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Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

ON A CERTAIN CLASS OF Л-STRUCTURES. 11. 

STANISLAV TOMÀ§EK, Libérée 
(Received February 12, 1966, in revised form August 31, 1968) 

This paper is a continuation of the previous article [17]. As to the terminology and 
notation, in the sequel we refer to [17] without any other comments. The numbering 
of theorems and definitions will be also preserved in conformity with [17]. Especially, 
the references to theorems of [17] will be indicated only by the corresponding number. 

In Section 8 the completion of the investigated yl-structure (£(X), t) is characterized 
and the same question is discussed in some special cases for the unbounded topology ÎQ. 

Section 9 and 10 is devoted to the applications of the previous results to the com­
pactness in locally convex spaces. Theorem 17 presents a solution of a problem of 
V. PTAK. 

Two categories of locally convex spaces generalizing the investigated Л-structures 
are introduced in Section 11 and 12. Further, there are estabhshed Extension Theorems 
of diverse types involving the recent results of A. GROTHENDIECK and V. PTAK. 

8. THE COMPLETION OF Л-STRUCTURES 

Any point X of X (or of Е{ХУ) may be identified in the usual way with its canonical 
image x in P*(Z). Moreover, E(X) is a dense subspace in P*(X) under the weak 
topology. The same may be expected for the extended topology t in P*(Z) of Ж-
convergence for a certain category of spaces X. In the next theorem we shall prove 
that for any uniform space X the completion {Ê{X), t) is a subspace of (P*(Z), t). 
The main question to be solved in this section is the following one: to describe the 
category of all spaces X for which it holds 

{Ê{X),t) = P*iX). 

Further, the completion of the Л-structure {E{X), toc) will be investigated. 

Theorem 12. Let X be a uniform space. Then {Ê{X), t) is topologically isomorphié 
to a linear subspace o/(P*(X), t). 
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Proof. If z is a point of (Ê(X), t) then (cf. [5]) z is a linear function on P(X) 
continuous on each H e Ж in the pointwise topology a(P(X), E{X)). To prove 
z e P*(X) we consider a sequence {/„} in the Banach algebra P(X) such that lim/„ = 
= 0. The absolutely convex envelope of all /„, n = 1, 2, . . . is an element of Ж. 
Since /„ -^ 0 in the pointwise topology, we have lim </„, z> = 0, hence z e P*(Z). 

Remark . The assertion of Theorem 12 follows directly from the fact that (P*(X), t) 
is complete for every uniform space X. 

Proof. Let J^ be a Cauchy filter in (P*(X), t). If/o is a function defined for each 
(J e P(X) by lim ^{^) = <(^,/o>, then obviously/o is a linear function continuous on 
each H e Ж, Since every sequence (/„}, /„ -^ 0 in P(X), belongs to Ж, we obtain 
<Л, /о>->0 ,Ьепсе /обР*(Х) . 

If now X is precompact then according to Theorem 2 any z G P * ( Z ) is continuous 
on each H e Ж in the pointwise topology, consequently z e {ß{X), i). But P(Z) is 
isometric to the space С(Ш) of all continuous functions on the compact space Ш of 
all maximal ideals of P(X), hence we have proved 

Theorem 13.^) Let X be a precompact space, Ш the space of all maximal ideals of 
the Banach algebra P{X). Then the completion {ÊÇX), t) is algebraically isomorphic 
to the space of all Radon measures on Ш. 

Corollary. If X is pseudocompact then {Ê(X), t^) is algebraically isomorphic to 

C*(Z). 

The last assertion generaUzes a theorem of M. KATETOV (cf. [10], [15]), 

To elucidate the role of the extended topology t on P*(X), we note that for any 
precompact space X this topology is compatible with the duality of the dual pair 
<P(X), P*(Z)>, particularly any H e Ж is relatively weakly compact. 

Lemma. Let X be a uniform space, X the closure of X in {Ê[X), t) and X"^ the clo­
sure of X in P*(Z) under the weak topology. Then the following statements are 
equivalent: 

(a) X is precompact. 

(b) It holds X =-X\ 

Proof, (a) => (b). If X is precompact, then according to Theorem 2 we have t = a 
on X, hence X"" is the completion of (X, a) = (Z, t). 

