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In this paper we study the character of the solution of the system

du
1 — =a(t) — u® + v?,
0 = al) - 4o
dv
— = b(t) — 2u
5 = ) 2w

where a(t), b(t) are continuous functions on an interval J = (t,, ). The special
case a(f) = 0 of this system has appeared recently in a paper [1] by C. KuLiG.
There was generalized a theorem by Z. ButLewski [2], [3] about the trajectories of

the system
&r_ | (do)
de? )’

d/,de
— (=) = A(@) r?
dt( dt) ®r

which can be transformed into (1) by u = r'[r, v = ¢".

Consider first the autonomous system

' du
2 — = —u? 42,
@ P u® + v
dv
— =B - 2uv,
dt
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where o, B are real constants. The singular points (4, p) of this system satisfy the
equations
a—22+u2=0,
B—22u=0.

If o> 4+ B? > 0 we see that the system (2) has two singular points (4, 1) and (— 4, —p)
where

®) 2= JBWE + B + ], 0= £JEWE +F) - 9]

and the sign of the latter square root is taken in accordance with the sign of f. Using
classical methods (see e.g. [4], [5]) it can be shown that the singular points are

fociif A0, pu=+0,
nodesif A0, u=20,
centresif A =0, pu+0.

In the following we shall introduce conditions under which the trajectorories of (1)
behave like the trajectories of the system (2) near ¢ = co. For this purpose we shall
find the detailed integral phase-portrait of the trajectories of (2) exploiting the
theory of Riccati differential equation with complex-valued coefficients.

If we define A(f) = a() + ib(t), Z(t) = x(1) + iy(t) where u = x(1), v = y(t) is
a solution of (1) we have Z' = u’ + iv' = a(t) — u* + v* + i[b(t) — 2uv] so that
the function Z() is a solution of the equation

@) ' = A(l) - 22

if and only if Z = u + iv, u, v being solutions of (1) The Riccati equation cor-
responding to (2) is of the form

5) Z=A-72°,

where A = o + if. In what follows let A4, — A denote the square roots of A4; we shall
suppose without loss of generality that Re A = 0. Further on, R and K denote the
set of all real and complex numbers, respectively. If Z = u + ive K we denote
ReZ=u,ImZ=v,Z=u—iv, |Z| = /(ZZ) and ArgZ the angle & such that
cos @ = Re Z/|Z|, sin @ = Im Z||Z|, 0 £ & < 2n. A curve Z = Z(1) = x(t) + iy(2)
in the argand plane (u, v) is called the trajectory of the equation (4) on an interval i
if and only if the function Z(t) satisfies this equation on i. The well known theorem on
existence and unicity of solutions quarantees, for any pair t, € J, Z, € K, the existence
of a unique solution Z of (4) defined in a neighborhood of t,, Z(t;) = Z,.
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In what follows the quite fundamental role is played by the family of circles
(Liapunov’s functions of (4))

(6)

_AZ + AZ

y=—0o——, 4%0
Z7Z + A4

where y is a real parameter, —1 < y < 1. This equation can be written in the form
[yZ — A] = |4]| /(1 — 7*) and represents a pencil of circles with limit points A
and —A which correspond to the values y = 1, y = —1, and with the radical axis
AZ + AZ = 0 corresponding to y = 0. The circle K, corresponding to the value y
has the centre Ay and the radius r = |4] /(1 — y*)/[]-

Now, we are prepared to prove the following lemma.

Lemma. The differential equation of the curves which cut all curves (6) at the

same angle ¢ is of the form

zZ
) Z M-z,

dt 24
where H = sin ¢ + icos ¢ and v £ 0 is any real constant. The general solution
of this equation is

vHt

eVt — 5

8 Z=A—"

®) e Ht 4 g

If x = oo, then Z = — A; the trajectory corresponding to x = —1, namely
eth + 1

) Z=A—g]

passes at t = 0 through the point at infinity and has the straight line
(10) Im (1HZ) = 0

for asymptote. Each trajectory of (7) starting at the point Zy + A(e™ + 1)/(e”™* — 1)
is defined for all t. For any trajectory Z + — A sgn.(v Re H) [Z & A sgn (v Re H)]
there holds

(11) lim Z(f) = A sgn (v Re H) [ lim Z(t) = — A sgn (v Re H)].
= t— 0
Proof. To find the differential equation of the pencil of circles (6) we differentiate
this equation to obtain

(AZ' + A2) (22 + A%) = (AZ + A2) (2Z' + 27) _
(2Z + Ad) ’
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so that
AAZ' + AA2Z' — AZ*Z' — AZ*Z' =0
and
Re AZ'(A* — Z*) = 0.

