with respect to p, where the following is fulfilled:

(A) fi€ F(c,d; p,) freF(c,d; p)=f1 + f> e #(c, d; p),

where f1(f) + f5(t) of the form e.g. oo — oo may be defined in an arbitrary way,

and _ff1 + Ifz = f(fl +f2)
(B) fe F(c, d; p), ke R = kf e F(c, d; p), and [kf = k [f,
(©) fe Z(a, b; p), <c, dy = <a, by = f|<c, d> € #(c, d; p),

(D) for each fe #(a, b; p), [¢fdp is an additive function of interval {c, d)
c <a’ b>y

(E a _S__ Cq < Ca < C3 é b7 fI <C1, cZ> Ef(cl, C2; p)a fI <C2, C3> eg;(cb C3; P) =
ﬂfl {er,e30€ 37("1, C3; P)’

(F) for each nonnegative f on {a, b)Y, fe F(a, b; p) iff fe L(a,b;p), and
( F) J,',’ fdp equals to the corresponding Lebesgue-Stieltjes integral.

484



(1,2) Examples. It is well known that the integrals & of Lebesgue-Stieltjes, Z of
Perron, 2, of Denjoy, 2 of Denjoy-Chinéin behave according to this definition
[11]. On the other hand, e.g. the extension of Z-integral by Cauchy’s principal value,
and the o/-integral of Titchmarsh [1] are not =-integrals. Further comments will be
given in section 10.

We pass to some simple consequences of the above definition. In what follows,
&* denotes the class of all x-integrations and & denotes an element of F*; we speak
also of an Z-integration in this case.

(1,3) Theorem. f € #(a, b; p) = |f| < © a.e. on <a, b).

Proof. fe # = (—f)e #, hence f+ (—f)eF; then 0= [f + [(—f) =
= [[f + (=f)]- When the sum is of the form e.g. 0 — oo, put f(f) — f(f) = 1.
Then f + (—f) = 0, lies in &, hence in &Z; thus, f + (—f) = 0 a.e. on {a, b).

(1,4) Theorem. f€ ¥ = fe F for each F € §*, and (L) [f = (F) [f. Further,
feZF, fleg'_:fe.f.

Proof. This is an easy consequence of (A), (B), (F).

(1,5) Theorem. fe F(a,b;p), f=g ae. on {a,by=geF(a b;p), and
fafdp = fag dp.

Proof. This follows easily from Theorem (1,4).
(1,6) Remark. We see that a function fe &% may be defined only a.e. on <a, b).

(1,7) Theorem. f, g € #(a, b; p), f < g a.e. on {a, by = [f < [g.
Proof. g — [f=[(g —f)=0.

From now on, instead of “‘f; converge to f asymptotically”” we shall write limas f; =

-

(1,8) Theorem. Let the following hold:

(1.8.1) g, h,fieF(a,b;p), ieN
(1.8.2) g<fi<h aeon {a, by, ieN
(1.8.3) limasf; = f on <a,b)

Then fe #(a, b; p), and [}fdp = lim [} f, dp.

Proof. We may suppose that all functions considered are finite. Then 0 < f; —
—g<h—gae on<ab) fi — ge, limas(f; — g) = f — g; hence from the
Lebesgue theorem lim [(f; — g) = [(f — g), whence the assertion.
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(1,9) Theorem. Let

(1.9.1) g, he #(a, b; p)
(1.9.2) g<f=<h aeon {ab)
(1.9.3) f be measurable on <{a, b)>

Then fe F(a, b; p), and [g < [f < [h.

Proof. Wehave 0 £ f—g < h—gae.onla,b),h —ge, f— g is measur-
able. Hence f — ge %, and [(f — g) + [g = [f. Thus, fe &; the last assertion is
a consequence of Theorem (1,7).

The following generalization of Theorem (1,8) plays an important rdle in the in-
vestigation of continuous dependence on a parameter.

(1,10) Theorem. Let the following hold:

(1.10.1) 9ihi,g,heF(a, b;p), ieN
(1.10.2) gi<fi<h; ae.on {a, by, ieN
(1.10.3) limasg; = g, limasf, =f, limash,=nh
b b b b
(1.10.4) limjgidp=Jgdp, limfhidp=fhdp
(1.10.5) fi» i€ N, are measurable on {a,b).

Then f,, fe F(a, b; p), ie A, and lim [2f;dp = [ifdp.

Proof. According to Theorem (1,9), f; € #(a, b; p) for each i € A". Further, it is
elementary that g < f < h a.e. on {a, b); hence f € #. We prove that lim inf ffi >
> (f. Suppose on the contrary that lim inf [f; < [f. Then there exist iy, i, ... such
that f;, — f, g, — g a.e. on {a, b) and lim [f; < [f. Using Fatou’s lemma we get
{(f — 9) = [lim(f;, — g;) < liminf ([f;, — [g,) = liminf [f; — [g; hence [f <
< lim inf [f;. This is a contradiction. Passing to opposite functions, we obtain

[f = lim sup [f.

We join some usual definitions. First, for f € #(a, b; p) we put [;fdp = — [2fdp,
and [ifdp = 0. For a cea, b), the function F(t) = [;fdp, defined on <a, b,
will be called an & -antiderivative of f.

Let f = [f1, ... f,] be a vector function defined a.e. on {a, b). We say that fe
€ #(a, b; p) iff fje F(a, b; p) for each j =1,...,n, and put then [Zfdp =
= [[2f1dp, ..., [2f.dp]. It is easy to see that all preceding theorems are also valid
for vector functions. Further, fe £ = |[f| < [|f].

We say that &, € §* is not weaker than & € §*, and write & < &£, iff fe
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e #(a, b; p) = fe F,(a, b; p)and (F) [2f dp = (#,) [Lf dp. Clearly, < is an order
relation in §*; to stress it, we shall also denote this set by (3‘*, c). It is known that
PP, P <P [11]. Also, by Theorem (1,4), € = F for each F e F*.

(1,11) Theorem. Given F € (§*, <), there exists a maximal element F,, € (F*, <)
such that & < &,

Proof. For alinearly ordered system {#} of #-integrations, the #-integration U &,
may be defined in an obvious way. The assertion now follows from Zorn’s lemma.

There exist *-integrations such that the corresponding antiderivatives needn’t be
continuous; see (10,1,1) for a simple example. Having in mind the applications of
general integration to differential equations, we introduce the following notion.

(1,12) Definition. We say that & € §* is an integration, iff

(G) for each fe #(a, b; p), [2fdp is a continuous function of interval on {a, b),
ie.d—c—>0= [Ifdp—0.

In what follows, & denotes the set of all integrations. It is easy to see that all the
preceding assertions concerning x-integrations are true when we replace * by §.

(1,13) Theorem. For each & € §, F -antiderivatives are continuous.

Proof. This follows immediately from (G).

In later sections, we shall need the following lemma on Z,- and Z-antiderivatives;
its proof is easy and may be found in [7]. For the notion ACG, see [11]; for the
notion ACG, see also section 7.

(1,14) Lemma. Let FeLip 1 on {a, b) and let ¢ be ACG, resp. ACG on {a, -
Suppose that ¢(t) € {a, by for each te{x, B). Then F(¢) is ACG, resp. ACG on
<a, B>

2. CARATHEODORY OPERATORS AND FORMULATION OF THE PROBLEM

In what follows, I denotes a fixed compact interval (z, 7 + a), « > 0, and G + 0
is a region (= open connected set) in 22". Measurability notions refer to a fixed con-
tinuous nondecreasing function p on I.

The symbol € = C(I; G) denotes the set of all continuous mappings from I to G;
especially, for G = #" we write simply C(I) instead of C(I; #"). This set is given the
usual metric || — ¥/ = sup {|¢(t) — ¥(1)|; teI} so that the corresponding con-
vergence is uniform on I.

The symbol § = S(I; p) stands for the set of all measurable mappings from I with
values in 22". This set is given the pseudometric o(g, k) = [; min (1, |g(t) — h(t}]) dp
so that the induced convergence is asymptotical. Further, we put [S] = S mod Z,
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where Z = {z€ §; z = 0 a.e. on I} so that [S] is a linear space with metric g; let [ f]
denote the image of f in the natural map of S onto [S]. Note that if g € [S] and A4 is
a measurable subset of I, an obvious meaning may be given to g l A.Forf,ge [S],
we write f < g iff there exist fy, g, € Ssuch that [f1] = f, [g9,] = g and f; < g, ae.
on I; it is clear that < is an order relation on [S]. Similarly, for fe [S] and g € S,
we write f < g iff f < [g]. For fe[S], | f I denotes the element of [S] defined by
[|f1[], where £, € S is such that [f,] = f. Note also that Theorem (1,7) enables to
introduee F-integrals for some f € [S].

2,1) Lemma. Let f, = [f{", ..., f]eS(L; p), ie N, f = [, ..., f™] e S(I; p)-
Then lim o(f, f) = 0 iff lim o(f, f9) = 0 for each j = 1, ..., n.

Proof. This is a consequence of the inequality
o(fP. 1) < olfin f) = Y o7 1)
j=

The symbol C®(I; G) denotes the set of all functions ¢ on I of the form ¢, | I, ®
@D...0 0, l I,, where ;€ C(I; G) for i = 1, ..., r and I,, ..., I, are intervals; hence,
each step function on I with values in G lies in C®(I; G).

