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VALUATIONS IN GROUPS AND RINGS 

S. P. BANDYOPADHYAY, MOSCOW 

(Received December 8, 1967) 

1. In [1], the author considered the valuations of groups and rings as mappings of 
these systems into semilattices and lattices respectively. As a matter of fact, this idea 
of valuation introduced by him, generalises the concept of the term used previously. 
There, the author established a connection between the valuations of groups and 
rings and the homomorphisms of the lattice L{G) of subgroups of G and the lattice 
L(R) of ideals of JR, into the valuation semilattice and lattice respectively. Here, the 
results of [ l ] have been strengthened and as such, the said connection can be given 
in a more explicit form. 

2. A mapping iV : G -» P, of an additive group G into an upper semilattice P, is 
called valuation, if and only if, N{a + b) ^ N[a) u N{b). 

The valuation N is called symmetric, if iV(a) = N( —a), for all a e G. Let the lattice 
of subgroups of G be denoted by L ( G ) . Let F ( G ) be the set of all symmetric valuations 
of G into P and HL(G), the set of all homomorphisms of the upper semilattice of the 
lattice L{G) into P. 

Theorem 1. Let G be an additive abelian group and P a complete upper semilattice. 
Then the sets V(G) and HL(G) have the same power. 

Proof. Let Ne F ( G ) . If for any subgroup G^ ç G, we put «(Gj) = \J N{a), then 
as it has been shown in [1], n e HL{G). ""^^^ 

On the other hand, if и e HL{G), then by defining N'(a) = n({a}), where [a] is the 
cyclic group generated by a EG, it has been shown in [1] that N' G V(G). 

We shall show that this correspondence between V{(J) and HL{G) is biunique. 
Since N is a symmetric valuation into the complete upper semilattice P, we have, 

OO 00 

N'(a) = n({a}) = и Ща) ^ N{a)- On the other hand, N{a) ç U N{ka) 
k= — СЮ 

n{{a}) = N'{a). Hence N = N\ 
k= — СЮ k = — 00 
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Let now, n 6 HL{G), N(a) = n{{a}), and п'(Н) = U N(a), where Я is any sub-
аеН 

group of G. Then n'{H) = (J M^) = U ^^d^}) = n{\J {a}) = n{H). That is, n' = n. 
Hence the theorem. ""^ ^̂ "̂  ^^^ 
3. Let jR be a ring with L A mapping iV : jR ~-> L, of the ring R into the lattice L, 

is called valuation, if and only if, 
i) N{ab) я N{a) n iV(b), 

ii) iV(a + b) Ç iV(a) u Я(Ь). 
As shown in [1], N is always symmetric. Let L(R) be the lattice of ideals of R, V{R) 
be the set of all valuations of R into L and HL{R), the set of all homomorphisms of 
the upper semilattice of L{R) into the upper semilattice of L. 

Theorem 2. Le R be a commutative ring with 1 and Lbe a complete lattice. Then 
the two sets V{R) and HL[R) have the same power. 

Proof. Let N e V{R). If we define n{j) = \J N{a), where J is any ideal of R, then 
as shown in [1], n e HL{R). ^̂ -̂  

Conversely, if ne HL{R), then by putting N'{a) = ?^((«)), where (a) is the principal 
ideal generated by a e JR, it has been proved in [ l ] , that N' e V{R). 

We shall now show that this correspondence between V(R) and HL(R) is biunique. 
We have N'(0) = n{{a)) = \J М{ад) ç N(a). 

QeR 

On the other hand, N{a) ^ (J Niag) = n{{a)) = N'{a), since R contains L 
Consequently, N = N\ ^̂ ^ 
Further, let n e HL{R), N{a) = n{{a)), n'{j) = \J N(a), where J is any ideal in R. 

aeJ 

Then n'(J) = {jN{a) = U n{{a)) = n( U (a)) = n{J). 
aeJ aeJ aeJ 

That is, n' = n. 
Hence the theorem. 
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