Czechoslovak Mathematical Journal

Vlastimil Dlab
Distinguished sets of ideals of a ring

Czechoslovak Mathematical Journal, Vol. 18 (1968), No. 3, 560-567

Persistent URL: http://dml.cz/dmlcz/100851

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100851
http://dml.cz

Czechoslovak Mathematical Journal, 18 (93) 1968, Praha

DISTINGUISHED SETS OF IDEALS OF A RING

VLAsTIMIL DLAB, Canberra

(Received May 20, 1967)

1. In any category A (for convenience, with a zero element 0) one can define
a filter subcategory in a quite general manner as a (full) subcategory & < A pos-
sessing the following two properties:

(i) Any subobject of an object of & belongs io §.
(ii) The class of all subobjects belonging to § of an object A € W has a greatest
element (§F(A), pny)- ' ’
Furthermore, by a radical filter subcategory R of U one can understand a filter
of U satisfying the additional property
(iid) If
(0-) RMA)S4-B-0

is an exact sequence, then always ER(B) - 0.

Such or similar concepts appear to be useful in some specified categories (see e.g.
GABRIEL [2], HELZER [3]). Our intention is to study the filters and radical filters in
the category Mod R of all R-modules (left unital modules over an associative ring R
with unity). The latter amounts to the study of certain subsets of the set & of all
proper (i.e. & R) left ideals of R (see [1] and [2]).

Following the terminology and notation of [1], a subfamily % of the family %
is called a Q-set if '

Q) KeAX AngogeR\K->K:geX.

Here, K : ¢ denotes the (right) ideal-quotient of K by g, i.e. the left ideal of all y € R
such that yg € K. If, besides (Q), the set o satisfies

(E) KcLAKeAtX ANLe® »LeX
and
(M KieX AKyeX K, nK,ed,
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A is said to be an F-set (topological set of [2]). Moreover, an F-set /¢ is called the
R-set (idempotent topological set of [2]) if

(R) Le? A K[KeA AVu(xeK\NL->L:xeX)] > LeX .

Denoting, for an F-set o, by MM, the class of all A -modules (Ji” -neglectable
modules of [2]), i.e. of all R-modules M such that the order O(m) of every non-zero
element m € M belongs to ", we can express the above mentioned relation between
filters in Mod R and sets of left ideals of R very simply (cf. [1] and [2]);

(a) If o is an F-set, then My is a filter in Mod R. On the other hand, if § is
a filter in Mod R, then an F-set A (§) exists such that § = My, (here, K €
€ A (&) & Rmod K € §). In particular, a filter in Mod R is closed under taking
quotients, direct sums and inductive limits.

(b) If A is an R-set, then My is a radical filter in Mod R. On the other hand,
if R is a radical filter in Mod R, then an R-set #'(R) exists such that R = My .

This one-to-one correspondence between filters, or radical filtersin Mod R and F-sets,
or R-sets of left ideals of R, respectively, enables us to investigate the sets of all filters
and all radical filters in Mod Rthrough the sets of all F- and R-sets. A description of the
lattice of all F- and R-sets is derived in the framework of Q-sets and their equivalence
classes (see [1]) in the next § 2. In particular, all equivalent F-sets form a lattice with
the greatest element, which is a uniquely determined R-set in the respective equivalence
class (Theorem 2.7). The example in § 3 shows that this R-set need not be necessarily
the greatest element of its equivalence class. Finally, in the last § 4 the results are
used to give a simple characterization of the lattice of all R-sets (and thus of all
radical filters of modules) in terms of certain sets of prime ideals in the case of
a commutative noetherian ring.

2. In what follows, R stands always for a given (fixed) ring and & for the set of all
its proper left ideals. The empty set @ is assumed to be a Q- (as well as, F- and R-) set.

Observing that a (set-theoretical) intersection of Q- or F- or R-sets is again a Q-
or F- or R-set, respectively, we deduce immediately the following

Theorem 2.1. All the Q-sets A" < & form (with respect to order by inclusion)
a complete sublattice Q of the lattice L of all the sets of proper left ideals of R
(with the set-theoretical operations v and U, the greatest element & and the least
one 0).

