Alois Švec
Deformation of surfaces in homogeneous 3-spaces

Czechoslovak Mathematical Journal, Vol. 18 (1968), No. 1, 137–143

Persistent URL: http://dml.cz/dmlcz/100817

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
DEFORMATION OF SURFACES IN HOMOGENEOUS 3-SPACES

ALOIS ŠVEC, Praha

(Received September 23, 1966)

The local existence questions of manifolds with prescribed properties are treated in many papers. In what follows, I devote myself to the study of deformations of the first order of surfaces in general homogeneous 3-spaces; I restrict my attention to cases in which the fundamental system of equations is immediately involutive.

Be given a homogeneous space \(G/H \) and a manifold \(M, \dim M < \dim G/H \). Consider an embedding \(\pi : M \to G/H \) and its lift \(\Pi : M \to G \). To \(\Pi \), let us associate the 1-form \(\omega : T(M) \to \mathfrak{g} \) defined by

\[
\omega(X_m) = (dL_{\pi(m)} \cdot \Pi)(d\Pi)_m X; \quad X \in T_m(M);
\]

\(L_a : G \to G \) being the left translation \(L_a g = ag \); the form \(\omega \) satisfies the integrability condition

\[
d\omega(X, Y) = -\frac{1}{2}[\omega(X), \omega(Y)].
\]

Let us write

\[
K(m) = \mathfrak{h} \oplus \omega(T_m(M)) \quad \text{for} \quad m \in M;
\]

clearly, \(\dim K(m) = \dim \mathfrak{h} + \dim M \). Further, write

\[
t^1 = \{ v \in \mathfrak{h} \mid [v, K] \subset K \},
\]

\[
t^2 = \{ v \in \mathfrak{h} \mid [v, K] \subset \mathfrak{h} \};
\]

the spaces \(t^1 \) and \(t^2 \) are Lie algebras. The lift \(\Pi : M \to G \) is said to be a tangent lift if there is a fixed space \(K \) such that

\[
K(m) = K \quad \text{for each} \quad m \in M.
\]

In [1], I proved the following assertion: Let \(m_0 \in M \) be a fixed point and

\[
\dim \mathfrak{h}/t^1(m_0) = \dim K/\mathfrak{h} \cdot \dim \mathfrak{g}/K,
\]

137
then there is a neighborhood $O \subset M$ of m_0 and a lift $\Pi' : M \to G$ of $\pi : M \to G/H$ such that $K'(m) = K(m_0)$ for each point $m \in O$.

Denote by $Gr^{\dim M}(h)$ the Grassmann manifold of all spaces K such that $h \subset K \subset g$, $\dim K = \dim h + \dim M$. To the given embedding $\pi : M \to G/H$, let us construct the mapping $p : M \to Gr^{\dim M}(h)$ as follows: choose an arbitrary lift $\Pi : M \to G$ and set

$$p(m) = \text{ad}(\Pi(m))h$$

for $m \in M$; obviously, the mapping p does not depend on Π.

Be given mappings $\pi : M \to G/H$, $\pi' : M' \to G/H$; $\dim M = \dim M'$. Further, let $T : M \to M'$ be a diffeomorphism. T is called a deformation of order k if, for each $m_0 \in M$, there is an element $g_0 \in G$ such that

$$j_{m_0}^k(\tau) = j_{m_0}^k(\text{ad}(g_0)(\pi' \circ T)),$$

$j_{m_0}^k(\tau)$ being the k-jet of τ at m. I have proved in [1]: Suppose $N(h) = h$, $N(h)$ being the normalizer of h. Then T is the first order deformation if and only if there are lifts $\Pi, \Pi' \circ T : M \to G$ of the embeddings $\pi, \pi' \circ T : M \to G/H$ such that the form

$$\tau = \omega' - \omega$$

is h-valued; the forms ω, ω' are associated to Π and $\Pi' \circ T$ resp. according to (1).

Let us read “K satisfies the conditions \mathcal{P}; π is arbitrary and (π', T) depends on x functions of y variables” as follows: “Be given manifolds M and M', $\dim M = \dim M'$. Let us write $K_{\mathcal{P}} = \{K \in Gr^{\dim M}(h) | K$ satisfies $\mathcal{P}\}$, and suppose that $\dim K_{\mathcal{P}} = \dim Gr^{\dim M}(h)$. Choose a point $m_0 \in M$ and an embedding $\pi : M \to G/H$ subject to the only condition $K(m_0) \in K_{\mathcal{P}}$. Then there is a neighborhood O, $m_0 \in O \subset M$, a diffeomorphism $T : O \to M'$ and an embedding $\pi' : T(O) \to G/H$ such that T is a first order deformation without being an equivalence. T and π' depend — in the usual sense — on x functions of y variables.” It is easy to see how to understand to similar statements.