Hence the differential equation of (6) is
(12) Z' = igA(A? — Z7),

where ¢ =+ 0 is a real constant. It is of interest to note that replacing ¢ by any other
real constant ¢ the locus of (12) remains the same. This is the consequence of the
fact that the corresponding vectors Z;, Z; given by (12) are linearly dependent, so
that the above mentioned change of ¢ affects only the velocity of the point moving
along the trajectory.

To obtain the differential equation of curves intersecting the pencil (6) at the angle ¢
it suffices to rotate the vector Z’ given by (12)‘through the angle ¢, that means, to
multiply the right hand side of the equation (12) by the number cos ¢ — isin ¢ =
= —iH. Putting v = 2044 we obtain the equation (7). This equation can be written
in the form

dz dz
—_— + —_—
A—Z A+2Z

= vH dt
if constant solutions
(13) Z=+4

are excluded. Integration of the equation from 0 to ¢ yields

10ng+Z=th
where

A—-Z
14 x = 0. Z, = Z(0).
(14 e B0

Hence (8) is the general solution of (7) containing the excluded solutions (13) for
» =0 and » = o, too. Note that (14) is a one-to-one correspondence Z; <> x;
we see that Zy = oo if % = —1.

The solution (8) is defined on the whole real axis if the point Z, does not belong
to the curve x + e"#* = 0. Substituting (14) this equation reads

et 4 1

ZO: _Aeth_l'

Replacing ¢ by —1 this curve coincides with (9).
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Now we have to find the asymptote of (9) Using 'Hospital’s rule we get for its

slope k
-1
k = tim T 20 _ i m o [Re L
-0 Re Z(t) -0 Z(1) Z(t)

Ctimim 2O [re ZO7 — fim tm {E[ A 1]}

o 220 L Z2()) wo 4221

O R

e (AZ) =
~a

Fig. 1.
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The curve (9) being symmetric with respect to the origin and passing through the
point Z, = oo only for ¢ = 0 has the asymptote containing the origin so that its
equation is Im Z Re (41H) = Re Z Im (4H); after rearranging this equation becomes
(10). The relations (11) follow immediately from (8).

The proof of the lemma is complete.

For our further considerations the special case vH = 24 is of great importance and
for this reason we introduce it as a theorem.

Theorem 1. The trajectories of the equation (5) cut all the curves of the pencil (6)
at a constant angle ¢ for which

_Im4a

sin ¢ = osgo—W

e
4]
The parametric equations of any trajectory are of the form

ezAt — %

Z=A——
e2Ar + %
where % is a suitable constant.

If Re A > 0, Im A # 0, then there is a trajectory having a point at infinity and
the real axis for asymptote; all trajectories except two of them, Z = + A, tend
spirally surrounding to the singular point A(—A) as t - oo (t > — ). (Fig. 1.)

If Re A = 0, the equation (12) coincides for ¢ = [Im A]™" with (5) so that the
trajectories of (5) form a pencil of circles (6).

If Im A = 0, the trajectories of (5) form a pencil of circles

.AZ — AZ

=l———=
' ZZ — A4

intersecting the circles of (6) at right angles.

Theorem 2. Let A(t) be a continuous complex-valued function of the real variable
teJ = {to, oo). Suppose that there exists a number A€ K, Re A > 0 such that
the function

(15) A(t) = A(t) — A?
satisfies the condition

(16) sup |4(1)] < |A] Re 4.
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Let yo€ R, 0 < yo < 1 be defined by
(1) sup [4()]| = 4] Re 4(1 7).
219

If a trajectory Z(1) of (4) satisfies at t = t, = t, the inequality
(18) Re [4 Z(1))] > 0,
then to each y,,

(19) 0 <y <7

there exists a time t, 2 t; so that the trajectory Z(t) remains for all t > t, in the
interior of the circle K,
AZ + AZ
(20) V1 =—F="=.
ZZ + AA
Proof. The pencil of circles (6) covers the whole plane (u, v). If Z = Z(t) is any

trajectory of (4) then the point Z(t) pertains to a circle of (6). This circle corresponds
to the value y(t)