(b) => (a). Suppose that (b) holds. Since t is the uniformity on .£ of J^(X)-convergence 
and (7 the uniformity on J? of P(^)-convergence, they induce the same topology on 
X" = X"^. But X^ under the topology cr is a compact space, hence (^, t) is compact. 

^) This theorem has been proved independently for compact space by K. JOHN. 
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If X is a non-precompact space, then we obtain X'' ф X. From 

X == X'̂  n (£(X), t) 

(cf. [17], formula (4)) and from Theorem 8 we now obtain (£(X), t) Ф P*(X). This 
implies 

Theorem 14. Let X be a uniform space, COQ the canonical topological isomorphism 
of (Ê(X), t) into (P*(X), t) defined by Theorem 12. The follow in g statements are 
equivalent: 

(a) X is precompact. 

(b) COQ is a topological isomorphism of {E{X), t) onto (P*(X), t). 

(c) The topology t in P*(Z) is compatible with the duality of the dual pair <F(X), 

p*(x)y. 

If Z is a completely regular non-pseudocompact space, then we have ^̂  Ф d on X, 
hence (X, t^) is non~precompact. Thus we have obtained 

Theorem 15. Let X be a completely regular space, COQ the canonical isomorphism 
of [Ê{X), t^) into C*(X). Then the following statements are equivalent: 

(a) X is pseudocompact. 

(b) The mapping COQ is a topological isomorphism of {Ê{X), t^ onto (C*(X), t^, 

(c) The topology t^ on C*(X) is compatible with the duality of the dual pair 

ic{x), c*{x)y. 
Now we intend to describe the completion of the ^-structure (£(X), t^ over 

a certain category of completely regular spaces. First we consider the space C(X) 
with the locally convex topology k{X) of the compact convergence in X. Suppose 
that p is the topology in (£(X), ?oc)* of the precompact convergence on (£(X), tç^^\ 
obviously we have 

cr(Co(X), £(X)) й k{X) й P . 

Hence, on each M e J^/Q the topologies k(X) and (т(Со(Х), E{X)) coincide. If / is 
now in Co(X) then / is continuous in the pointwise topology on each M e гЖ^, 
consequently fe (Ê(X), ÎQ^). Thus for any completely regular space X the inclusion 
C*(X) Ç (£(X), roc)3olds. 

Let us denote by CQ{X) the space of all linear and sequentially continuous functions 
on Co(X). Obviously CQ[X) is a subset of CQ(X) and we have 

Theorem 16. (a) If X is a completely regular space then CQ(X) ^ (Ê(X), tg^). 

(b) For any locally compact space X it holds 

CS(X)£(Ê(Z) ,O^C*(X) . 
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(c) Let X contain a dense countable subset, then 

Co*(X)£(Ê(Z),U-

(d) For any locally compact and countable at the infinity space X the completion 
(£(X), to,) is identical with C*(Z). 

Proof. The statement (a) was already proved. To establish (b) we consider a se­
quence {/„} in CQ{X), /„ -> 0 in the topology of the compact convergence. It is easy 
to see that the family {/„} 1 ies in ^Q, hence lim <(z,/„)> = 0 for any z G ( £ ( X ) , tQ^. 
If the condition of (d) is satisfied, then Co{X) is metrizable, consequently CQ(X) = 
= C*o(X). 

The statement (c) follows directly from 

Lemma. Let X be a completely regular space with a dense countable subset. Then 
any M e MQ is a metrizable subspace of CQ{X). 

Proof. 1Î X^ is a dense countable subset of X, then E[Xi) is dense in {E[X), tQ,). 
Similarly the countable subset of all J^riXi, r̂  rational, x̂  e Xj,, is dense in (£(X), tQ,), 
hence (cf. [ l ] ) any M e Ji^ is metrizable in the pointwise topology. The assertion 
of Lemma follows now from the above mentioned relation ^(Z) = cr(Co(X), £(X)). 

R e m a r k L As it was stated in Section 5 the space (£(X), t) is not sequentially 
complete for any uniform space Z , hence ( E ( Z ) , i) Ф (Ê(Z), t). It should be also 
noticed that (£(Z), t) does not posses the property of semi-reflexivity. In the example 
that follows we shall show that these statements need not be true for the unbounded 
topology ^0. 