(2,2) Definition. A continuous mapping T from C(I; G) to [S] is a Carathéodory
operator on C(I; G) iff the following is satisfied: ¢, ¥ € C(I; G), J closed interval
inlLo|J=y|J=>Te|J=Ty|J '

(2,3) Remark. It is clear that, in this definition, a closed interval J may be replaced
by an arbitrary interval in I. '

It follows that the domain of definition of each Carathéodory operator may now
be extended in a natural way to all functions { of the form { = ¢ | J, where ¢ €
€ C(I; G) and J is an interval such that J < I; indeed, we put T{ = To l J in this
case. Now for € C¥(I;G), o(I) = o, |, ® ... ® (p,|I, put To = To, 111 ®
@ ...® To, |1, the meaning of the right side being obvious. This definition is
unambiguous.

If I, is a closed subinterval of I and G, =+ (is a region =G, then evidently T induces
a Carathéodory operator on C(I,, G,).

The following theorem shows a fundamental example of a Carathéodory operator,

(2,4) Theorem. Let [t, x| — f(t, x) be a function from I x G to R" with the follow-
ing properties:
(2.4.1) for each x € G, f(., x) is measurable on I
(2.4.2) thereexistsaset N < I of zero measure such that for each tel — N, f(t, )
is continuous on G.

Then T defined by To = [fo @], where (f o @) (1) = f(t, @(2)), is a Carathéodory
operator on C(I; G).
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Proof. Let s be a step function, s € C®(I; G); f - s is measurable, as a consequence
of (2.4.1). Let ¢ € €(I; G) and let {s;} be a sequence of step functions, s; € C®(I; G),
such that lim s; = ¢ pointwise on I. Then (f o s;) () converge to (f o @) (#) for each
tel — N, as a consequence of (2.4.2); hence f o ¢ € S. Other properties to prove are
now clear.

(2,5) Remark. The Carathéodory operator described in (2,4) will be called classical.
It is not clear whether conversely each Carathéodory operator T is of the form [ f o ¢],
for a suitable f satisfying (2.4.1) and (2.4.2), or some more general conditions. In
section 8, it will be shown that this is true provided T is linear; in [9] we prove an
approximation theorem of this kind. Let us still show a simple example of a function f
not generating a Carathéodory operator. Put I = €0,1), G = &, and let f(¢, x) = 0
resp. 1 according to t > x resp. t < x. Put ¢(t) =t — i™', ie N, ¢(t) = t. Then
lo:— o] =i ' >0, but fop,=0,fo0 =1.

(2,6) Lemma. Let ¢, € C®(I; G), ie N, ¢ € C(I; G), ¢; > ¢ uniformly onI. Let T
be a Carathéodory operator on €(I; G). Then lim o(To;, Tp) = 0.

Proof. Let 4 > 0 be such that 24-neighbourhood of the set (1) lies in G. We
may suppose that |¢,(f) — ¢(f)| < 4 for each t eI and each ie A" Let £{", ..., £
be the discontinuvities of ¢;. For eachie A andj =1, ..., v, let 15.") denote an open

interval (1§?, $”) with centre #{” such that

(2.6.1) Y p(I) < i~
=1
(2.6.2) sup {|o(t) — o(t')]; 1, ¢ eI} < i}
Define ¢f on I, ie A", by putting ¢;(t) = ¢(t) for tel — LjIS-i), Pi(t) =
=1

= (r) — I[P = 1) o,(1I9) + (t — 1) @(r")] fort eI, j = 1, ..., v;. Thus,
@F, ie A, is continuous on I.

Let ¢ > 0 be given. We prove that there exists io such that i = iy = ¢(Te,, Te) <
< 2¢. There exists 6 > 0 such that § < 4 and

(2.6.3) xeC(I; G), |x— o] £20=0(Tx, To) < ¢

Let g be such thati > g, tel = |(pi(t) — (p(t)l < 6. Theni > g, telﬁ-i),j =1,...,v;
implies |} (f) — o(t)] < 6 + i~'. Indeed, in view of (2.6.2) we get (we omit subscripts)

loF(5) — o(1)] =
=|r =D = e) + (1 = Dofr) = (r = ) o(t) = (t = Do(W)]| =
S =D =0 edD) = o] + (t = D ]eir) — o(B)]} =
(=070 - 9o = @] + () — o] + (¢ - [T} =
Sr=D"r—-0E+i)+@-DE+iT)=5+i"
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Thus, i 2 max (67", q) = ¢ — ¢| <26 and as 8 < 4, ¢feC(I;G). Put
io = max (67", g,¢”"). Then, as a consequence of (2.6.3) and (2.6.1), i = iy =
= o(Tp, To)) < o(Te, To?) + o(Tof, T) < & + [y min (1, |Tef — Te|) dp <

vi

e+ p(I?) £ 2.
j=1

(2,7) Corollary. Let T, T, be Carathéodory operators on C(I; G). Let G be a dense
subset of G. Then T, = T, iff T,& = T,% for each x € G,.

We pass to the formulation of our problem. The following sections are devoted to
investigation of the equation

t
(&) x(f) =&+ f Txdp
where T is a Carathéodory operator on C(I; G) and ¢ € G.

We say that ¢ € C({t, T + B); G) is a solution of (§) on {t,7 + ), 0 < B < a,
iff there exists & € & such that ¢(t) = & + (#) [t@dp for each te (1,7 + f).
To speak more precisely, we call ¢ a right #-solution in this case, the left-hand situa-
tion being analogous. We say, then, that (&) has a solution on {7, T + ). It is clear
that, for each y € (0, B>, ¢ | {t, T + p) is then an F-solution of (&) on <z, + 7).
It follows that each Z-solution of (&) is continuous and ¢(t) = £. Evidently, each
& -solution is also an & ;-solution for each #, > £, while the contrary needn’t be,
of course, true.

A right F-solution ¢ of (&) on <z, + B>, Be(0, a), is said to be the F-unique
solution on <z, t + B) iff from “y is an F-solution of (&) on <z, T + B)” it follows
that “@ = on {r,7 + f)”; ¢ is said to be strongly Z-unique on <z, t + B iff
the Z#-solution ¢ | {t,7 + y) is F-unique on {1, T + y) for each y € (0, p.

A right #-solution ¢ of (€) on <z, T + B, B & (0, o), is said to be the {# }-unique
solution of (&) on (t, t 4+ B iff from “Y is an F-solution of (&) on'(z, t + P> for
some ¥ > F, F,eg”, it follows that “p = on {r,7t + B)”; ¢ is said to be
strongly {Z }-unique <, T + B) iff the F-solution ¢ | {t,T + y) is {#}-unique on
{r,t + y) for each y € (0, ).

Similar definitions may, of course, be given for half-open intervals {t, t + B).

(2,8) Remark. Theorem (2,4) shows that the usual Carathéodory theory of differen-
tial equations, using #-integration with p = 4, is included here.

3. EXISTENCE OF SOLUTIONS
It is clear that there exist equations (&) without a solution; it suffices to take
Tx = g €[S] identically, with g ¢ & for arbitrary & e &. In this section we prove

two existence theorems, first a global one.
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(3,1) Theorem. Let T pe a Carathéodory operator on C(I; G), teG, Fe§, and
suppose that

(3-1.1)  there exist m, M € Z(I; p) such that
peC(I;G)=>m = Tp <M
(3.1.2) denoting L(t) = [tmdp, U(t) = [{Mdp, it holds tel=¢ + L(t)eG,
E+ U(n)eG
(3-1.3) xeG, zeG, x<y<z=yeG
Then (&) has an F-solution on I.

Proof. Put L(f) = U(f) = 0 for t < t so that L, U are now defined on (—oco,
7 + o). Further, put «; = ai™', ie A". Let us define the Carathéodory approxima-
tions ¢, i € A7, in the following way:

(3.1.4) oft) =& for tedr,t+ o)

1) =¢ +J Te,dp for telt + o, T+ o
By induction, we prove that each ¢, i € A", maps I into G continuously. This is clear,
for each i e A", on {7, T + ;). Suppose that the assertion is true forz <t <7 +
+ ko, 1 < k < i. Then the second of the formulae (3.1.4) defines ¢; on <t + ko,
T + (k + 1) a;; in view of (3.1.1) and Theorem (1,9), the #-integral exists. Accord-
ing to (3.1.1), it holds

(3.15) L(t—ay) =j

T

t —

*i t—a;
mdP§€0i(’)“f§J Mdp = U(t — o))

so that, from (3.1.2) and (3.1.3), the assertion is valid for 1 < k + 1 < j. Further,
we get from (3.1.5) that {¢;} are uniformly bounded on I. Let <t,, t,) < <{t + «,,
T + o; then t,) — @ity) = [122% Te, dp. Hence we have for each i e A"

(3~1~6) L(tz - “i) - L(tt - ‘xi) = (Pi(tz) - ‘Pi(tl) = U(tz - ‘xi) - U(tl - “i)

and equicontinuity of {¢;} follows now immediately. From Ascoli’s theorem we have
existence of a subsequence {¢,} of {@;} converging to a function ¢ € C(I; G)
uniformly on I. From (3.1.1) and Theorem (1,8) we get

T t
(3.1.7) limJ Te, dp = J‘ Teodp foreach tel

T T

Also, it holds there ¢(1) = ¢ + [; To,dp — [{_,, T, dp. From (3.1.1) and Theorem
(1,9) we see that the last integral converges to zero, as i — co; (3.1.7) then gives ¢(t) =
= lim ¢, (t) = £ + [* Te dp for each t € I. Thus, ¢ is an F-solution of (€)onl.
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(3,2) Remark. Let us prove that lim ¢; = ¢ uniformly on I provided ¢ is unique
on I. Suppose on the contrary that there exists ¢, I such that ¢,(fo) +> ¢(t;). Then
there exist iy, i, ... such that lim ¢;(,) + ¢(t;) and {@;} converge to the solution
of (&) on I, hence to ¢; a contradiction. Uniform convergence of {¢;} results now
from pointwise convergence and equicontinuity of {¢;}.

