Aleksander V. Arhangel’skii
A characterization of very k-spaces

Czechoslovak Mathematical Journal, Vol. 18 (1968), No. 3, 392–395

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
A CHARACTERIZATION OF VERY k-SPACES

A. ARHANGELSKII, MOSCOW

(Received October 4, 1966)

We shall be concerned here only with Hausdorff spaces. In this case the definition of a k-space runs as follows:

Definition 1. (See [1], [2].) A topological space X is said to be a k-space if and only if all subsets of X having bicomponent intersection with an arbitrary bicomponent subspace of the space X are closed in X.

Thus the topology of a k-space is completely determined by the array of all bicomponent subsets of this space. The class of k-spaces is very wide. Not only metric spaces and locally bicomponent spaces belong to this class, but also all $G_δ$-spaces (i.e. spaces complete in the sense of E. Čech) do.

Unfortunately, a subspace of a k-space need not be a k-space: each completely regular T_1-space can be embedded into a bicomponent Hausdorff space, and the latter is surely a k-space. The purpose of this note is to investigate which spaces are "very k-spaces".

Definition 2. A topological space X is said to be a very k-space if and only if each subspace of the space X is a k-space.

Remark 1. Obviously, each very k-space X must satisfy the following condition:

(k_1) If M is a subset of X and x is a point such that $x \in [M]$, then there exists a bicomponent subspace $Φ$ of the space X such that $x \in [Φ \cap M].$

It seems quite natural to expect that this condition characterizes the k-spaces, but this is not true. There are k-spaces which do not satisfy this condition (an example can be found in [3]). For the full treatment of the subject see [4]; a classification of k-spaces, based on condition k_1, is given there.

Remark 2. Here is an obvious reformulation of definition 2.
Proposition 1. A topological space X is a very k-space if and only if for each
subset M ⊆ X and for each point \(x \in [M] \setminus M \) there exists a bicom pact subset
\(\Phi \subset M \cup \{x\} \) such that \(x \in [\Phi \setminus \{x\}] \).

Now we shall state the main theorem.

Theorem 1. A space X is a very k-space if and only if for each subset M ⊆ X
and for each point \(x \in [M] \) there exists a sequence \(\{x_n : n = 1, 2, \ldots\} \) of points in M
such that \(\lim x_n = x \).

Proof. Let \(M \subset X \) and let \(x \) be any point of the set \([M] \setminus M\). Evidently we can
find a set \(L \subseteq M \) such that the two following conditions are fulfilled: 1) \(x \in [L] \);
2) if \(L' \subseteq M \) and \(x \in [L'] \), then the cardinality of \(L \) is less or equal to the cardinality
of \(L' \). Proposition 1 enables us to find a bicom pact \(\Phi \subset L \cup \{x\} \) with the property
\(x \in [\Phi \setminus \{x\}] \). It follows from the choice of the set \(L \) that the cardinality of \(\Phi \) and the
cardinality of \(L \) are equal. We denote it by \(\tau \). Let us show that \(\tau = \aleph_0 \). Then the
theorem will follow. The point \(x \) is not isolated in \(\Phi \); moreover, the character of
the point \(x \) in the space \(\Phi \) is equal to \(\tau \). Consider some base \(\{U_x : x \in A\} \) of \(x \) in \(\Phi \),
such that \(\text{card } A = \tau \). We can suppose that the index set \(A \) is well ordered as the
smallest ordinal corresponding to the cardinal number \(\tau \). Now we are in need of
some transfinite construction.

Let \(O_1 x \) be some neighbourhood of the point \(x \) such that \([O_1 x] \subset U_1 \) and let \(x_1 \)
be some point from \(O_1 x \setminus \{x\} \). Suppose that we have defined, for all \(\alpha < \beta, \beta \in A \),
neighbourhoods \(O_\alpha x \) of the point \(x \) as well as points \(x_{\alpha} \in \Phi \setminus \{x\} \). The cardinality
of the set \(\bigcup_{\alpha < \beta} \{x_{\alpha}\} \) is less than \(\tau \), hence \(\bigcup_{\alpha < \beta} \{x_{\alpha}\} \neq x \). Take for \(O_\beta x \) any neighbourhood
of \(x \) such that \(\bigcup_{\alpha < \beta} \{x_{\alpha}\} \cap [O_\beta x] = \emptyset \) and \([O_\beta x] \subset U_\beta \).