Example . Let Z = N be the collection of all integers with the discrete topology. 
The space CQ{N) ~ {E{N), tQ^Y consists then of all sequences of real numbers and 
under the topology of compact convergence it may be identified with the strong 
topological dual of (E(iV), ôc) (see Theorem 4 of [17]). But it is well-known that such 
space is topologically isomorphic with the Cartesian product ПК„, R„ being the real 
line for all n, with the usual topology. .Since the strong topological dual of TIR„ 
coincides with the corresponding direct sum YjR„ = E(N), we have established the 
semi-reflexivity of {E[N), tg,). Now we shall prove, more generally, the reflexivity of 
(E(iV), Гос)- To this point it suffices to note that ÎQ, is the finest locally convex topology 
on E(N). Evidently for the last topology т^ it holds т ^ ^ to,- But т^ induces on N 
a discrete topology; consequently the canonical embedding of* {E(N), t^,) onto 
(E(A') , T,̂ ,) is continuous, hence foc = ^a-

From Theorem 16, (d) we can conclude also the completeness of (£(Z), tQ,)-

R e m a r k 2. The statement (d) of Theorem 16 admits a descriptive interpretation. 
If Z is a locally compact and countable at the infinity space then (Ê(Z), to,) consists 
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of all Radon measures with the compact support on Z . The verification of this asser­
tion may be found in [2]. 

R e m a r k 3. Similarly, if X is pseudocompact, then the family of all positive elements 
z e (^(X), t^ coincides with the collection of all Daniell integrals on X, Indeed, if 
/„ e C{X\ /„ I 0, then evidently /„ -> 0 in the space C{X), For any z e (£(X), i) we 
obtain <^,/„> -^ 0. On the other hand, if F is Daniell integral on Z , / „ -> 0 in the 
space C{X\ then £„ i 0 where 

c„ = max |/„(x)| , £„ = max (c„, c^+i,...) 

If e is now the unit element of the algebra C(X) then eividently —e^.e^f^^e^.e and 
•~E„ F{e) й F{f„) S £n Щ- Hence lim F{f„) = 0 and, consequently, F e C*(X). 

9. A DUAL CHARACTERIZATION OF PSEUDOCOMPACT SPACES 

Now we consider E(X) endowed with the Mackey topology т = т(^Е(Х), C(X)>. 
In this section we shall be concerned with a question presented by M. KATETOV: to 
describe the completion of the Л-structure (J5(Z), т). As a consequence we intend to 
show (see also Section 10) some interesting applications to the compactness in locally 
convex spaces. 

Denote by Jf(X) the family of all relatively weakly compact subsets in C(X), 
by ^ o ( ^ ) the system of all bounded and relatively compact subsets in C{X) with the 
pointwise topology a{C(X), X). First we recall (cf. [13], [14]) that for a pseudocom­
pact space X it holds Ж{Х) = Jfo{X). Previously this statement has been proved for 
countably compact spaces by integration methods in [7]; a quite elementary proof 
(using the combinatorial lemma) for pseudocompact spaces is given in [12], [13]. To 
this point let us note that the case of a pseudocompact space may be immediately 
reduced by Theorem 34 of [9] or by some of its consequences (e.g. Lemma 1.1 of [14]) 
to the case that X is compact. 

Lemma. If TQ is the Mackey topology on C*(Z) defined by the dual pair <C*(Z), 
C(X)>, then (C*(Z), TQ) is complete for any completely regular space X, 

Proof. For any sequence {/„} in C(Z),/„ -> 0, the family {/„} is uniformly bounded 
and compact in C(X), hence it is weakly compact. The rest of the proof may be carried 
out as in the remark to Theorem 12. 

The co0ipletion {Ê(X), т) of the Л-structure {E(X), T) is, similarly as in Section 8, 
algebraically isomorphic to a subspace of C*(Z) for any completely regular space X. 
In view^ of this isomorphism (denoted by COQ) we may, of course, identify (Ê(X), т) 
with its cOo-image in C*(X). To prove this statement, we consider first the identical 
algebraical embedding J of (E(Z), т) onto (£(X), t,). By Theorem 4, § 18 of [ U ] , 
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there exists a uniquely defined extension J of {Ê{X), т) into {Ê(X), t^), but {Ê(X), t^) 

is algebraically isomorphic to a subspace of C*(X) in accordance with Theorem 12. 