(3,3) Remark. The preceding theorem is not suitable for the study of linear equa-
tions. Another global existence theorem will be proved in section 6.
We pass to a local existence theorem.

(3,4) Theorem. Let T be a Carathéodory operator on C€(I; G),(eG Feg, and
suppose that

(3.4.1) for each compact K < G, there exist m(., K), M(., K) € #(I; p) such that
9eC(;G), ¢(I)=K=m(.,K) =< To < M(.,K)
Then there exists f > 0 such that (&) has an F-solution on {t, T + B).

Proof. Choose a cube K with centre £ such that K = G. Let m, M correspond to
this cube according to (3.4.1), and denote L(¢) = [%m dp and similarly for U. Let K°
denote the interior of K. Then there exists f > 0 such that ¢ + L(f) e K°, ¢ + U(t)e
€ K° for each te{r,7 + B). The assertion now follows from Theorem (3,1) as
(3.1.1) and (3.1.3) are satisfied on taking K° = G.

4. EXTENSION OF SOLUTIONS

Let ¢ be an F-solution of (&) on {t, © + B, and let y be an F-solution of (§) on
{(t,T+ 9, where 0 <y< f=a If ¢ I {t, T + y)> = ¥, then ¢ is called an F-ex-
tension” of ¥, and Y is called F-extendable. If there exists no F-extension of ¢
then ¢ is called non-%-extendable. Similar definitions may be given for half-open
intervals.

First we state the following elementary assertion.

(4,1) Lemma. Let T be a Carathéodory operator on C(I; G)and let (€ G, F € §.
For some ty€ (1,7 + o), let ¢ be an F-solution of (&) on {x, ty» and let Y be an
F-solution of the equation x(t) = ¢(to) + [i, Txdp on (to, 1o + 4>, 4 >0,
to+ 4= v+ o Then x|<t,to + 4) = ¢ | (7, to) @ Ylto, to + A) is an F-solu-
tion of (&).

Proof. For t €ty, to + 4y we have x(t) = ¢ + [: Tpdp + (! Ty dp.

(4,2) Theorem. Let T be a Carathéodory operator on C(I; G), £ € G, F € &, and
suppose that
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(4.2.1) there exist m, M € #(I; p) such that
peC;G)=m<Tp =M

Let to € <1, © + ), and let ¢ | 1, to) be an F-solution of (&) on (x, o). Then
(4.2.2) lim o(t) = n exists

t—to—
(42.3) if lim ¢(t) = ne G, then ¢ ] (T, 1) ® 1 I {to} is an F-solution of (&) on
t=to—
{(z, tyy; if moreover ty, < T + o, then there exists A > 0 such that ¢ has
an F-extension on {1, ty + 4)

(4.2.4) if ¢* is any non-F-extendable extension of ¢, then either ¢* is defined on
{t, T + ), or @* is defined on <z, 1,), for some 1, < T + o, and lim ¢(t)

t=t1y—

belongs to the boundary of G.
Proof. For {t;, t,) = {x, to) we have from (4.2.1)

(4.2.5) L(ty) — L(ty) < o(t2) — o(ty) < U(t;) — U(ty)

so that existence of 7 readily follows. The first assertion in (4.2.3) is simple; to prove
the second one, let us consider the equation x(f) = # + [;, Tx dp. As a consequence
of (4.2.1) and Theorem (3,4) we have 4 > 0 such that there exists an F-solution ¥
of this equation on {ty, t, + 4). The conclusion now follows from Lemma (4,1).
(4.2.4) is a consequence of (4.2.2) and (4.2.3).

5. UNIQUENESS OF SOLUTIONS
In this section we prove the following result on uniqueness.

(5,1) Theorem. Let [t,r] — Y(t, r) be a finite nonnegative function defined on
(t, 7 + a) x 0, 00) such that
(5.1.1) for each r € €0, ), Y(., r) is measurable on (t,t + a)
(5.1.2) for each te(t,t + a), Y(t,.) is continuous nondecreasing on {0, o)
(5.1.3) for each R > 0 and each ye(z,t + a), [3"*y(., R) dp converges
(5.1.4) 6[(1,1: + o) is the strongly &-unique solution of o(t) = [;y oo dp on
(T, T + o).

Let T be a Carathéodory operator on C(I) such that
(5.1.5) x,ye®R" =|T2 — Tp| < ¥(.,|x — )

Then there exists for each F € § and each B € (0, a) at most one F-solution of (&)
on {t,t + B) which is strongly {F }-unique there.
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Proof. It is sufficient to prove this for # = o. Using Lemma (2,6) and (5.1.5) we
get by simple considerations, the integration being .2,

t2 12
(5.1.6) j |To, — To,|dp éj Yo
151

1y

@1 — @2 dp

whenever © < t; <1, <1+ o, ¢, ¢, € C(I;G). Suppose if possible that there
exist 1, F,€§, F, < F, and F solution ¢, j = 1,2, of (&) on I such that
@1 * @2 Let g be defined by q(t) = |@(1) — @(1)| on I, and let o € (v, T + a) be
such that g(o) > 0. Let us consider the equation

t

(5.1.7) o(t) = q(o) + J Voodp

In view of (5.1.2), (5.1.3) and Theorem (3.4), there exists an #-solution of (5.1.7)
on an interval (¢ — 9, 6>, § > 0. It next will be shown that g(r) < ¢(t) for each
te{o — 3, g). Otherwise there are { and hy, where { < ¢ and h, > 0 such that
0(0) = q(¢) and te(C — ho, {) = q(f) < o(f). However, it holds ¢({) = ”f(T(p1 -
— T¢,) dp|, and similarly g({ — h) = |[7" (T, — Te,)dp|, for each h e <0, ho),
the integration here being & ,. By subtracting we get

(5.8 o© a0 s [ (o~ T ar
[Ji—h i
Hence, applying (5.1.6)

(5.1.9) q(0) — q(¢ — h) £ C Yoqdp

{=h

Further, it holds

¢
(5.1.10) q(0) — o —h) = o(l) — o{ — h) = Yoodp
{—h

and from te{{ — hy, (D= 0(t) 2 q(r) = Y(1, o(t)) = Y(t, g(t)) we get for each
h e <0, hyd

e s
(5111) l//onpg l//oqdp

{—h {—h
In view of (5.1.11), (5.1.10) and (5.1.9) we now have o({ — h) < q({ — h) for he
€ €0, hoy; this is a contradiction. We have thus proved that g(r) < ¢(t) for each
t < o, where o(f) exists. Also, it holds o(t) > 0; suppose if possible that there exists
0, € (1, 6) such that (o) = 0. But, in view of Theorem (4,1), the function ¢, defined
by 0, | (0> =0, 04 I {6,0) =0 | {0y, 6) would then be a non-zero solution of
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the equation in (5.1.4); this is a contradiction with (5.1.4). Hence 0 < () < (),
and using Theorem (4,2) we see that ¢ has an Z-extension over (7, ). Thus,
lim o(t) = 0; putting ¢(r) = 0, we get that ¢ is an &-solution of the equation in

t—ot+
(5.1.4) on (t, ), and this contradicts (5.1.4). Hence g = 6[1, which proves the
theorem.

Let us show a class of “test” functions ¥ of the preceding theorem.

(5,2) Theorem. Let y € #(I; p), y finite nonnegative. Then the function [t, r] —
- x(t)r, [t,r] €I x {0, ), satisfies the assumptions (5.1.1) to (5.1.4) of Theorem
(5,1).

Proof. It is clear that (5.1.1) to (5.1.3) are satisfied. Let us now consider the
equation o(t) = [iyxo dp, which evidently has ﬁlI as a solution. Suppose there
exists another Z-solution ¢ on <t, 7 + B, f€(0, a) such that o(t;) > 0 for a t, €
€(t, v + B). Then there exists {a, b) = <z, + ) such that g(a) = 0, ¢(t) > 0 for
each te(a, b). Let {ty, 1,> < <a, b); it follows from o(t,) = [’ xe dp + [iZ yo dp
that o(t;) < o(t,). Hence o(a + &) = [***yodp < o(a + &) [¢**xdp for each
(small) e > 0; but this gives a contradiction for ¢ » 0+.

6. SUCCESSIVE APPROXIMATIONS /

In Theorem (3,1), an essential role was played by (3.1.1). Here we show that another
global existence theorem can be proved, using different assumptions. First, we prove
a lemma.

