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natural to raise the question whether, for any $C such that FC(af) + 0> always yt = 
= c(cfc). The following example will answer the question in negative: 

Denote by Sf £ i f the set of all strong ideals in K, i.e. of all essential idelas L such 
that 

VO, G(Q e K \ L A o- 4= o -> L : O $ {0} : a) . 

It is easy to check that SP is an F-set. In fact, Sf is an K-set. For, assume that L:xe Sf 
for all x e K \ L with KeSf and yet that elements O0 and t70 #- 0 of R exists such that 

L : £0 £ {0} : a0 . 

Then, necessarily Q0£K and J G K : ^ implies either %eL: Q0 or x<70 = 0. Hence, 
K : £0 £ {0} : (j0, a contradiction of K e Sf. 

Consider the ring K* of all pairs (n, r) of n e Z (integers) and r e Q (rational 
numbers) with the component-wise addition and the multiplication defined by 

(*i> ri) (n2> r2) = (ntn29 nxr2 + n2rt) . 

The subset R° of JR* of all pairs (0, r), r e Q, is obviously an ideal of K*. The ideals 
of K* which are contained in JR° are in one-to-one correspondence cp to the sub­
groups G of the additive group of all rational numbers: 

9(G) = IG = {(0, r)}reG . 

All the remaining ideals of K* contain R° and are in one-to-one correspondence \|/ 
to non-zero subgroups <k>, k > 0, k e Z of the additive group of integers: 

v|/«k» = Ik = {(n, r)}m<k>,reQ . 

Hence, any non-zero ideal is essential in R*. There are only two annihilator ideals, 
viz. {0} and R°. Consequently, Sf = {lk}k>1%kez- Furthermore, 

c(y) = £>\ {{0}, R0} 4= & = $P . 

For, if (0, r) ^ IG, then 
/ < ? : ( 0 , r ) = J J t e ^ , 

where k is the least natural member such that kr e G. And, for (n, r) e K* with n #= 0, 
there is s e Q such that ns^G and 

( I G : ( n , r ) ) : ( 0 : s ) = IG:(0,ns)e^ 

again. Finally, {0} : (0, r) = R° for every r 4= 0, and I\° : (n, r) = JR° for every 
n =j= 0. 

4. In this final paragraph, we are going to establish — in the case of a commutative 
noetherian ring R — a simple characterization of K-sets in terms of prime ideals. 
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(d) The assertion follows immediately from Theorem 2.7 and (a) of this lemma. 
Now, in the remaining part of the paper, let R stand for a commutative noetherian 

ring. One of the important features of such a ring is that, for any proper ideal Lof R, 
there exists 0 e R \ Lsuch that L: 0 is prime. Hence, we can formulate the following 

Lemma 4.2. For any Q-set Jf, always 

X » p(tf) . 

Consequently, the equality p(cfx) = p(ctf 2) for two Q-sets Jfx and Jf2 implies 
tnat CrC £ ^ ye 2. * 

The characterization of the set of all P-sets then reads as follows (cf. the case of 
integers in [1]): 

Theorem 4.3. Let R be a commutative noetherian ring. Then, for any filter 
subset £1 of 0>, there exists a unique R-set ££ such that 

p(££) = £1. 

In fact, £lr = If and thus, £T « £t'. Moreover, if 

are two filter subsets, then 

^ s <22 <= 

-2ri £ £2 • 

As a consequence, there is a one-to-one correspondence between all R-sets (and 
thus, all radical filters in Mod R) and all filter subsets of prime ideals; more 
precisely, the lattice of all R-sets R and the complete sublattice P of L (with set-
theoretical operations) of all filter subsets of prime ideals are isomorphic. In 
addition, the set of all minimal R-sets (atoms of R) corresponds to the set of all 
singletons £1 = {P} e P, where P is a maximal ideal of R. In this case, as well as in 
the more general case when £1 consists of maximal ideals of R only, £Lr « £1. 

Proof. Lemma 4A yields the existence and Lemma 4.2 together with Theorem 2.7 
the uniqueness of £lr. Also, if £LX £ ,g2) then JT = £t\ n J 2 1s a n -R-set such that 
p(jf) = £LX and, thus, Cft* = £l\, i.e. £l\ c= £lr

2i as required. The final assertion 
£lr « £1 follows immediately from Lemma 2.5 (ii), because £L satisfies in this case (E). 
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