The main result of this section is contained in (see also [16]) 

Theorem 17. Let X be a completely regular space. Then the following statements 
are equivalent: 

(a) X is pseudocompact. 

(b) It holds Ж{Х) = Жо{Х), 
(c) The canonical mapping COQ is a topological isomorphism of {Ê(X), т) onto 

( C * ( Z ) , T ) . 

Proof, (a) => (b): it follows from the well-known theorem mentioned above, 
(b) => (c): if (b) holds, then {E{X), т) is a dense subspace of (C*(Z), т). Indeed, the 
assertion (b) says that the Mackey's topologies defined by the dual pairs <E(X), C{X)y 
and <C*(X), C{X)y coincide. The rest follows from the previous Lemma. 
(c) => (a): it is a consequence of the relation {Ê{X), т) ç {Ê{X), t^ and of Theorem 15. 

It should be noticed that the implication (b) => (a) is a solution of the problem 
presented by V. PTAK (cf. [14]). 

10. SOME APPLICATIONS TO THE COMPACTNESS 

In the present section we shall prove, as apphcations of the previous results, some 
theorems concerning the compactness in locally convex spaces. 

In the substance, the method we are going to make use of may be elucidated by 
a simple example which follows. Let X be a bounded subset of a Banach space F. 
Putting h{z) = YJ K^) ^ f̂ ^ ^Щ ^ — W^)^ xeX] e 1^{X), sNt define a continuous 

xeX 

linear operator of V(X) into F, Such situation turns out, especially, if we intend to 
characterize the completion of the (projective) topological tensor product E ® F oï 
two Banach spaces (cf. [8], § 2). In the stated example we may proceed, notwith­
standing, as follows: first the subset X is endowed with a special discrete topology Q 
and then the identical (and continuous) mapping h is extended to the completion 
{Ê{X), о) (compare with Theorem 7). The proofs of the following theorems are based 
on the same idea with the only difference that X will be considered to be a topological 
subspace of F, 

If, moreover, X is compact in the above-mentioned example, then /z is a compact 
operator on 1^{X) (cf. [3], Ch. Ill , § 3). The last statement suggests somewhat different 
point of view, namely, it suggests to apply the properties of compact operators (cf. 
[6]), expecially if we take into account that for a compact subset X the bidual space 
{E(X), ^)** coincides with C^{X) (see Theorem 1). For Banach spaces the theorem 
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of KREIN and of EBERLEIN have been proved by a method which depends basically 
on the properties of compact operators and on the Extension Theorem in [13]. 

Suppose that X is a subset of a locally convex space F, ГХ its absolutely convex 
envelope in F, U the absolutely convex envelope of X in E(X). If J is the identical 
embedding of X into F and J its linear extension to F(Z), then it is clear that J(X) — 
= X and J{{]) = TX. For the Mackey topology in F we write т̂.̂  = T(F, F*) . 

The first theorem we are going to prove is the KREIN theorem in the general form 
(cf. [7]). 

Theorem 18. Let X be a weakly relatively compact subset in a locally convex 
space F. Suppose that the closed and absolutely convex envelope ГХ in F is complete 
in F under the Mackey topology Xp. Then ГХ is weakly compact in F. 

Proof. Without loss of generahty it suffices to prove the theorem under the con­
dition that X is weakly compact in F (according to the equahty ГХ = ГХ we take X 
if necessary). If X is weakly compact then we consider the uniformity t^ induced on X 
by the weak topology a == a(F, F*) in F. The canonical embedding J : X -^ (F, a) 
is now bounded and continuous, hence it may be continuously extended to (F(X), t^). 
From the well-known properties of linear continuous mappings in locally convex 
spaces (cf. [l]) it follows that the hnear extension J of J is continuous in the topolo­
gies T and Tp where т = T(F(Z), C{X)). With respect to Theorem 17 we may regard J 
as a continuous mapping from (C*(X), т) into the completion F of (F, Тр). But ГХ 
being Tj-'Complete in F, it is closed in P. For the weak closure V of U in C*(X) it 
follows J{U'') Ç ГХ. On the other hand, V is weakly compact and absolutely 
closed in C*(X), hence J(L7'') is weakly compact in P and contains ГХ. This implies 
the equality 

JÇD'') = Tx . 