Theorem. Be given a homogeneous space G/H, $\dim G/H = 3$. By a surface $\pi : M \to G/H$ we mean an embedding of a two-dimensional manifold. Let $N(h) = h$, $N(h)$ being the normalizer of h. Using the just introduced interpretation, we have:

A$_1$. $\dim t^1 = \dim t^2 = \dim h - 2$, $[h, K] = g$; (π, π', T) depends on 4 functions of 1 variable.

A$_2$. $\dim t^1 = \dim t^2 = \dim h - 2$, $\dim [h, K] = \dim g - 1$; π is arbitrary and (π', T) depends on 2 functions of 1 variable.

A$_3$. $\dim t^1 = \dim t^2 = \dim h - 2$, $\dim [h, K] = \dim g - 2$; π and π' are arbitrary and T depends on 2 constants.
B₁. \(\dim t^1 = \dim h - 2, \ \dim t^2 = \dim h - 3 \) and there is a \(k \in K \) such that \([h, k] = g; \ pi \ is \ arbitrary \ and \ (\pi', T) \ depends \ on \ 3 \ functions \ of \ 1 \ variable. \)

B₂. \(\dim t^1 = \dim h - 2, \ \dim t^2 = \dim h - 3, \ \dim [h, K] = \dim g - 1; \ pi \ and \ \pi' \ are \ arbitrary \ and \ T \ depends \ on \ 1 \ function \ of \ 1 \ variable. \)

C. \(\dim t^1 = \dim h - 2, \ \dim t^2 = \dim h - 4, \ and \ there \ is \ a \ k \in K \) such that \([t^1, k] \oplus h = K; \ pi \ and \ \pi' \ are \ arbitrary \ and \ T \ depends \ on \ 2 \ functions \ of \ 1 \ variable. \)

D. \(\dim t^1 = \dim h - 2, \ \dim t^2 = \dim h - 5; \ pi \ and \ \pi' \ are \ arbitrary \ and \ T \ depends \ on \ 1 \ function \ of \ 2 \ variables. \)

E. \(\dim t^1 = \dim h - 2, \ \dim t^2 = \dim h - 6; \ pi, \ \pi' \ and \ T \ are \ arbitrary. \)

Proof. Let us write \(\dim g = r + 3 \), and let us choose a basis \(e_1, \ldots, e_{r+3} \) of \(g \) such that \(e_1, \ldots, e_r \) is a basis of \(h \). Writing

\[
[e_x, e_p] = \sum_{\gamma=1}^{r+3} c_{x\gamma}^p e_\gamma \quad \text{for} \quad x, \beta = 1, \ldots, r + 3,
\]

we get

\[
c_{ij}^{i+1} = c_{ij}^{i+2} = c_{ij}^{i+3} = 0 \quad \text{for} \quad i, j = 1, \ldots, r.
\]

Be given a surface \(\pi: M \to G/H \), its lift \(\Pi: M \to G \) and the associated form

\[
\omega = \sum_{x=1}^{r+3} \omega^x e_x.
\]

The integrability condition (2) yields

\[
d\omega^x = -\frac{1}{2} \sum_{\beta, \gamma=1}^{r+3} c_{x\beta}^\gamma \omega^\beta \wedge \omega^\gamma \quad \text{for} \quad x = 1, \ldots, r + 3.
\]

Let \(m_0 \in M \) be a fixed point, and let us investigate \(\pi \) in its neighborhood. Write \(K = \omega(T_{m_0}(M)); \) obviously, \(\dim K = r + 2 \). In what follows, we shall be interested only in “general” surfaces satisfying \(\dim t^1(m) = r - 2, K(m) = \omega(T_{m}(M)). \) Each surface of this type has a tangent lift such that \(K(m) = K; \) let \(\Pi \) be tangent. Let us choose the basis of \(g \) in such a way that \(e_1, \ldots, e_{r+2} \) is the basis of \(h \). The surface \(\pi \) is given by

\[
\omega^{r+3} = 0,
\]

the exterior differentiation yields

\[
\psi_1 \wedge \omega^{r+1} + \psi_2 \wedge \omega^{r+2} + c_{r+1,r+2}^{r+3} \omega^{r+1} \wedge \omega^{r+2} = 0
\]

where

\[
\psi_a = \sum_{i=1}^{r} c_{i,r+3}^{i+3} \omega^i; \quad a = 1, 2.
\]
From the Cartan’s lemma, we get

\begin{align*}
\psi_1 &= A\omega^{r+1} + (B + \frac{1}{2}c_{r+1,r+2}^{+3})\omega^{r+2}, \\
\psi_2 &= (B - \frac{1}{2}c_{r+1,r+2}^{+3})\omega^{r+1} + C\omega^{r+2}.
\end{align*}