(21) () =

Differentiation yields

AZ(t) + A Z(1)
Z(f) Z(t) + A4~

V(ZZ + AA? = A2AZ' + ARZ' — AZ*Z' — AZ*Z' = 2 Re {AZ'(A — Z} .
Substituting Z' = 4 — Z? and using (15) we get
(22)  Y(ZZ + AA)* = 2 Re A(A* — Z*) (A* — Z%) + 2 Re {AA(A* — Z*)}.
Since

(4% = Z2%) (A% — Z%) = (ZZ + AA) — (AZ + AZ)* = (ZZ + AA)* (1 — ¥%),
the relation (22) can be written in the form

2 Re {44(1) [4* - Z()]}

(23) Y0 =2 Reall = 0]+ ZRE

Now, the inequality

|2 Re {44(42 — Z2)}| < 2|4] |4] |4% = Z2| = 2|A44]| [(4> - 22) (A% - Z*)]'* =
= 2|A4| [(ZZ + AA)* (1 — y*)]'?
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leads us to the following estimate of the modulus of the second term on the right of
(23)
12 Re {44(* = 2%)}| _ 2|4d) J[1 = v*] _ 24 J[1 ~ ]
(2Z + A4)? T ZZ+ 44 |4]

This yields fundamental inequalities

4 - 2/4(0] V[1 = ¥*(1)] < () — 2 Re A[1 — y*(f)] < 2|4(0] V1 = ?z(t)]

] B ||

From (16) it is seen that if y € R, [y| < o then |4(f)|] < |4| Re A /[1 — y*], so that

2 Re A(1 — y?) > |4(1)| 2t =]
|]
for t 2 t,. This inequality and (24) imply that t
(25) Y(T)>0 if TeJ and [y(T)| < y,.

If a point Z(t,) of the trajectory Z = Z(1) satisfies (18) then there is a circle K,,,, of
the pencil (6) passing through this point and y(t,) > 0. If y(¢,) = y, then y(t) > y,
for all t > 1,; this is the consequence of the fact that y(T) = y, implies y'(T) > 0 in
view of (25). If y(t;) < y; we proceed as follows: for all ¢ > #, for which y(t) < v,

we have in view of (17) and (24)

2J[1 =]
|4(2)] T C

2Re A(l — y7) = 2Re A J[1 — po] [1 = ¥i] =
—2Re AT = 211 - 9] = JIL = 2] > 0.

Y(1) 2 2 Re A(1 — y}) —

v

Hence there is a time ¢, > t, so that y(tz) > v,. Using the preceding argument we
see that y(t) > y, for t > t,. This means that such a trajectory, after a finite time,
will enter the interior of the circle K, and will remain there for t — co.

The proof is complete.

Theorem 3. Assume that A(t) is continuous on J,

(26) lim A(f) = A*, ReAd >0

1= 0

and that the function A(t) defined by (15) satisfies (16). Then every trajectory Z(t)
of (4) satisfying (18) at t; 2 t, tends to the point A when t — co.
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Proof. Let Z() be a trajectory of (4) satisfying (18). It is sufficient to prove that
if y; €R, 0 < y; < 1 then there exists a time ¢, = t; such that Z(¢) remains in the

interior of the circle (20) for all ¢ > ¢,. To this purpose define for © > ¢, the function
7(t) > 0 by means of the equation

sup [4(1)] = 4| Re 4 J[1 = 7*(7)]

Then (26) implies hm y(‘t) 1. Therefore if 0 < y, < 1 then there is a t, = ¢, such

that y(t;) > 7,. Puttmg 9o = y(t,) it is seen from Theorem 2 that there is a time
t3 = t, such that Z(t) remains for ¢ > t; in the circle (20).