Tlie proof is complete. 

Theorem 19. Suppose that X is a subset of a locally convex space F. If the closed 
and convex envelope coX ofX is complete for the Mackey topology Тр, then the 
following properties are equivalent: 
(a) X is relatively compact in F. 
(b) X is relatively countable compact in F. 
(c) X is relatively pseudocompact in F. 

Proof. Obviously (a) => (b) => (c). We shall prove (c) =̂> (a). Similarly as in the 
preceding proof we may suppose that X is pseudocompact in F. Let us consider the 
topology t^ induced on X by the original topology in F. The closure X in {Ê(X), t^) is 
therefore compact and by the same reasoning as in the proof of Theorem 18 we may 
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establish the continuity of the canonical mapping J : (C*(Z), т) -> (F, Xp). Because 
of the relation т ^ t^, the set X is closed in the topology т in C*(Z). From J{X) Ç 
£ CO X ^ F we conclude that J{X) is compact in F. Evidently the closure oï X in F 
is contained in i(X). This proves the assertion. 

Remark 1. The assertion of the last theorem generahzes simultaneously the 
EBERLEIN-GROTHENDÏECK theorem (cf. [7], Prop. 2) and the theorem of V. PTAK 

(cf. [14]). It is to be noted that the preceding statement may be derived by the proce­
dure indicated in [7] from the mentioned result of V. PTAK. 

Remark 2. The method of yl-structures over a completely regular space X 
regarding C{X) as a dual to E{X) (with a suitable topology) makes it possible to in­
vestigate also other concepts of compactness in C{X), 

Let X be, for example, a completely regular space, M a convex subset in C{X), 
Suppose that M is convex-compact in the point wise topology a in C{X) (i.e. the 
intersection of any decreasing sequence {K^ of non-empty, convex and closed subsets 
in M in the pointwise topology is non-empty). If h is an arbitrary function on X 
adherent to M in the pointwise topology, then h is sequentially continuous on X, 

Proof. From the assumption it follows immediately that /i is a point of the alge­
braical dual space to (C(X), cr)*. For any sequence {xj in X there exists h^eM such 
that (cf. [11]) 

lim \h{x) - /io(^/)] = 0 . 

If now {x J is a sequence in X, x̂  -> x^eX then we choose /IQ in M having the men­
tioned property with respect to the sequence x^, XQ, X2, XQ. ..., x„, XQ, ... Evidently 
it holds 

lim /z(xi) = lim Н^{х) = Нсу{хо) = /i(xo). 

It should be noticed that the continuity of h has been proved under the same 
conditions as above and for the compact space X in [4]. 

11, AN EXTENSION THEOREM FOR ^^-SPACES 

Let E and F be two locally convex spaces, Б(х, у) a bihnear function on the 
Cartesian product E x F. The linear mappings и and v defined by the formula 

B{x, y) = <x, u{y)} = <t;(x), УУ , 

xeE, у ef obviously map F into the algebraical dual to E and E into the algebraical 
dual space to F. If В is, moreover, separately continuous, then w is a continuous 
mapping of F into F* under the weak topology and a similar statement holds for the 
mapping V. Because of the relation E Я £** and F я F** a natural question arises 
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under what conditions is it possible to extend in a unique manner such a separately 
continuous bilinear function B(x, y) to the Cartesian product £** x F**. In [8] 
there are indicated some strong conditions under which such an extension exists. 
From a different point of view V. PTAK (cf. [13]) has solved the question under what 
conditions there exists a uniquely defined extension of a separately continuous 
function B(X, y) on the Cartesian product X x Y of two completely regular spaces 
to the product C%X) x C^{Y), 

To generalize these uncomparable standpoints, we shall introduce the concept of 
a ^J^-space and then we shall prove the extension theorem for the Cartesian product 
of two ^ J'-spaces. 