(6,1) Lemma. Let T be a Carathéodory operator on C(I; G), # € §, and suppose
that

(6.1.1) G, is bounded
(6.1.2) there exists w € C(I; G,) such that Tw € F(I; p)
(6.1.3) there exists a finite x € £(I; p) such that

X, yeG=|T% — TP| < «fx — ¥l
Then there exist m, M € ﬁ(l; p) such that
(6.1.4) 0eC(I;G)=>m<Top<M

Proof. Let k = sup {|x - y|; x, y € G,}. For each ¢ € C(I; G,), it holds {(p - co[ <
< k. Using Lemma (2,6), we obtain IT(p — Tw| < kx; hence

(6.1.5) To — [kx] < To £ To + [kx]

whence the assertion.
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(6,2) Theorem. Let T be a Carathéodory operator on C(I), F € &, and suppose
that

(6.2.1) there exists w e C(I) such that Tw e F(I; p)
(6.2.2) there exists a finite x € £(I; p) such that

X, yeR =|T2 — T9| < |x — y| %
Then (&) has an F-solution @ on I which is strongly {F }-unique there.

Proof. Clearly ¢,y e C(I)= |Tp — TY| < »|¢ — Y| and in view of (6.2.1),
@€ C(I)= T e F(I; p). Now put @, = & and for i = 0,1,2,... define ¢, |I
as follows:

(6.2.3) Pisa(t) = ¢+ j Te;dp

T

Then "P1 - (Pol (» = l[‘Pl - ‘Po”a l(l’z - ‘P1l (= U:(Tq)i - Too) dpl = f:ITQ’x -
— Too|dp < [ix|os — 00| dp < |01 — @of K(f) where K(f) = [txdp. It next
will be shown that

(6.2.4) ieN = oy — 0| (1) £ o1 — @0 (it)~* K1)

This is true for i = 1. Suppose that (6.2.4) holds for i = j — 1; we have |<pi+ 1
=0, (1) = [ (To; = To;-1) dp| < [2|To; = To;-1|dp < [ixlo; — @;-4| dp
S = D) o1 — @of fixKI™*dp < |l@y — @of (j!) ™! K/(t) as we get using
P-integration by parts.

IIA

The series
(6.2.5) @0 + (91 — @o) + v + (0141 — @) + ..

then converges uniformly on I to a ¢ e C(I). We show that ¢ is the desired
F-solution of (&). It follows from (6.2.5) that there exists a bounded region G, = G
such that ¢, ¢, € C(I; G,), ie A". Using Lemma (6,1) and Theorem (1,8) we get
lim [t To,dp = [{ Tp dp on 1, and existence of an F-solution of (&) on I is thus
proved. In view of (6.2.2) and Theorems (5,1), (5,2), the #-solution ¢ is strongly
{#}-unique on I.

7. CONTINUOUS DEPENDENCE OF SOLUTIONS ON A PARAMETER

In this section, some theorems on continuous dependence on a parameter will be
established. As above, we suppose that G = 0 is a region in #", I = {(t, 7 + o) and
& € G. Let further

(70.1) T, i=0,1,2,... be Carathéodory operators on C(I; G).
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We shall investigate equations

t
@) x(t)=é+fT,-xdp, i=01,2...
and show that if T,, T,, ... converge to T, in some sense, then under some additional
assumptions the same holds for corresponding solutions @; of (&,). First we prove the
following general result.

(7,1) Theorem. Let (7.0.1) hold, # € &, and suppose that

(7.1.1) for each ie N and each compact K < G, there exist m; = m{., K),
M; = M., K)e #(I; p) such that

9eC(I;G), o()cK=>m <Tip <M,

(7.1.2) if ¢; l {t, 1), i€ N, is an F-solution of (&;) on {t,t;) and there exists
a compact K = G such that ¢z, 1;)) = K for each ie A", then {¢},
ie N, form an equicontinuous system in the sense that, given ¢ > 0,
there exists 6 > 0 such that for each ie N, ltl — t2| <4,

th et 1) = |olt) — o) <e

(7.1.3) x;€€(I;G),i =0,1,2,...lim|]x; — xo| = 0=1lim [: T;x,dp = [ Toxo dp
for each t €I, the integration being &

(7.1.4) (&) has an F-solution ¢, on I which is strongly F-unique there.
Then

(7.1.5) there exists ig€ N such that for each i > iy, each non-F-extendable
F-solution ¢; of (&) is defined on I, and lim |, — @, = 0.

Proof. First we prove that if ¢; is an #-solution of (&;) on I for each i € A" and
if there exists a compact K < G such that ¢(I) = K, i € A", thenlim |¢; — | = 0.
Indeed, we have ¢(f) = & + [ T,p;dpforeachie A" and t eI. According to(7.1.2),
there exist iy, iy, ... and ¥ € C(I; G) such that lim ||¢,, — ¥|| = 0. In view of (7.1.3),
lim ; T, ¢, dp = [! To¥ dpforeach t e I; hence y is an F-solution of (&,) on I and
V¥ = @, as we infer from (7.1.4). To prove that ¢; converge to ¢, pointwise suppose
that there exists 7" e I such that ¢(t’) + @o(7'). As {@(7')} is bounded, there exist
I3, 1, ... such that lim ¢, (') # @o(') and {¢, } converge uniformly on I; this gives
clearly a contradiction. Uniform convergence of {¢;} follows now from pointwise
convergence and equicontinuity.

Let ¢, > 0 be such that the compact set

(7.1.6) Q = {x e R"; the distance of x from @o(I) is S}

lies in G; hence Q0 is connected. Let ¢, | J; be any non-Z-extendable solution of (&),
ie A, when T, is considered on C(I; Q°); these solutions exist in virtue of (7.1.1),
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the choice of Q, and Theorem (4.2). If (7.1.5) were false, there would exist &, 0 < & <
< &, and i; < i, < ... such that sup {‘(p,k(t) (po(t)| telJ,, ke A} = & Put
Y, = ¢, now for each k € A, there exists unique T; € (7, T + «) such that |\bk(t) -
— @o(1)| < & on (z, T) while

(7.1.7) [Vi(Ti) — @o(T)| = &

From (7.1.2) we infer using compactness of Q that there exists n > 0 such that T; >
> 1+ n, ke A. Let the above iy, iy, ... be such that lim T, = T, exists; then

To = © + n is fulfilled. In view of (7.1.2), to the above ¢ > 0 there exists > 0 such
that 6 < n and

(7.1.8) thhael, |t — 1] < 8= |po(tz) — @o(ty)] < %
and at the same time
(719) TSt <L ST, b=t <8, ket =|h(ts) — vty < %

Further, there exists j, € A" such that

o
(7.1.10) I;>j0:>To—£<Tk<To+§

According to the first part of this proof applied, as it is allowed, to {1, T, — 6/2)»
there exists j, € A such that

- A _9
(7.1.11)‘ k> j, }t//k(To 2) <po<To 2)

Now for k > max (jo, j;), (7.1.8), (7.1.9) and (7.1.11) give clearly |1,b,¢(T,,j — 0o(T)| <
< &3 + ¢[3 + /3 = ¢, which contradicts (7.1.7). This proves the theorem.
Conditions (7.1.2) and (7.1.3) of Theorem (7,1) are rather complicated and not

easily provable in concrete cases. We are going to derive three more lucid consequen-
ces of it.

<

&
3

@, 2) Theorem. Let (7.0,1) hold, # € §, and suppose that

(7.2.1) foreachi =0,1,2,...and each compact K < G, there exist m; = m{., K),
M; = M{., K)e #(I; p) such that p € C(I; G), p(I) = K, i = 0, 1,2, ... =
=m; < T,0p £ M;

(7.2.2) for each compact K < G, limas my., K) = my(., K), limas M( K) =
= M-, K)
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(7.2.3) if we put, for each i =0, 1,2, ..., each compact K = G, and tel

L{t, K) = J'm,.(., K)dp, UftK) = J'Mi(., K)dp

then the systems {L{., K)}, {U/(., K)} are for each fixed K = G equicon-
tinuous on I

(7.2.4) for each fixed K = G and each t eI, lim L(t, K) = Ly(t, K), lim U(t, K) =
= Uy(t, K)

(7.2.5) x;€ C(I;G),i=0,1,2,....1im |x; — xo| = 0= lim o(T;x;, Tox,) = 0
(7.2.6) (&) has an F-solution @, on I which is strongly F-unique there
Then (7.1.5) is fulfilled.

Proof. Evidently, (7.2.1) = (7.1.1) and (7.2.6) = (7.1.4). To prove (7.1.2), it
suffices to use an inequality like (4.2.5) and (7.2.3). Finally, (7.1.3) follows from
Theorem (1,10) using (7.2.1), (7.2.2), (7.2.4), (7.2.5) and the fact that there exists
a compact K = G such that x(I) = K for i =0, 1,2,...; now, (7.1.5) is a con-
sequence of Theorem (7,1).

As another application of Theorem (7,1), we prove

(7,3) Theorem. Let (7.0.1) hold, & € §, and suppose that

(7.3.1) for each i=0,1,2,... and each compact K = G, there exist m; =
=m{.,K), M; = M(., K)e Z(I; p) such that

(PEC(I;G)a ¢(I)CK:>mi§Ti(P§Mi

(7.3.2) there exist d > 0 and a nondecreasing scalarvalued function & — y(9),
8 €(0, d) such that lim W(3) = 0, and a scalarvalued ye Z(I; p), y = 1
6-0+

such that
X, X €G, [xl—x2|§d, tel, i=0,1,2,...=

= ITif1 - Tile = l/’('351 - le) X

(7.3.3) for each compact K = G, lim [; T,2dp = [* Tok dp, t €I, x € K, uniformly
on I x K, the integration being F

(7.3.4) (&) has an F-solution @, on I which is strongly F-unique there

Then (7.1.5) is fulfilled.