All the F-sets X" < & form (with respect to order by inclusion) a complete lattice F
with the operatwns/\f = n.}f and \/.%’a,, in general different from Uf

All the R-sets A" = & form (with respect to order by inclusion) a complete
lattice R with the operations / \A ', = A, and \/fn,, in general different
w (o] «

from Ux,,.

561



The sets & and O are the greatest and the least element of both F and R, respec-
tively.
In order to describe the set\F/f »> let us formulate first the following

Lemma 2.2. Let /', (w € Q) be Q-sets. Then the set Xy < & defined by
(~) LeAg—LeZ AL2 N K; AK;eUX,

1gizn ©
is an F-set.

The proof is straightforward and we therefore omit it. Apart from the fact that
Lemma may be found useful for constructing new F-sets, we get also immediately (since,
obviously, # g =\F/A,),

O

Theorem 2.3. Let ', (w € Q) be F-sets. Then
Hg = A,.
The following theorem establishes a procedufe of extending a given F-set.

Theorem 2.4. Let A" be an F-set. Then the set A* defined by
(%) Lex*—Le¥ AIK[Ke A AVu(xeKNL->K:xeX)]
contains A" and is an F-set, as well. Here, A" = A * if and only if A is an R-set.

Proof. The inclusion # < #™* is obvious (take e.g. K = L in (x)). Also, for
A = 0 evidently o* = Q. Thus, assume ¢ + 0.
Let Le #* and ge R\L. If ge K of (x), then L: g " = A™*. If ¢ ¢ K, then
Vu[xe(K:0)\(L:g)—> (L:@):xeX);

therefore, L: ¢ € "* again. Hence, o* satisfies (Q). The other properties (E) and (1)
can be proved in a similar routine manner.

Now, in [1] an equivalence has been defined on Q in the following way: Define,
for " € Q, the “closure” ¢(X’) e Q by

(¢) Lec(#)«LeZ AVo[eeR\L—>3o(6eR A L:oge X)].
Then, two Q-sets 2"y and X", are said to be equivalent (in symbol, A"y ~ &’,) if
(A1) = o(H5) .-

The equivalence ~ induces, of course, an equivalence (denoted again by =) on F
and R.

In order to prove the main result of the paper we shall need the following two
lemmas.
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Lemma 2.5. (i) For any two Q-sets A"y, A, always
() ne(AHy)=eAHy0os).
Hence, if Xy ~ Ky and Ay = A ,, then
AN Y AR AN Y
In particular, if X'y & A ,, then
‘ A NH = Ay
(ii) For any Q-sets A ,(w € Q) satisfying (E), always
a5 < (UA),

i.e.

Also, if Jﬂ,}z Ao (0 € Q), then
Uxt, ~Uxt,,
and hence,
In particular, if X, and X, a‘re F-sets, then
\:)/.%’,’,, ~ \:’/Ji’w ;
thus, if X', ~ A for all o, then\" /A, ~ K.

(iii) For an F-set A", always A'* ~ A'.

Proof. (i) The equality e(#";) N €(A ;) = (o' N A’,) follows readily from the
definition (¢). Thus,

Ay AHy) = (A (o) = () ne(AHy) = (A 0 Hy).
(ii) By (v), for K e A'g there are K;e UX,, 1 i < n suchthat K2 N K,

15izgn
Hence, for an arbitrary ¢e€ R\K, there is either K:9 2K, :9, ie. K:ge€

eUs,, or
w

K:o02 N K;:o,0 for o,6(K,:0)\(K:0).

i1gisn—1

Proceeding by induction, we can easily find o such that K : op € UX',; therefore,
(o]
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A< (VE% )- Since, on the other hand, A4 2 U, we conclude that
Ao~ UX,.
The rest of (ii) is trivial.

(iii) Also the assertion of (iii) follows again easily from the definition () of & '*.