Now, \(\bigcap_{\alpha \leq \beta} O_\alpha x \setminus \{x\} = \emptyset \). For the proof we need only to mention that the cardinality
of the family \(\{O_\alpha x : \alpha \leq \beta\} \) is less than \(\tau \) if the character of \(x \) in \(\Phi \) is equal \(\tau \). For \(x_\beta \)
we choose any point from the set \(\bigcap_{\alpha \leq \beta} O_\alpha x \setminus \{x\} \). In such a way we can define \(x_{\alpha} \) and \(O_\alpha x \)
for all \(\alpha \in A \). Consider the subspace \(X^* = \bigcup_{\alpha \in A} \{x_{\alpha}\} \cup \{x\} \) of the space \(X \). Clearly, \(x \)
is not isolated in \(X^* \). On the other hand, the set \(X \setminus \bigcup_{\alpha \leq \beta} \{x_{\alpha}\} \cup [O_{\beta+1} x] \) is a neigh-
bourhood of \(x_\beta \) which does not intersect the set \(X^* \setminus \{x_\beta\} \). Hence all points of the
set \(X^* \setminus \{x\} \) are isolated in \(X^* \). By Proposition 1 we can find a bicom pact \(F \) in \(X^* \)
such that \(x \) is a non-isolated point of this bicom pact. Now, \(F \setminus \{x\} \subset M \). By the
definition of the cardinal number \(\tau \), the cardinality of \(F \) is equal to \(\tau \). Let \(P \) be an
infinite countable subset of the set \(F \setminus \{x\} \). No point of the set \(F \setminus \{x\} \) is an accumula-
tion point of this subset. It follows from the bicom pactness of \(F \) that \([P] \ni x \). Now,
\(P \subseteq M \). Hence, \(\tau = \aleph_0 \). The theorem is proved.

Remark 3. In fact, the following general lemma is established by the argument:
Lemma. Let \(X \) be a bicomplete space and let \(x \) be any point of \(X \). Denote the character of \(x \) in \(X \) by \(\tau \). We shall call the point \(x \) "\(\lambda \)-achievable", for some cardinal number \(\lambda \), iff there exists a set \(P \subseteq X \setminus \{x\} \) of the power\(^1\) \(\lambda \) such that \(x \in \text{int}[P] \). If \(x \) is not \(\lambda \)-achievable for any \(\lambda < \tau \), we can find the standard subspace \(X^* \subseteq X \) of the power \(\tau \), only one point of which is not isolated in \(X^* \), such that the neighbourhoods of the point in \(X \) are complements to arbitrary subsets of cardinality less than \(\tau \).

Remark 4. The topological spaces in which the sequential closure of a set coincides with the closure of this set are called Frechét-Urysohn spaces (\(FU \)-spaces). So the theorem established may be formulated as follows: The class of all very \(k \)-spaces coincides with the class of all \(FU \)-spaces (among Hausdorff spaces!).

Now we will show how very \(k \)-spaces are related to metric spaces.

Definition 3. A map \(f : X \to Y \) is called pseudoopen if for each point \(y \in Y \) and for each open neighbourhood \(U \) of the set \(f^{-1}y \) the interior of the set \(fU \) contains \(y \).

In [4] \(FU \)-spaces we characterized as pseudoopen continuous images of metric spaces. So we have

Theorem 2. A topological space \(X \) is a very \(k \)-space if and only if it is a pseudoopen continuous image of some (locally bicomplete) metric space.

Remark 5. The \(k_2 \)-spaces [4] have an obvious characterization as pseudoopen continuous images of locally bicomplete spaces (see [4]).

From the main result of this paper, together with the main result of [7, § 7], the following theorem can be deduced.

Theorem 3. Let \(X \) be a topological group such that the space of this group is a \(p \)-space\(^2\). Then either of the two following conditions is fulfilled:

1) \(X \) is metrizable;

2) \(X \) contains a subspace, which is not a \(k \)-space.

Remark 6. This result is new and non-trivial even in the case when the space of the group under consideration is bicomplete. In fact, a more general result holds: each dyadic bicomplete in which every subspace is a \(k \)-space must be metrizable.

In conclusion we will discuss another phenomena which can occur when dealing with \(k \)-spaces. The fact is that the product of two \(k \)-spaces need not be a \(k \)-space. This may happen even with very \(k \)-spaces. Theorem 2 enables us to give an indirect description of a wide class of \(FU \)-spaces, which is closed with respect to the product.

\(^{1}\) "The power" means the same as "the cardinality".

\(^{2}\) For the definition of a \(p \)-space see [5] or [7]. In particular, any space which is \(G_\delta \) in its bicompleteification, as well as any metric space, is a \(p \)-space.
The elements of the class are pseudoopen bicom pact continuous images of metric spaces. It would be fine to know more about the topological structure of these spaces. I conjecture that all paracompact spaces, belonging to the class, are metrizable. If so, it would be a considerable generalization of the theorem on metrizability of all paracompact spaces which are open continuous bicom pact images of metric spaces (see [6]).

References

Author’s address: Московский государственный университет, кафедра геометрии и топологии Москва В — 234, СССР.