Proof. Evidently, (7.3.1) = (7.1.1). Note also that using Lemma (2,6) we get from
(7.2.3)

(735)  xyeCI;G), i=0,1,2,... =>|Tx - Ty| < ¥(|x — y|) x
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Before proving (7.1.3) we show that a similar assertion concerning step functions is
true. Let 1 =15 <71, <..- < T =71+ a, and let se C®(I; G) be defined in the
following way: s(t) = e;€ G for 1, St <, j=1,...k and s(t + o) =
= €.+, € G. Then we have for each te(r,7 + a), i =0,1,2,... that [} T;sdp =
= j:; Teydp + ... + [h, Tie,+1 dp, where 0 £ r < k; F-integrals exist according
to (7.3.1). From (7.3.3) it follows that, given & > 0, there exists i, such that j=
=1,...,k i> i, tel implies H: Tie;dp — [i Toe; dp| < ¢/2k. However, it holds
eg |[L Tie;dp — [t Toe;dp| < £ (Tie; — Toe;) dp — i ] < 2ef2k) = ek
Hence i > ig, tel = |[t T;sdp — [; Tos dp| < k(g/k) = &; this proves our assertion.

We pass to the proof of (7.1.3). Let x;€ C(I; G), i = 0,1,2, ..., lim ||x; — xo|| =
= 0. Then there exists an open set Q such that Q is compact, Q = G and that x(I) =
cQ for i=0,1,2,... According to (7.3.1), Tx;e #(I;p) for i =0,1,2,...
Further, given ¢ > 0, there exists in view of (7.3.2) a 6 > 0 such that y(5) [, xdp <
< €[6. Let s denote a step function on I such that s(I) = @ and sup {|s(r) — xo(1)|;
tel} < §.Letiye A besuchthati > iy = |x; — Xo| < 6 and

(7.3.6)

t
J(Tis — Tos)dp

<§2— foreach tel

Then, in virtue of (7.3.2) and (7.3.5), we have for i > i, and tel

rt

(737) | Tox = Toxo| dp < gb(a)j xdp <2
JT I
ot

(7.3.8) IToto — Tl dp < x/z(é)j rdp <
Jr I
rt

(7.39) [Tos — Toxo| dp < n//(a)f xdp <2
JT I

As a consequence of (7.3.6) to (7.3.9) we have immediately |[{(T.x; — Toxo) dp| < ¢
for each i > i and ¢ €I so that (7.1.3) is proved.

It remains to prove (7.1.2). For i e A", let ¢; be F-solutions of (&) on (1, 1,),
with ¢(<7, 1)) = K, a suitable compact in G. For {t,,t,)> = {1, 1>, we have

: T2 12 17
q’i(tz) - (Pi(lx) =J Tp;dp =J‘ T,0,dp + J (Ti(Pi - Ti‘pi) dp

ty t t

T
writing here @; = ¢,(t,) for simplicity of notations. Hence

(7.3.10) lot) — oit)] =

12
J (Ti(pi - Ti‘pi) dp

151 t

12
j T, dp! +
|

500



In virtue of (7.3.3), there exists a nonincreasing function i — A(i), i € A", such that
lim 4 = 0 and

1

2 t2
(7.3.11) <ty 1,0 <1, xeK, ied =>j Txdp =f Tok dp + R(ty, t5, X, i),

t1 ty

where |R(ty, t5, x, i)| < A(i) for each t;,1, €I, xe K, i€ & According to (7.3.1),

2mo(., K)dp < [ Tokdp < [;2 Mo(., K) dp, whenever {t;,t,> = I, xe K. Put

0(6) =inf {[medp; 1<ty <t £t+a, t, —t; <0}, and similarly o(5) =

= sup {[> Mo dp; ...}. Then lim ¢(5) = lim 6(8) = 0, and ¢ < 0 < 0. Further, it
-0+ -0+

holds o(t, — t;) £ [i? Tk dp < o(t, — t,), whenever {t;,t,) = I, x € K. Putting
¢ = max (—g, 0), we have under these conditions ] i Tok dp] < ¢(t, — t,). Using
(7.3.11), we get

I pty
(73.12) f TR dp| < otz — 1,) + A(i)

t

whenever i e &, {t;,t,> = I, and x e K.

Let 0 < ¢ < d. We show that there exist i € & and J, > 0 such that t,,¢, €
€T, 1), 0<t, —t; <&, i>ip= I(p,-(tz) — goi(t1)| < &. Choose i,e A such
that i > iy = A(i) < &/3; further, let §, > 0 be such that ¢(3,) < ¢/3 and v(5,) Y(¢) <
< ¢&[3, where v is defined by v(8) = sup {[;? xdp; 0 < t, — t; £ 6, t;, 1, €I}. Now,
leti > ig,0 < t; — t; < &,<ty, 12> < {1y, 7;»; supposing that |p(t;) — @(t,)| = &
for some i > iy, there would exist 75 € (t;, 1,) such that |p(t;) — @(t,)| = ¢, but
|@i(f) — @i(t,)| < & for each t € (t;, t5). Thence we get in virtue of (7.5.3)

(7.3.13) j T — T dp < j ") W(lods) — ot)]) dp (5) = v(e) v(5o)

This, however, gives a contradiction, for using (7.3.12), we get

13
J T.®;dp

ty

+ <

€= |¢i(t3) - (Pi(tl)l =

t3
J‘ (Tzﬁoi - Ti¢i) dp
153

IIA

(30) + AG) + Y(e) () < S+ S+ =
: 3 3 3
Theorem (7,3) is thus proved.
In the last two theorems it was supposed that minor and major functions mg, M, €
€ F exist; note that this wasn’t required in Theorem (7,1). Before proving a theorem
of this kind, we introduce a new notion.

(7,4) Definition. Let {m,}, {M;} be sequences of functions on I. We say that the
pair {{m;}, {M,}} has the property (Vi) with respect to an F-integration, or shortly
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has the property (Vi, ) iff
(741) ieN =my M;e F(I;p), m; £ M,; ae.onl
(7.4.2) the sequences {[:m; dp}, {|: M d p} are equicontinuous on I
(743) m; £ f; £ M,, f; measurable on I, ie A", tel, limasf, = f, on I =
= foe Z(I; p) and lim [if,dp = [if, dp
(7,5) Theorem. Let (7.0.1) hgld, F € §, and suppose that

(7.5.1) for each compact K = G, there exists a pair {{m(.,K)}, {M{(., K)}}
having the property (Vi, &) such that ie /", ¢ € C(I;G), ¢(I) = K =
=m; = T,p < M,

(7.52) x;€eC(I;G),i=0,1,2,..., lim |x; — xo| = 0= limg(T;x;, ToxXo) = 0
(7.5.3) (&,) has an F-solution @, on I which is strongly F-unique there
Then (7.1.5) is fulfilled. '

Proof. (7.5.1) = (7.1.1), (7.5.3) = (7.1.4), and (7.1.2) follows from (7.5.1), as
aresult of (7.4.2) and an inequality like (4.2.5). Finally, to prove (7.1.3), suppose that
x;€C(I;G), i =0,1,2,..., lim|x; — xo| = 0. Hence there exists a compact

K = G such that {J x,(I) = K. From (7.5.1) we infer that there exists {{m., K)},
i=1

{M(., K)}} with the property (Vi, #) such that m; < Tx; < M, for each ie A"
From (7.5.2) and (7.4.3) we infer that [} Tox, dp = lim [} T;x; dp for each t € I.
We are going to show three examples of pairs with the property (Vi).

(7,6) Theorem. Let & € §, and suppose that m;,, M;, i = 0, 1,2, ... are such that

(7.6.1) my, M;e #(I;p), foreach i=0,1,2,...
(7.6.2) m; £ M; a.e. onl, foreach ie N
(7.6.3) limas m; = m,, limas M; = M,

(7.6.4) the sequences {[im;dp}, {[: M, dp} are equicontinuous on I
(7.6.5) tel=lim [im;dp = [imydp, lim [{M;dp = [: M, dp.
Then the pair {{m;}, {M;}}, i € A", has the property (Vi, F).

Proof. This is a direct consequence of Theorem (1,10).

In two further theorems we take p = A for simplicity. Let F be a continuous
function on I, and let E = I. We say that F is AC on E iff, given ¢ > 0, there exists
d > 0 such that

7.6.6 a,b;eE, j=1,..,r, a;<b;<a,<b,=...Za,<b,,
J J

(b — a)) < 6 =>JZ;:1|F(bj) — F(a)| <

r
i=1
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Further, we say that a sequence {F;} of functions continuous on I is equi-AC on
E < I iff, given & > 0, there exists 6 > 0 such that (7.6.6) holds independantly of
ieN.

(7,7) Theorem. Let m;, M;, i € & defined on I be such that
(7.7.1) ieN=m;, M;eZ(I;2), m;<M; ae on I
(7.7.2) the sequences {[,m;dA}, {[i M;dA}, tel, are equi-AC on I
Then the pair {{m;}, {M;}} has the property (Vi, &).
Proof. (7.4.1) follows from (7.7.1), (7.4.2) is a consequence of (7.4.2). To prove

(7.4.3), it is sufficient to note that (7.7.2) gives that {[; f; d1} is equi-AC, and use the
Lebesgue-Vitali theorem.