If

\begin{equation}
\tau = \sum_{i=1}^{r} v^i e_i \in h, \quad k = \sum_{i=1}^{r} k^i e_i + \sum_{a=1}^{2} k^{r+a} e_{r+a} \in K,
\end{equation}

we get

\begin{equation}
[v, k] = \sum_{i,k=1}^{r} \left(\sum_{j=1}^{r} c_{ij}^k + \sum_{a=1}^{2} c_{i,r+a}^{k} k^{r+a} \right) v^i e_k + \\
+ \sum_{A=1}^{3} \sum_{a=1}^{2} \sum_{i=1}^{r} c_{i,r+a}^{r+a} k^{r+a} v^i e_{r+a}.
\end{equation}

Thus the Lie algebra \(\mathfrak{t}^1 \) is given by the vectors \((19) \) satisfying

\begin{equation}
\sum_{i=1}^{r} c_{i,r+a}^{r+3} v^i = 0; \quad a = 1, 2;
\end{equation}

similarly, \(\mathfrak{t}^2 \) is given by the equations \((21) \) and

\begin{equation}
\sum_{i=1}^{r} c_{i,r+b}^{r+a} v^i = 0; \quad a, b = 1, 2.
\end{equation}

According to the assumption, we have \(\dim \mathfrak{t}^1 = r - 2 \), the equations \((21) \) are linearly independent, and we have

\begin{equation}
\psi_1 \wedge \psi_2 \neq 0.
\end{equation}

Of course,

\begin{equation}
\omega^{r+1} \wedge \omega^{r+2} \neq 0.
\end{equation}

Now, be given another surface \(\pi': \mathcal{M}' \to G/H \) and a first order deformation \(T: \mathcal{M} \to \mathcal{M}' \). Using a suitable lift of the surface \(\pi' \), the form \((10) \) is \(\mathfrak{h} \)-valued, and

\begin{align*}
\tau^{r+3} &= 0, \\
\tau^{r+1} &= \tau^{r+2} = 0.
\end{align*}

From \((14) \), and analogous equations for \(\omega' \), we get

\begin{equation}
d\tau^\alpha = -\sum_{\beta,\gamma=1}^{r+3} c_{\beta,\gamma}^\alpha (\frac{1}{2}\tau^\beta - \omega^\beta) \wedge \tau^\gamma; \quad \alpha = 1, \ldots, r + 3.
\end{equation}

The exterior differentiation of \((25) \) and \((26) \) yields

\begin{align*}
\varphi_1 \wedge \omega^{r+1} + \varphi_2 \wedge \omega^{r+2} &= 0, \\
\varphi_a &= \sum_{i=1}^{r} c_{i,r+a}^{r+3} v^i; \quad a = 1, 2;
\end{align*}

\begin{equation}
\varphi_a = \sum_{i=1}^{r} c_{i,r+a}^{r+3} v^i; \quad a = 1, 2;
\end{equation}

\begin{equation}
\varphi_1 \wedge \omega^{r+1} + \varphi_2 \wedge \omega^{r+2} = 0,
\end{equation}

\begin{equation}
\varphi_a = \sum_{i=1}^{r} c_{i,r+a}^{r+3} v^i; \quad a = 1, 2;
\end{equation}

\begin{equation}
\varphi_1 \wedge \omega^{r+1} + \varphi_2 \wedge \omega^{r+2} = 0.
\end{equation}

\begin{equation}
\varphi_a = \sum_{i=1}^{r} c_{i,r+a}^{r+3} v^i; \quad a = 1, 2;
\end{equation}
and

(30) \[\varphi_{a1} \wedge \omega^{r+1} + \varphi_{a2} \wedge \omega^{r+2} = 0; \ a = 1, 2; \]

(31) \[\varphi_{ab} = \sum_{i=1}^{r} e_{i,r+b}^i; \ a, b = 1, 2. \]

The assumption \(\dim \Gamma^1 = r - 2 \) is equivalent to

(32) \[\varphi_1 \wedge \varphi_2 = 0. \]

From the Cartan's lemma, we get

(33) \[\varphi_1 = A_1 \omega^{r+1} + A_2 \omega^{r+2}, \quad \varphi_2 = A_2 \omega^{r+1} + A_3 \omega^{r+2}; \]