Definition 3. A locally convex space E is said to be a ^J^-space if the following 
properties are satisfied: 

1° There exists a bounded subset X in E such that [nX; n = 1, 2, ...} forms the 
fundamental sequence of bounded subsets in E. 

T A linear operator w of E into an arbitrary locally convex space G is continuous if 
and only if the restriction of и to X is continuous in the induced topology. 

It is easy to see that any normed space and the Л-structure ( E ( X ) , i) are ^J*-spaces; 
the strong dual of a ^ J^-space is Banach space. 

In further discussion we shall suppose that B(x, y) is a separately continuous 
bilinear real-valued function on the Cartesian product E x F of two ^^-spaces 
E == ( E , Z ) , F = (E, Y) where X and Fare forming the fundamental system of bound­
ed subsets in E and E in accordance with the property 1° of Definition 3. 

Lemma 1. If u(Y) is relatively a^E"^, E^'^ycompact in E, then 

(a) и is a continuous mapping of F into E* under the topologies G{F, E*) and 
a{E'^, E**); 

(b) the adjoint mapping ^u : E** -> E* is continuous in the topologies Ö-(E**, E * ) 
and aijF'^, E). 

Proof. It suffices to prove the first assertion. The space E being a dense subspace 
in E** in the topology T(E**, E * ) and Г u(Y) being relatively a{E*, E**)-compact, 
there exists for any x' e E** and each e > 0 an x e E such that 

(8) \(x' - X, Г u{Y)}\ Kie. 

Let Whc a weak neighbourhood in E* defined by the formula 

Ж = { / е Е * ; |</,х;>| <8, luiun] 
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where x'l e £** for 1 ^ i ^ n. For any such x[ we may find some XIE E satisfying 
(8). Putting 

V= {ye F; \В{х^, y)\ < ie, \ ^ i й n} 

we see that у e V n Г 7 implies 

l<x;, u{y)}\ й \<x\ - X,, u{y)y\ + |<x„ u{y)y\ < e . 

From the last relation we may conclude that и is continuous on Y, hence и is conti­
nuous on F in the required topologies. 

Lemma 2. / / Б(х, у) is a separately continuous bilinear real-valued function on 
E X F, then the following properties are equivalent: 

1° U{Y) is relatively (7{E'^, E^'^ycompact in E. 
T v(lC) is relatively (J{F^, F'^^\compact in F. 

Proof. Since the absolutely convex envelope Ä = Г u{Y) is weakly relatively 
compact in £*, the canonical bilinear function </, x'} satisfies the double limit con­
dition on Л X U^, U^ being the unit ball in £**. It is easy to see that the same property 
is satisfied for the function 

<x, u{y)} = {v{x\ y} 

on Z X FY. Evidently v{X) is bounded in F* and FX is a dense subset of the unit 
ball in F*. Hence, v[X) is relatively weakly compact. 

A separately continuous bilinear function on £ x F satisfying the property 1̂  (or 

equivalently 2°) of Lemma 2 is said to be weakly compact (cf. [8]). 

From the preceding lemma we may, in particular, conclude that ^v[F*^) я £*. 

Lemma 3. If В is a weakly compact bilinear function on E x F, then Ы is con­
tinuous in the topologies (т(£**, £*) and a^F"^, JF**). Ä symmetrical assertion holds 
for the operator ^v. 

Proof. It suffices to prove 

<'w(xo), Jo> = <^o. НУО)У 

for all XQ e £**, Уо e F** (compare with [8] and [13]). For the sake of simplicity we 
shall assume that Xo and Уо are points of the unit balls in £** and F**. For any 
г > 0 we choose x^ e F such that 

|<Xi - Xo, 'v{yo)y\ < \г 
and 

|<'M(XI - Xo), з;>| = |<Xi - Xo, ii(j)>l < \г 

28 



for all y e Y. This impHes 

\<4xo), УоУ - <Xo, Цуо)>\ è |<'w(xo), УоУ - <Xi. Чз^о)>| + 

The proof is complete. 
Now we are ready to establish Extension Theorem for ^i^-spaces. 