There exists a generalization of the Lebesgue-Vitali theorem to Z-integration, which
enables us to prove a corresponding analogue of Theorem (7,7).

(7,8) First, we say that F is ACG on I iff F is continuous on I and there exist E;,

ie A, such that J E; = I and F is AC on each E;. Further, we say that a sequence
i=1
{F;} of functions continuous on I is equi-ACG on I iff there exist E; = I, ie A/,

such that J E; = I and {F,} is equi-AC on each E,.
i=1

Now, there is the following theorem of DizvarSejsvili [5]: Let f; e 9(I; ), i€ A,
and let f be such that lim o(f;, f) = 0. Put F(t) = [ f;dA. If {F} is equi-ACG and
equicontinuous on I, then f € 9(I; 2) and lim [, f;dA = [, fdA.

A similar theorem concerning 92 -integration is proved in the same article, too.

A second non-trivial example of systems with the property (Vi) may now be stated.

(7,9) Theorem. Let m;, M;, i € A", defined on I be such that
(79.1) ieN =my, M;eD(I; %), m; < M; a.e.on I
(7.9.2) the sequences { [t m;dA}, {|: M; dA} are equi-ACG and equicontinuous on I.
Then the pair {{m;}, {M,}} has the property (Vi, 2).

Proof. As it is similar to the preceding reasoning, we note that the main feature
consists in the proof that {|;f; d1} is equi-ACG on I. As {[im,; dA} resp. {[t M, dA}
is equi-ACG on I, there exist e; resp. E;, i € A, such that J e; = U E; = I, and that

i=1 i=1
{[*m;dA} resp. {[; M;dA} es equi-AC on each e; resp. E;. The end of the proof is
now based on the identity (Ue;) n (UE,;) = U(e; N E)).
In this order of ideas it is appropriate to state the following local existence theorem.

503



(7,10) Theorem. Let (7.0.1) hold, & € &, and suppose that

(7.10.1)  for each compact K < G, there exists a pair {{m(., K)}, {M{(., K)}}
having the property (Vi, ) such that ie /", e C(I; G), o(I) =« K= m; <
=T = M;

(7.10.2) x;eC(I;G), i=0,1,2..., lim|x;, — x| =
= 0= lim o(T;x;, Toxo) = 0

Then there exists f € (0, o) such that (&,) has an F-solution ¢, on {t, © + p).
Further, if

(7.10.3)  (&,) has at most one F-solution on{t,t + ), thenlim ¢; = ¢, uniformly
on {1, T + BY; here ¢, denotes an F-solution of (&) on <z, T + B>.

Proof. Choose a cube K < G with centre ¢, and using (7.10.1) a pair {{m;}, {M}}
with the property (Vi, #), according to K. From equicontinuity of {[:m{., K) dp},
{[t M., K) dp}, there exists f € (0, o) such that & + [;m;dp and & + [t M, dp lies
in the interior of K for each t € (t,t + ). Theorem (3,1) now yields solutions ¢;
of (€;) on (t, © 4+ B) for each i € A"; as {¢;} fulfil the conditions of Ascoli’s theorem,
there exist iy, iz, ... and Y € C({t, T + B); G) such that ¢, converge to ¥ uniformly
on {t, 7 + B). From (7.10.1) and (7.10.2) we get that lim [} T, ¢, dp = [i Toy dp
for each t € {t, T + B) so that y is an F-solution of (§,) on {(r, T + B). The remain-
ing part of the proof is now clear.

8. LINEAR EQUATIONS

The starting point of this section is the following theorem on a characterization of
linear Carathéodory operators, i.e. Carathéodory operators T on C(I) having the
property T(Ax + py) = ATx + uTy, for each 4, pe 2, and x, y € C(I).

(8,1) Theorem. Let T be a linear Carathéodory operator on C(I). Then there
exists an n X n matrix A consisting of finite measurable functions on I such that
To = [A@] for each ¢ e C(I). Any other matrix satisfying the same relation
differs from A at most a.e. on I.

Proof. For each characteristic function y;, of an interval J < I, the relation
T(0) = XJT(/’ is evidently valid. Let e; denote the vector function (6, S 6)
on I, with 1 in the j-th component, and zero otherwise. Let us define the j-th column
of the matrix 4 as an arbitrary vector function A; € $(I; p) such that [4;] = Te,,
J=1,...,n. Thus, de; = A;, and we prove that Ts = [As] for each step function s
on I. First, let { = {ye; + ... + {,e,, where {;e Z for j = 1, ..., n. Then

(8.1.1) TC = Y{;Te; = YL[A;] = Y[LAe;] = Y[ALe;] = [AL]
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Now let s, a step function on I, be of the form s = x;,{s, + --- + 25,{,,, where {’s
are defined as above, and y’s denote the characteristic functions of intervals Jy, ...
..., J, = I. Then, by (8.1.1) and linearity,

(8-1-2) Ts = Z Tl = ZXJk[ACJk] = Z[AXJkCJk] = As

Let ¢ € C(I), and let step functions s;, i € 4", converge to ¢ uniformly on I.
Then, in virtue of Lemma (2,6), lim o(Ts;, Tg) = 0. On the other hand, 4s; converge
to Ag pointwise on I so that Tg = [A¢]. From the proof we infer the “uniqueness”
of A.

(8,2) Corollary. Let T be a Carathéodory operator on C(l) such that the mapping U
defined by Up = T — T0 is linear. Then there exist an n x n matrix A consisting
of finite measurable functions on I, and a vector function be S(I; p) such that
Te = [Ago + b].

The preceding sections give us some theorems concerning the linear equation

(26) *(i) = € + J (Ax + b)dp

where & € #" and A, b are described above. In what follows, matrices are considered
as n%-dimensional vectors.

(8,3) Theorem. Let A = | aj,|| be such that A e £(I; p). Let € § and b e F(I; p).
Then (£ &) has an F-solution ¢ on I, which is strongly {F }-unique there.

Proof. This is a straightforward consequence of Theorem (6,2). It suffices to take
o = 0, and define % as |A|, where

(83.1) 4] (1) = max (él|a1k(t)|, kzl au(t))

We are going to show the effect of Theorems (7,2) and (7,3).
Let IT denote a metrical space of parameters with metric l,u — vl, and let y, ell.
In what follows we suppose that

(8.3.2) to each pell, there corresponds an n x n matrix A(., u) € Z(I; p), and a
vector function b(., u) € S(I; p).

We shall consider the equations
t
(zé,) x(i) = & + J [A(., #) x + b(.. )] dp
and prove two theorems on continuous dependence of solutions of (£¢&,) on p.
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(8,4) Theorem. Let (8.3.2) hold, # € §, and suppose that
(8.4.1) b(.,u)e F(I; p) foreach pell

(8.4.2) the mappings n — A(., p), p — b(., p), from IT to S(I; p), are continuous
at po
(84.3) the sequence {[tJA(., )| dp} is equi-AC on I, whenever lim p; = p,

(8.4.4) the sequence {[; b(., ;) dp} is equicontinuous on I, whenever lim y; = p,
(8.4.5) lim [;b(., u;)dp = [:b(., po) dp for each t € I, whenever lim p; = .

(8.4.6) For each pell, let ¢, denote the F-solution of (£&,) on I, existing in
virtue of Theorem (8,3). Then, given ¢ > 0, there exists & > 0 such that
well, |u = kol <6 = o, = 9 <&

Proof. It is clearly sufficient to prove this for any IT" < IT, IT" = {u¢, pt1, 2, ---}»
where lim p; = po, ; * po, i € A". We show that the assumptions of Theorem (7,2)
are satisfied. For simplicity of notations, we write i instead of p;, and similarly. For
a non-empty compact K = 2", put |[K|| sup {|x|: x € K}. To prove (7.2.1), it is
sufficient to put m; = — JA(., )]. [K| + (., i), M, =A(., i)} - |K| + (., i).
(7.2.2) follows from (8 4.2), and (7.2.3) follows from (8 4.3) and (8.4.4). (7 24) is
a consequence of (8.4.2), (8.4.3) and (8.4.5), using the Lebesgue-Vitali convergence
theorem and the simple fact that limas A; = A, = limas |4] = J4,]. To prove (7.2.5),
it is sufficient to note that if for finite a;, x;, i = 0, 1, 2, ... defined on I we have that
limas a; = ao, limx; = x, pointwise, then limas a;x; = ayx,. Finally, (7.2.6) is
true in virtue of Theorem (8,3).

@, 5) Theorem. Let (8.3.2) hold, # € §, and suppose that

(8.5.1) b(.,u)e F(I; p) foreach pell
(8.5.2) sup JA(., p)]e £(I; p), whenever lim p; = p,
’ 13 t
(8.5.3) limJ A(.,p)dp = J A(., po)dp foreach tel,

whenever lim pu; = u,
t t
(8.5.4) limJ b(., p;)dp = f b(., uo)dp foreach tel,

whenever lim y; = uq.
Then (8.4.6) is fulfilled.