(34) \[\varphi_{a1} = A_{a1} \omega^{r+1} + A_{a2} \omega^{r+2}, \quad \varphi_{a2} = A_{a2} \omega^{r+1} + A_{a3} \omega^{r+2}; \ a = 1, 2. \]

A. Let \(\dim \Gamma^2 = r - 2 \). The equations (22) are linear combinations of the equations (21), and there are numbers \(a_{bc}^a \) such that

(35) \[c_{i,r+b}^r = \sum_{c=1}^{2} a_{bc}^a e_{i,r+c}; \ a, b = 1, 2; \ i = 1, \ldots, r. \]

The expression (20) reduces to

(36) \[[v, k] = \sum_{i=1}^{r} e_i + \sum_{a,b=1}^{2} k^{r+a} w_{r+b} f_a, \]

where

(37) \[w_{r+a} = \sum_{i=1}^{r} e_{i,r+a}^i; \ a = 1, 2; \]

(38) \[f_a^b = \sum_{c=1}^{2} a_{ac}^b e_{r+c} + \delta_{ac}^b e_{r+3}; \ a, b = 1, 2. \]

Let us write

(39) \[R_1 = \text{rang} \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{11} & \alpha_{21} \\ \alpha_{21} & \alpha_{22} & \alpha_{21} & \alpha_{22} \\ 1 & 0 & 0 & 1 \end{pmatrix}; \]

obviously,

(40) \[\dim [\mathfrak{g}, \mathfrak{k}] = r + R_1. \]

The equations (30) reduce to

(41) \[\sum_{a=1}^{2} \varphi_a \wedge \left(\sum_{b=1}^{2} a_{bc}^d \omega^{r+b} \right) = 0; \ c = 1, 2. \]

141
and we get
\[
(42) \quad \alpha_2^{n_1} A_1 + (\alpha_2^{n_2} - \alpha_1^{n_1}) A_2 - \alpha_1^{n_2} A_3 = 0; \quad a = 1, 2;
\]
from (33).

Let \(R_1 = 3 \). The equations (28), (41) are linearly independent as well as the equations (42). The system (16), (28), (41) being in involution, we have proved \(A_1 \).

Let \(R_1 = 2 \). Then one of the equations (41) is the linear combination of the second one and the equation (28). Suppose, e.g., that (28) and (41) are linearly independent; substituting from (33) into (41), we get (42). For a given surface \(\pi \), the couple \((\pi', T) \) is given by the involutive system (28) + (41), and \(A_2 \) has been proved.

Let \(R_1 = 1 \). The equations (41) are the multiples of (28). \(\pi \) and \(\pi' \) being given, \(T \) is given by the completely integrable equations (26), and we have proved \(A_3 \).

B. Let \(\dim t^2 = r - 3 \). Three of the equations (22) are linear combinations of the remaining one and of (21); we may suppose the existence of numbers \(\alpha_1, \ldots, \gamma_3 \) such that
\[
(43) \quad \xi_{i,r+2}^{r+1} = \alpha_1 \xi_{i,r+1}^{r+3} + \alpha_2 \xi_{i,r+2}^{r+3} + \alpha_3 \xi_{i,r+3}^{r+3}, \quad \xi_{i,r+1}^{r+2} = \beta_1 \xi_{i,r+1}^{r+3} + \beta_2 \xi_{i,r+2}^{r+3} + \beta_3 \xi_{i,r+3}^{r+3},
\]
\[
\xi_{i,r+2}^{r+2} = \gamma_1 \xi_{i,r+1}^{r+3} + \gamma_2 \xi_{i,r+2}^{r+3} + \gamma_3 \xi_{i,r+3}^{r+3} \quad \text{for} \quad i = 1, \ldots, r.
\]

The expression (20) reduces to
\[
(44) \quad [v, k] = \sum_{i=1}^{r} \xi_{i,r+1}^{r+1} w_{r+1} (\beta_1 \xi_{i,r+2}^{r+3} + \xi_{i,r+3}) + k^{r+1} w_{r+2} \beta_2 \xi_{r+2} + \xi_{i,r+3}^{r+3} + k^{r+1} w_{r+3} (\beta_3 \xi_{i,r+2}^{r+3} + \xi_{i,r+3}) + k^{r+2} \xi_{i,r+3}^{r+3} + \xi_{i,r+3}^{r+3}.
\]