Lemma 2.6. Let X" be a Q-set satisfying (R). Then, for any Le ¢(A)\ A", there
is a proper (left) ideal Ly of R which contains L and does not belong to <(X).
Thus, in particular, if A" is an R-set, and A’y an F-set satisfying X" = Ay < (X)),
then A" = A .

Proof. Define L, as follows:
(0) geLyogoeLvL:geX .

Clearly, L, is a proper left ideal of R containing properly L and, moreover, necessarily
Lo ¢ (). For, otherwise, Ly € ¢(#") implies that there is g¢o € R\ L, such that
Ly :go€ A and then, for every xe(Ly: o)\ (L: o), i.e. for every x such that
%00 € Lo\ L,

L:xgy=(L:gy):%xeX

in view of (o). Therefore, by (R), L: ¢, € # and thus, by (o) again, g, € L, — a con-
tradiction of our choice of g,.

Now, the main result of this paragraph follows as a consequence of Lemmas 2.5
and 2.6 and Theorems 2.1 and 2.4:

Theorem 2.7. For any A" € Q, the equivalence class C(X') of all Q-sets equivalent
to A is a convex sublattice of Q with infinite joins and the greatest element c(.)i’)

If Fery = C€(A) 0 F % 0, then it forms (with respect to order by inclusion)
a lattice with meets equal to set-theoretical intersections and with infinite joins;
denote the greatest element of Fci) by A

Since (.7?)* = .97, A is an R-set. This means, in particular, that for any F-set,
there exists an equivalent R-set.

As a matter of fact, for an R-set A, always A = A and hence, A is the only

R-set belonging to Feix).

In this way, a one-to-one correspondence (in fact, a lattice homomorphzsm) is
established between the lattice R of all R-sets and the lattice of all equivalence
classes C(4") which contain an F-set. '

3. In [1], we have proved that ¢(') is an R-set, i.e. that & = ¢(’), provided
that ¢(") contains all (left) essential ideals of R. Recall that Le % issaid to be essential
(in R) if the zero ideal is the only left ideal intersecting L trivially. It is therefore quite
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natural to raise the question whether, for any " such that Fery + 0, always " =
= c(% ) The following example will answer the question in negative:

Denote by & <= & the set of all strong ideals in R, i.e. of all essential idelas L such
that

Vo,o(ceRNLAc*+0—>L:gg {0}:0).

It is easy to check that & is an F-set. In fact, & is an R-set. For, assume that L: x € &
for all ¥ e K\ L with K € & and yet that elements g, and 6, # 0 of R exists such that

L:go < {0} :0.

Then, necessarily g, ¢ K and y € K : g, implies either y € L: g, or yo, = 0. Hence,
K : 0, = {0} : gy, a contradiction of K € &.

Consider the ring R* of all pairs (n, r) of neZ (integers) and r e Q (rational
numbers) with the component-wise addition and the multiplication defined by

(n1, 71) (2, 72) = (nyna, nyry + nyry) .

The subset R® of R* of all pairs (0, ), r € Q, is obviously an ideal of R*. The ideals
of R* which are contained in R° are in one-to-one correspondence ¢ to the sub-
groups G of the additive group of all rational numbers:

(P(G) = IG = {(0’ r)}reG .

All the remaining ideals of R* contain R° and are in one-to-one correspondence
to non-zero subgroups <k, k > 0, k € Z of the additive group of integers:

V(<k) = I = {(1, 7)}necay o -

Hence, any non-zero ideal is essential in R*. There are only two annihilator ideals,
viz. {0} and R°. Consequently, & = {I;};> sz Furthermore,

() =2L~{{0L,R} + TP =2.

For, if (0, r) ¢ I, then
I;:(0,r)=LeZ,

where k is the least natural member such that kr € G. And, for (n, r) € R* with n + 0,
there is s € Q such that ns ¢ G and

(Ig:(n,7):(0:5)=15:(0,ns)e &

again. Finally, {0} : (0, 7) = R® for every r & 0, and R°:(n,r) = R® for every
n =% 0.