Proof. We use again the simplifications indicated in the beginning of the preceding
proof. (7.3.1) follows as in the preceding theorem. To prove (7.3.2), note that
|Tits = Tito| = [JA(, i) (xo = x2)[] S A, i [x1 = x2f; now we put d =1,
¥(8) = 8, x = max {1, sup |A(., i)[} so that the result follows from (8.5.2). Finally,
(7.3.3) follows from (8.5.3) and (8.5.4), and (7.3.4) is true in virtue of Theorem (8,3).
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(8,6) Example. It is of interest to compare the applicability of both theorems. While
Theorem (8,5) is seemingly more general, we show a counter-example to this hypo-
thesis.

Let (t,7 + a) =<0,1), J; = (27, 27"*"), ie A", and let {{;} be a sequence of
positive numbers such that

M

(8.6.1) (27 =

i=1

(8.6.2) lim¢2" =0

Let y;, denote the characteristic function of J;, and put a; = Zix,i, ieN. Put
further a, = 0. Let us consider the equations

t
(8.6.3) x(1) =1 +faixdl, i=0,1,2,...

0

According to Theorem (8,3), the function ¢,(f) = exp [oa;d4, i =0,1,2,... is
the strongly {&}-unique solution of the i-th equation in (8.6.3). Here evidently
lim |@; — @o| = 0. This phenomenon can be discovered without knowledge of the
explicit formulae giving the solutions, when we use Theorem (8,4). Indeed, (8.4.1),
(8.4.4) and (8.4.5) are fulfilled trivially, (8.4.2) follows from pointwise convergence
of a; to a,, and (8.4.3) holds in virtue of (8.4.2) and (8.6.2), as it follows from the
Lebesgue-Vitali theorem.

However, Theorem (8,5) is non-applicable here, for in view of (8.6.1), the assump-
tion (8.5.2) is not fulfilled.

(8,7) Remark. The theory described in this paper, although seemingly general, has
a rather limited use. Indeed, existence of minorants and majorants m(., K) and
M(., K) plays clearly a dominant rdle in the results concerning existence of solutions
and continuous dependence on a parameter. Let, for example, [t, x] - f(1, x),
[t, x] €I x G be such that (2.4.1) and (2.4.2) are fulfilled, and that there exist # € §
and m, M € #(I; p) such that

(8.7.1) [t,x]el x G=m(1) < f(t, x) < M(t)

Then 0 < f(1, x) — m(t) < M(t) — m(t). Thus, there exists g satisfying the usual
Carathéodory conditions such that f(t, x) = m(t) + g(t, x); for M — m e £(I; p),
as a result of (8.7.1).

Let us show that this theory is of no use for the simple linear equation

(8.7.2) *() = € + j Axdz,

T

where A€ D(I; ) — L(I; ), n = 1.
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Let f >0, and put & = ¢ — f, & = & + B. We prove that there exist no
minorants and majorants, corresponding to K = (&, &,>. We put P = {tel;
A(t) 2 0}, N = {tel; A(t) < 0}. Then we have for each x € {y, »)

(8.7.3) teP=A(l) & = A()x = A(1) &
teN = A1) & < A(t) x < A(1) &

Hence, the minimal function M | I satisfying the condition [, x] eI x (&, &) =
= M(1) = A(t) x, is given by M(t) = A(t) & for te P, M(t) = A(t) &, for teN.
However, M ¢ #(I; 2) for any & e § whatsoever, as it is easy to see, and all the more
no M; = M is Z-integrable.

This example also shows that existence of minorants and majorants is unnecessary
for a solution to exist. Indeed, the function ¢ defined by ¢(t) = Eexp [t AdA is
a:@*-solution of (8.7.2) on I, as a simple consequence of Lemma (1,14). Also, it is of
interest that Theorem (5,1) on uniqueness is of no use here; for if |A(f) x — A(f) y| <
< ¥(t, |x — y|) a.e. on I, then we see from (5.1.3) that [3**|A| dA converges for each
ye(t 1+ a).

9. APPLICATIONS TO DIFFERENTIAL EQUATIONS

The results of the preceding sections give some new theorems in the theory of
differential equations; we only intend to state here a result on continuous dependence
on a parameter, generalizing thus theorem 4 of [8].

Under the [z, x]-space we mean 2"*!, the points of which will be denoted
[, x4, ..., x,], or shortly [#, x]. Let D be a non-empty region in [¢, x]-space; for
x e R", let D = {t e ®; [t, x] € D}, and similarly for D' 1, Further, let proj, D =
= U{D"*; xeR"}, and similarly for proj, D. In what follows, measurability
notions refer to A. )

Let there be given a mapping f from D to #". We say that a continuous vector
function ¢ | J, where J is an interval in proj, D such that J° # 0, is a solution of the
differential equation

(2¢6) x' = f(t, x)

iff there exists & e § such that for each closed interval I’ = J and each region
G’ < ®" such that I' x G’ = D, the mapping ¥ — [(f|I' x G')-y], ¥ e C(I'; G'),
is a Carathéodory operator on C(I'; G'), and ¢ |I’ is an ZF-solution of x(f) =
=o(7) + [L.(f|I' x G')oxdAon[, for a7 eI The function ¢ | J is then called
an Z-solution of (2¢). '

As in section 8, IT denotes a metrical space of parameters with metric [,u — vl. Let
o €IT, and for any 9 > 0 put I1(9) = {pell; |u — po| < 9.
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(9,1) Theorem. Let D be a region of [t, x|-space, {a, b) = proj, D, N = <a, b,
A(N) =0, te{a, b). Let { be a mapping from II to proj, D continuous at p,; put
o = &(uo) and suppose that [z, & € D. Let [t, x, u| — f(t, x, 1) be a function on
D x IT with values in R" such that
(9.1.1) for each x € proj, D and each pell, f(., x, p) is measurable on D'
(9.1.2) for each t e proj, D — N and each pell, f(t, ., p) is continuous on Dt 1

(9.1.3) for each te<a, by — N and each x € G, the function f(t, ., .) is continuous
at [x, po]-
Further, let & € § and suppose that
(9.1.4) the equation

((gguo) X' = f(t, X, .uo) s X(T) =&

has an F-solution @, | {a, b); this solution is unique in the sense that if Y ] {c, d),

where {c, d) = {a, b}, is an F-solution of x' = f(1, x, po) passing through a point

of the graph of @, then ¢, I {e,dy =y

(9.1.5) for each peIl and each compact K < proj. D, there exist functions
m(., u; K), M(., u; K) e #(<a, b; A) such that t e {a, b), xe K, [t, x, u] €
€D x IT = m(t, p; K) < f(t, x, n) < M(t, i; K)

(9.1.6) limas m(., u; K) = m(., uo; K), limas M(., u;; K) = M(., po; K), when-
ever lim u; = p,

(9.1.7) the sequences {L(., p;; K)}, {U(., ;s K)}, (where e.g. L(t, u; K) = [im(.,
I K) dl), are equicontinuous on {a, by, whenever lim u; = y,

(9.1.8) for each te<a, b, L(t, .; K), U(t, .; K) are continuous at fi,.
Then, given ¢ > 0, there exists & > 0 such that, for any p € I1(5). every F-solution
@y of

(@5, ¢ S )= 50
exists over {a, by, and |@,(t) — @o(t)| < & for each t€{a, b).

Proof. Let ¢ > 0 be such that
G = {[t,x] e #"""; the distance of [t, x] from the graph of ¢q is <3e} lies in D.
Let n be such that 0 < 5 < ¢ and sup {Igoo(t) - (po(t’)|; t,t' €la, b), |t — t'l <
< 5} < & Suppose for simplicity t = a, and let Tt =a <17, <1, < ... <71, = b,
max;{rj — T j=1,..,r)<n Put Q; =14, 7> x~(<p0(ri) — 2, @o(t)) +
+ 2¢), the meaning of the last symbol being obvious. Then Q; = Gforj=1,...,r,
as is easy to see.

It follows from Theorem (7,2) that we have 9, > 0 and ¢ > 0 such that pe
ell(3,), |& — @o(t,-1)| < & implies: every #-solution ¢ of X" = f(t, x, 1), X(,-1) =
= &, exists over <7,_;, 7,), and [@(f) — ¢o(f)| < ¢ holds there; the only point here
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is to take into consideration the variability of £, and this is proved using a simple
device of introducing the function f(t, x — &, p). Similarly, there exist 9,_; < 9, and
&1 < ¢, such that pell(9,_,), |¢-1 — @o(t,-2)| < &, implies that every solu-
tion ¢ of x" = f(t, x, p), x(1,2,) = &,_, exists over {t,_,, 1,), and |<p(t) - (po(t)l <e
there; etc. Finally, there exist 9, and ¢, such that supposing p e II(9,) and |é1 -
- (po(r)| < gy, it follows that every solution ¢ of x' = f(t, x, ), x(r) = &, exists
over (1, 7,> = <a, b, and |p(t) — @o(1)| < & for each t € {a, b), whence the conclu-
sion. The case a #+ t may be dealt with in a similar way.

10. REMARKS AND PROBLEMS

Here, we include some examples relevant to the previous definitions, and collect
some problems.

(10,1) In (1,2), classical examples of F-integrations have been given. As a recent
contribution, the 2-integration defined by Ka. Iseki in [6] should be mentioned.
For an example of #-integration having approximately continuous antiderivatives,
see the approximately continuous Perron integral of J. C. Burkill [2]; that paper was
the starting point to many other researches in this direction.