Let us write
\[
(45) \quad R_2 = \begin{vmatrix} 0 & 0 & 1 & \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 & \gamma_1 & \gamma_2 & \gamma_3 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{vmatrix}
\]
obviously, \(\dim [h, K] = r + R_2 \). The equations (30) reduce to
\[
(46) \quad \alpha_1 \varphi_1 + \omega^{r+2} + \alpha_2 \varphi_2 + \omega^{r+2} + \varphi_3 (\omega^{r+1} + \alpha_3 \omega^{r+2}) = 0,
\]
\[
\varphi_1 (\beta_1 \omega^{r+1} + \gamma_1 \omega^{r+2}) + \varphi_2 (\beta_2 \omega^{r+1} + \gamma_2 \omega^{r+2}) + \varphi_3 (\beta_3 \omega^{r+1} + \gamma_3 \omega^{r+2}) = 0.
\]
The polar matrix of the system (28) + (46) is
\[
(47) \quad \begin{vmatrix} \omega^{r+1} & \omega^{r+2} & 0 \\ \alpha_1 \omega^{r+2} & \alpha_2 \omega^{r+2} & \omega^{r+1} + \alpha_3 \omega^{r+2} \\ \beta_1 \omega^{r+1} + \gamma_1 \omega^{r+2} & \beta_2 \omega^{r+1} + \gamma_2 \omega^{r+2} & \beta_3 \omega^{r+1} + \gamma_3 \omega^{r+2} \end{vmatrix}.
\]
Let us choose a vector \(k \in K \) \((19\text{)}_2\). \((44)\) yields that the space \([h,k]\) is spanned by the vectors \(e_1, \ldots, e_r \) and

\[
\begin{align*}
g_1 &= \alpha_1 k^{r+2} e_{r+1} + (\beta_1 k^{r+1} + \gamma_1 k^{r+2}) e_{r+2} + k^{r+1} e_{r+3}, \\
g_2 &= \alpha_2 k^{r+2} e_{r+1} + (\beta_2 k^{r+1} + \gamma_2 k^{r+2}) e_{r+2} + k^{r+2} e_{r+3}, \\
g_3 &= (k^{r+1} + \alpha_3 k^{r+2}) e_{r+1} + (\beta_3 k^{r+1} + \gamma_3 k^{r+2}) e_{r+2}.
\end{align*}
\]

If \(\dim [h,k] = r + 3 \) for some vector \(k \in K \), the determinant of \((47)\) is not equal to zero. Of course, \(\dim [h,K] = r + 3 \), and the equations \((28) + (46)\) are linearly independent. This proves \(B_1 \).

Let \(R_2 = 2 \). The equations \((28) \) and \((46_1)\) are linearly independent, and \((46_2)\) is the linear combination of them. The surfaces \(\pi \) and \(\pi' \) being given, the deformation \(T \) is given by the system \((26)\) and the quadratic equation \((46_1)\). \(B_2 \) has been proved.

C. Let \(\dim t^2 = r - 4 \); the Lie algebra \(t^2 \) be given by the equations \((21)\) and

\[
\varrho_a \equiv \sum_{i=1}^{r} \varrho_{ai} v^i = 0; \quad a = 1, 2.
\]

Hence, there are numbers \(\alpha^{ae}_{bc}, \beta^{ae}_{bc} \) such that

\[
\varepsilon^{r+a}_{i,r+b} = \sum_{c=1}^{2} (\alpha^{ac}_{bc} \epsilon^{r+3}_{i,r+c} + \beta^{ac}_{bc} \varrho_{ci}).
\]

Writing

\[
\chi_a = \sum_{i=1}^{r} \varrho_{ai} \tau^i; \quad a = 1, 2;
\]

the forms \(\varphi_1, \varphi_2, \chi_1, \chi_2 \) are linearly independent, and the equations \((30)\) reduce to

\[
\sum_{a,b=1}^{2} (\beta^{ab}_{ac} \kappa_b \wedge \omega^{r+a} + \alpha^{ab}_{ac} \varphi_a \wedge \omega^{r+b}) = 0; \quad c = 1, 2.
\]

Consider the vectors \((19)\) such that \(v \in t^1 \). We have

\[
[v,k] = \sum_{i=1}^{r} (\cdot) e_i + \sum_{a,b,c=1}^{2} \beta^{ca}_{bc} \varrho_{a,b} k^{r+b} e_{r+c}.
\]

If \([t^1,k] \oplus h = K\) for some vector \(k \), the polar matrix of the system \((52)\) is regular. \(D. \) and \(E. \) are evident.

References

Author’s address: Sokolovská 83, Praha 8 - Karlin, ČSSR (Matematicko-fyzikální fakulta UK).