4. In this final paragraph, we are going to establish — in the case of a commutative
noetherian ring R — a simple characterization of R-sets in terms of prime ideals.
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Let, for a moment, R be an arbitrary ring and
P ={P,|weQ}

the set of all proper two-sided (strictly) prime ideals, i.e. the set of all ideals P,, such
that
P,=P,:9 forany geR\P.

Let us observe that an intersection K = P; n P, with P; + K, P,e ? (i = 1,2)
no longer belongs to 2 (cf. next Lemma 4.1 (c)); this follows from the fact that
K:0=P;:9 = P; for any ¢ € K\ P;. We shall call a subset 2 of £ a filter subset if

PIG.@APZG.@APISPZ—*PZEQ.
Furthermore, for any Q-set & define the Q-subset p(#") by
pH)=H P,

Lemma 4.1. (a) Let Ay ~ A, be two equivdlent Q-sets. Then p(A'y) = p(A ).

(b) If A satisfies (E), — in particular, if it is an F-set, then p(X) is a filter
subset of 2.

() If 2 is a filter subset of 2, then the F-set 2~ (defined in Lemma 2.2) satisfies

p(27)=p(2)= 2.
(d) As a consequence, for any filter subset 2 of P there exists an R-set 2" (= 2")
such that
p(2) =p(2) =2.)
Proof. (a) Let K € p(#'y) = A’y n 2. Then, for a suitable g€ R\NK, K : g € ;.
Also, K : ¢ = K. Hence, K € p(,), as required.
(b) Trivial. ‘
(c) Only the proof of p(2”) = Zis needed. Let K € 27, i.e.
K2 ) K; with K;e2.
1<izn

If K 2 K; for a suitable i, then evidently K € 2 whenever K € p(2”). Otherwise,
there is 2 < m < n such that .

K= nKi and K;p n Ki'

1gism 1gism—1

And then, for g € K,,\ K,
K:e2 N(Ki:9)= N (Ki:e)= 'n K.

1gism 1gism—1 1sism—1

Hence, K : ¢ + K, i.e. K ¢ 2.

1) Here, with some additional conditions imposed on 2 we can assert that 2" & 2; e.g. this
is the case when 2 consists of two-sided ideals of R maximal (as left ideals) in R.
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(d) The assertion follows immediately from Theorem 2.7 and (a) of this lemma.

Now, in the remaining part of the paper, let R stand for a commutative noetherian
ring. One of the important features of such a ring is that, for any proper ideal Lof R,
there exists ¢ € R\ Lsuch that L : ¢ is prime. Hence, we can formulate the following

Lemma 4.2. For any Q-set A, always
A = p(X).

Consequently, the equality p(# ) = p(A,) for two Q-sets A"y and A, implies
that X'y = A ,. '

The characterization of the set of all R-sets then reads as follows (cf. the case of
integers in [1]):

Theorem 4.3. Let R be a commutative noetherian ring. Then, for any filter
subset 2 of P, there exists a unique R-set 9" such that

p(2)=2.
In fact, 2" = 3" and thus, 2" ~ 2~ . Moreover, if

v

2,c2,c2?
are two filter subsets, then
12

As a consequence, there is a one-to-one correspondence between all R-sets (and
thus, all radical filters in Mod R) and all filter subsets of prime ideals; more
precisely, the lattice of all R-sets R and the complete sublattice P of L (with set-
theoretical operations) of all filter subsets of prime ideals are isomorphic. In
addition, the set of all minimal R-sets (atoms of R) corresponds to the set of all
singletons 2 = {P} € P, where P is a maximal ideal of R. In this case, as well as in
the more general case when 2 consists of maximal ideals of R only, 2" ~ 2.

Proof. Lemma 4.1 yields the existence and Lemma 4.2 together with Theorem 2.7
the uniqueness of 2". Also, if 2, < 2,, then " = 2] n 2} is an R-set such that
p(#) = 2, and, thus, o = 2}, ie. 2] € 2}, as required. The final assertion
9" ~ 2 follows immediately from Lemma 2.5 (ii), because 2 satisfies in this case (E).
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