Let us still show quite a simple example of an #-integration, called here .#2, such
that .#2-antiderivatives needn’t even be approximately continuous.

(10,1,1) Let {a, b) = R, and let {c,d) = <a, b). We say that fe ﬂf(c, d; ) iff
(10.1.1.1)  fis .#*-integrable over {c, d) (see [14], Vol. II, Chapter 11)
(10.1.1.2) the second indefinite integral F of f has a finite derivative at each point
tele, d).
Then we put (.#2)[?fdi = F'(d) — F'(c). Using known properties of .-
integration we see immediately that .#2 is an *-integration, which is more general
than that of Perron. To show that the corresponding antiderivatives needn’t be

approximately continuous, it is sufficient to put a = —1, b = 1, F(x) = x* sin (1/x),
F(O) =0,f=F"forx +0, f(O) = 0.

(10,1,2) Let us show that there exist at least two maximal elements of the set ((’y, <)
To this end we define &7, € § as follows.
First, recall that f € S(a, b; 4) is o/-integrable on {a, b) iff

(A1) fis measurable on {a, b) and lim iA{t € {a, b); |f(t)| >i}=0

(42) 1lim (&) [2[f] d4, where [f]*(f) = f(t) resp. O according to |f()| < i resp.
|f(1)| > i, exists. This last limit is called the o/-integral of f over {a, b), and is
denoted by (<) [2fdA.
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As already mentioned in (1,2), o ¢ &*; for, as it is known from [12], if f is
of-integrable on <{a, b), then f needn’t be o/-integrable on each {c, d) = {a, b).
We say that f e o/ (a, b; A) iff

(10.1.2.1) for each t € (a, b, f is o/-integrable on <a, 1)
(10.1.2.2) () [,f dA is continuous on {a, b).

Using known properties of «/-integration, it is easy to prove that o/, € §. Now,
existence of two maximal elements of (&, <) readily follows, when we use a result of
I. A. VINOGRADOVA [13], p. 136: There exists a function f on <0, 1> such that f is
both /- and Z,-integrable, but (£,) [o fdA *+ (2,) [s fdA.

This example also shows that there exist more than one integration corresponding
to the class &/, N 2, and the Lebesgue measure A. It would then be preferrable to
write instead of “#-integration” e.g. “(#, ?)-integration”, with ? standing for the
function f — (?) [f, f € #. However, following the usage, we use only one letter to
distinguish integrations.

(10,1,3) It is of interest to inquire into the possibility of refinding f supposing an
& -antiderivative of f is given. More precisely: Given an integration & € &, does
there exists a filter 2 converging to 0 such that, for each fe #(I; 1), limg h™}(F) .

. [i*"fdA = f(1) a.e. on I? We show that the answer to this question is “no”. To
this end, it is sufficient to construct an integration % (I; 2) such that there exists
a function g € & such that (%) [, g d = 0for each subinterval J of I, without f = 0
a.e.onl.

Let g be a finite A-measurable function on I such that [, max (g, 0)di =
= — [;min (g, 0) dA = oo for each interval J < I. Let ¢, d) < I, and let s be any
step function on {c, d». Now define % (c, d; ) as the set of all functions of the form
f+s.g|<c. dy, with fe Z(c, d; 2), and put (F) [4f + sg) dA = (&) [ifdA Tt is
easy to see that the integration 3‘*’ € & solves our problem.

Let us still add two problems on integrations.

Problem A. Give a direct definition of a maximal integral in (&, <).

Problem B. Does there exist # € §, f€ #(I; 1) and ¢ which is AC on I such that
fo ¢ F(I; )7

(10,2) Passing to Carathéodory operators, it is perhaps of interest to note that the
set of all Carathéodory operators on C(I; G) may be given the structure of a complete
linear metric space. Here, the metric dist may be defined as follows: dist (Tl, Tz) =
= sup {o(T1¢, T2¢); @€ C(I;G)}. Of course, the fundamental question is the
following one on representation:

Problem C. Is each Carathéodory operator of the classical type?
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(10,2,1) The notion of a solution of (&) was based here on the concept of integra-
tion. If we restrict ourselves to classical Carathéodory operators, we may introduce
the following kind of a “formal” solution of (&):

Problem D. Let f fulfil the assumptions of Theorem (2,4). Does there exist a con-
tinuous vector function ¢ , {t,7 4 8, 0 < § < a, such that ¢(t) = f(¢, ¢(t)) a.e.
on {t, 7 + 6)? (This problem was also published in Casopis pro péstovani matema-
tiky, 91 (1966), p. 104.)

(10,2,2) In connection with the notion of the strong uniqueness of solutions, it is
useful to note that if we put t =0, @ = 7, G = @, f(f, x) = sin™? tx? for [1, x] e
€(0,m) x & and f(0, x), f(n, x) define in an arbitrary way, then 0 | {0, ) is the
Z-unique solution of x(f) = [§sin™? s x(s)dA on <0, n), which is not strongly
Z-unique there.

We have the following question on uniqueness:

Problem E. Does there exist a Carathéodory operator T such that a corresponding
equation (&) has an Z-unique solution on <t, T + a), which is not #-unique there
for some F o ¥£?

(10,2,3) Example. In connection with the previous problem, it may be of interest
to investigate a particular equation.

Put A(0) = 0, A(t) = ¢* sint~® for t € (0, 1). Then a(t) = A'(t) € R exists for each
1€<0, 1>; hence A is ACG, on 0, 1) [11]. Moreover, 4* is ACG, on <0, 1)
without being AC there. The first assertion is a consequence of Lemma (1,14); to
prove that 43 is not AC on <0, 1), put ¢, = 2'/°[(4i + 1) n]"’“, ie . There is

a first pomt 1} to the left of ¢; such that A(t;) = 0. Now we have Z (A(t) — A1) =

(2/n)2 (4i + 1)~ = oo, whence easily the assertion.

Let us consider the equation
(10.2.3.1) x(1) —f a(s) x*/3(s) da

It is clear that 0 ] <0, 1) is an Z-solution of (10.2.3.1). On the other hand, 3734 is
a P-solution of this equation on {0, 1), as we easily prove using differentiation;
however, this is not an #-solution, as we proved above. Further, it is clear that the
functions 37343y, where y is the characteristic function of a suitable subset E <
< <0, 1), give new Z-solutions of (10.2.3.1); some of them are even Z-solutions.
The question of other #-solutions of (10.2.3.1) remains open.
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(10,3) Another proof of Theorem (3,1) can be given using Schauder fixed-point
theorem. Let C, = {p e C(I; G); tel= {L(t) £ ¢(t) — £ < U(r)}. Then C, is
a closed convex subset of C(I). Define T | C, as follows: (Te) (1) = ¢ + [ T dp.
Then T is a continuous map from C, into itself such that TC, is relatively compact.

Problem F. It would be of interest to state an existence theorem modelled on
Theorem (3,1), for *-integrals with approximately continuous antiderivatives. Here,
a substitute for Ascoli’s theorem is needed.

(10,4) Using Theorem (4,2) we are able to complete Theorem (3,1) as follows.
Suppose that the #-solution ¢ of (&) obtained there is #-unique on I. Then it is
strongly #-unique there. Otherwise there would exist an Z-solution of (&) on
{t,7 + B>, pe(0,a), not of the form ¢ | {t, T + B). However, in view of (3.1.2),
(3.1.3) and Theorem (4,2), this solution may be extended over I to yield an
Z -solution ¥, on I different from ¢. In the same way, {& }-uniqueness of ¢ implies
its strong {& }-uniqueness.

(10,5) A new feature in Theorem (5,1), which itself is a modification of a known
result of Kamke, consists in the fact that there, each #-solution is even {Z }-unique.
Let us still remark that Theorem (5,2) may be generalized as follows.

(10,5,1) Theorem. Let y € #(I; p), x finite nonnegative. Let @ be a positive non-
decreasing function on (0, c0) such that

1
(10.5.1.1) J 0 'di=w

0

and let ©(0) = 0.
Then the function [z, r] - x(t) O(r), [1, r] e I x (0, o), satisfies the assumptions
(5.1.1) to (5.1.4) of Theorem (5,1).

Proof. To prove (5.1.4), let ¢ be a non-zero #-solution of

(10.5.1.2) o(t) = J ) O(a(s)) dp

T

Hence there exists (a, by < I such that o(t) > 0 for each € (a, b), o(a) = 0. In view
of (10.5.1.1), there exist 7, = 0 < 7; < ... < 7, = ¢(b) such that

k

(10.5.1.3) Y (5= 5m) 07 > j vdp
J= I

Let t;e<a, by be such that o(t;) =1; j=0,1,...,k; then o(t;}) — o(t;;) =

= Jij-1 2(s) ©(e(s)) dp < O(e(t))) fi2_1 x dp.
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K k
Hence Y (t; — 1;-,) @ '(t;)) £ Y [{/_y xdp < [;xdp, in contradiction with
i=1 j=1
(10.5.1.3).

(10,6) Theorem (6,2) is a generalized result of Exercise 1, Chapter 111 of [4], which
gives a global existence theorem for linear differential equations with #-integrable
coefficients.

(10,7) Besides general theorems on limit passages in integration, this section was
influenced by [10]; thus, Theorem (7,3) is a direct generalization of theorem 2 of
that article. The motivation for applying compacts K there lies in effort to use these
theorems in the theory of linear differential equations.
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