Theorem 20. Let В(х, у) be a separately continuous bilinear real-valued function 
on the Cartesian product E x F of two ^^-spaces. Then the following properties 
are equivalent: 

(a) В is a weakly compact bilinear function, 
(b) В has a bilinear separately continuous extension to £** x F** in the weak 

topologies. 

Proof, (a) =^ (b): we put 

B{x, y) = Cu{x), y} = <x, Цу)} 

for all Л' e £** and у e F**. 
(b) => (a): is evident. 

If B{X, y) is a function on the Cartesian product X x 7 of two uniform spaces, 
then we define uniquely the bilinear extension В to E(X) x E{Y) by the formula 

B{x, y) = J^l^^ij Б(х,, yj) 

where x = Yj^t^t ^ ^ ( ^ ) ' У ^ Yjl^jyj ^ ^ (^) - Let Б be a bounded and separately 
uniformly continuous function on X x Y. Then В is evidently separately continuous 
on {E{X), t) X {E(Y), t). From the last theorem we may now conclude 

Theorem21 (Ptak). Let B[x, y) be a bounded and separately uniformly continuous 
function on the Cartesian product X x Y of two uniform spaces. Then the following 
assertions are equivalent: 

(a) U(Y) is relatively weakly compact in P{X). 
(b) v(X) is relatively weakly compact in P{Y). 
(c) В possesses a bilinear and separately continuous extension to P*(X) x P*(Y) 

in the weak topologies. 

If Б(Х, У) is a bounded and uniformly continuous function on the Cartesian product 
X X 7 of two precompact spaces, then evidently В satisfies the property (a) of 
Theorem 21. Moreover, the subset w(7) being relatively compact in P{X), we may 
expect that somewhat stronger results can be established in this case. It would be of 
some interest to investigate also functions satisfying weaker conditions than uniform 
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continuity, for example, (uniform) hypocontinuity on Z x Y. Partial results of this 
kind were communicated in [18]. As to the assumptions of the precompactness we 
note only that for any precompact X the space (P*(Z), t) represents the Grothen-
dieck's bidual space to (£(X), t) with the natural topology. 

In the following theorem we shall be concerned with a simultaneous extension of 
a family {B^}, a varying over a set Ä of indices. For any a G Л the mappings w ,̂ v^ are 
defined by the usual formula 

^a(^. y) = <̂ .̂ Ua{y)y = <^X^)^ y> ' 

Theorem 22. Let X and Y be two precompact spaces, {B^\ ae A] a uniformly 
bounded family of uniformly continuous functions on X x Y. Then the following 
properties are equivalent: 

(a) The family {B^\ OLE A] is uniformly equicontinuous on X x Y, 
(b) The family {B^; ae A} is uniformly hypo equicontinuous on (P*(X), t) x 

X (P'^ij), t) (with respect to the collections of all bounded subsets in P*(Z) and 
in P*{Y)). 

(c) The family {В^;осеА] is equicontinuous on each P*(-X') x N, N bounded 
in P*(y), in the topology induced by the space (P'^iY), t) x {P'^(X), a). The 
symmetrical assertion holds as well, 

(d) The family [B^; ОСЕ A} is weakly equicontinuous on each M x N, M bounded 
in P*(Z), N bounded in P^{Y). 

The p r o o f may be carried out making use of Theorem 5; it is easy to see that the 
family [u^; a E A] may be extended uniformly equicontinuously to the family 
{M„; UEA} where u^ : (£(7), t) -> P(X). 

12. THE UNBOUNDED TOPOLOGY 

In what follows we shall present a generalization of the Л-structure {E(X), foc) 
and, further, some results of the preceding sections will be extended to a more general 
category of spaces. 

Recall that CQ{X) is the space of all continuous functions on X with the topology 
of compact convergence. 

Definition 4. Let ^ = (Б^; ae Q} be a system of bounded subsets of a locally 
convex space E. The space E will be called a £^^-space (denoted [E, J*)) if 

1° for any bounded subset Б in £ there exists a suitable ae Q and an integer n such 

that В Ç: n ГВ^; 
T a linear mapping и from E into an arbitrary locally convex space F is continuous 

if and only if the restriction of и on any В e J^ is continuous. 
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Note some elementary assertions concerning £^^/-spaces: 

(a) Any ^J*-space is simultaneously a ^^/^-space. If X is locally compact, then 
{E(X), ГОС) ÎS a ^ ^ - s p a c e . 

(b) The strong dual to a ^^#-space (E, J") is complete. Expecially, if ^ is a countable 
system, then [E, .^)* is a Fréchet space. 

The next theorem will show that for any locally compact X the yl-structure 
{E(X), toc) is a special case of a ^^#-space, namely, it may be represented as an in­
ductive hmit of {E{K), r^), К compact in X (the canonical injections are taken as 
defining morphisms). 

Let J T denote the family of all compact subsets of a locally compact space X, 
From Corollary 2 of Theorem 6 it follows that for any К e X' the identical mapping 
( F ( X ) , tc{K)) -^ {E{X), tQc{X)) is continuous, hence the canonical mapping œ of 
E = lim ind ( F ( X ) , t^{K)) onto {E{X), ^ocW) is also continuous. On the other hand, 

Keoe-
the continuity of со "^ follows directly from the definition of {E{X), ÎQ^) and from the 
continuity of the embedding X -^ E. Thus we have proved 

Theorem 23. Let X be a locally compact space, Ж the family of all compact 
subsets in X. Then {E[X), foc) ^^ topologically isomorphic to the inductive limit of 
all {E{K), t,{K)), КЕЖ. 

Let Е = ( F , ^ i ) and F = (F, ̂ 2) be two ^^ - spaces . A separately continuous 
bilinear function / on F x F will be called weakly compact if u[B) is relatively 
(7(F*, F**)-compact whenever Be ^2- Similarly as in Lemma 2 of Section 11 and 
making use of Theorem 7 of [7] it may be proved that this property is equivalent to 
the statement that V{B) is relatively (J(F*, F**)-compact for any Be^^. Repeating 
the same procedure as in Section 11 we may also verify the validity of Lemma 1 for 
:^^"Spaces. 

The proof of Lemma 3 of Section 11 may be modified for ^^/-spaces as follows: 
To prove 

<'"(^o), Уо> = <^o. 4>'o)> 

for XQ e F** and уо e F**, we may suppose that у is in the bipolar set B^^ for some 
В e ^2- Hence, for any e > 0 there exists x^eE with 

\<!u{x^ - Xo), УУ\ = |<Xi - Xo, u{y)y\ < is 

for all у e В and 

|<Xi - Xo, 'v{yo)y\ < \E. 

Now we may establish in the same way as in the proof of Lemma 3 the relation 

|<'w(:^o). Уо) - <^o^ НУО)У\ < £ • 
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Hence we have proved 

Theorem 24. Let (£, J^^) and (F, ^2) be two Q)Jl-spaces, / (x , v) a weakly con­
tinuous bilinear function on E x F. Then the following statements are equivalent: 

(a) / is weakly continuous. 

(b) / has a bilinear separately continuous extension to £** x F** in the weak 
topologies. 

From Theorem 24 and from Proposition 3 we now obtain 

Corollary. Suppose that f is a separately continuous function on the Cartesian 
product X X Y of two locally compact and paracompact spaces. If Ж means the 
system of all compact subsets in Y, и is defined by the usual relation, then the follow­
ing properties are equivalent: 

(a) U[K) is weakly relatively compact in CQ{K) for any К e Ж. 
(b) There exists a bilinear and separately continuous extension off to Co(^) x 

X CQ{Y) in the weak topologies. 

R e m a r k 1. I f / i s a continuous function on the Cartesian product of two locally 
compact and paracompact spaces, then we may establish an analogical statement to 
Theorem 22 for / . Evidently, any such function being uniformly continuous on each 
К X H, К and Я compact in X and 7, it satisfies condition (a) of the last theorem. 
Hence it has a priori a separately continuous extension to CQ(X) X CQ{Y) in the 
weak topologies. 

R e m a r k 2. If X is a locally compact and paracompact space, then we conclude 
from Theorem 7 of [7] the following criterion for the relative weak compactness 
in Co(X): 

(a) subset D of CQ(X) is relatively cr(Co, Co)-compact if and only if D is bounded in 
CQ(X) and the canonical bihnear function (/, x) -> </, x} satisfies the double 
limit condition on each D x K, К compact in X. 
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