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Denote by ®(Z, t) the
angle between the trajectories of the equations (4) and (5) passing through the

point Z at a time t. Then there holds

a2
D(Z,1) < 90°, sinP(Z,1) < M

[4] VI = 1]
if Z belongs to the circle K, at the time t 2 t,.
Proof. Note that
@7 #(Z, 1) = |Arg [A() — 2%()] - Arg [4* - Z*(1)]|

since Arg [A(f) — Z*(t)], Arg [A? — Z*(1)] is the angle between the tangent of the
trajectory (4), (5) respectively and the positive real axis. Consequently, there follows
from (27)

®(z,1) = | Arg A_A(?:TZ;(E;) _ l Arg L ZZAY)Z;(gz(t) _
Putting
0 =725
we have (see the proof of Theorem 2)
R() = |4() RZOS

JIE =20 [~ 20)] " [20) 20) + AA] J[L - ¥
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Thus at every point of the trajectory Z(f) the following inequality holds

R(t) < ___% .
AAJ[1 = y*(0)]
If the point Z belongs to the circle (20) with y, satisfying (19), it is clear in view of (16)
that
|4(0)] Re A /[1 = 73]

N VN T

Thus, Arg [1 + A(1)/(A> — Z?*(t))] is contained at all points Z(f) of K,, between the
angles H(t), —H(f) formed by the tangents through the origin to the circle having
the centre at Z = 1 and the radius R(f), and by the positive real axis. Therefore
®(Z, t) < H(t) and the statement follows from the relation sin H(f) = R(¢).

Note. Let ¥(Z, t) denote the angle between the trajectories of the equations (5)
and (12) passing through the point Z at the time ¢. It holds

V(Z, 1) = |Arg {id[A* — Z*(1)]} — Arg [4* — Z*(1)]| =
= |Arg (i4)| = |Arg(Im 4 + i Re 4)|,
so that sin ¥(Z, 1) = Re A/|4| at every point Z # +A. Comparing this result with
the statement of Theorem 4 we see that the tangent of the trajectory Z(t) of the equa-

tion (4) is directed into the interior of every circle K., where 0 < y; < 7,.

Theorem 5. If A(t) is a complex-valued continuous function on J satisfying
(29) lim Af) = A, ReA > 0; f ld JA(D)] <
t—o0 to

then there exists a trajectory of the equation (4) defined on the interval {t,, ®),
ty = to such that

(29) lim Z(t) = A
and

(30) lim j [2(5) - JA)] ds
exists.

Proof. The existence of a solution satisfying (29) follows from Theorem 3 since
the condition (28) implies that there is a time ¢; > t, such that (16) holds for t > ¢,.
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If Z(t) is a solution defined for ¢ > t,, we have

_ ! dZ(s) T d L JA(s)
¥ j o Z(s) + A(s) ¥ o Z(s) + JA()

Hence
©dzZ(s) o (f_dyAls)
J. 70 v e 0 Va1 - [ 253G
and in view of (29) and (28) Z(¢) satisfies the condition
! dZ(s)
G i 20 + ¥

exists. The differential equation (4) yields Z'(s)/(Z(s) + +/A(s)) = Z(s) ~ /A(s) so
that (30) follows from (31).

Theorem 6. Assume that A(t) is continuous on J. Let there exist a constant A€ekK,
A = 0 such that the function (15) satisfies the condition

(32) jw|A(t)[ dt < 0.
to

Then every solution of (4) defined for t > oo satisfies either
(33) limZ(f) = 4, lim _[ ’IZ(s) — A] ds

oo )
exists, or
(34) lim Z(t) = —4, lim J‘IIZ(S) + 4| ds
exists. o o

Proof. Let Z = Z(t) be a trajectory of (4) defined for ¢ > ¢,. Then the point Z(?)
belongs to a circle of the pencil (6) which corresponds to the value y(f) satisfying the
equation (21). By (24) and the fact that

(35) ()] = 1
there follows

B (U] I (O 2 < 401
(6) |A| Re A ™ 2Re 4 [t=v(l= |[A| Re A~
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Integrating these inequalities over (t;, t) we see in view of (32) that the hypothesis
f& [ = y*(t)] dt = oo implies y(f)/Re A — o when t — co; but this contradicts
(35) and therefore

(37) f [1 - (0] dt < .
t
Moreover, from (24) we obtain the inequality
ly'(t)] < 2Re /1[1 - yz(t)] + %I%

for t 2 t;. From here and from (37) we have

(38) j [v())] dt < oo
ty :
Therefore y(t) converges when ¢ — oo and with respect to (37) it holds either
(39) limy(t) =1, or limy(f)= —1.
t— o0 1= o0

This means that

(40) limZ(f) = 4,
t—wo .

or

(41) lim Z(f) = — 4.
t— 0

Now, let us consider the function

j2) ¥ 4P

(42) oft) = 20+ A20)

where the sign — [ +] is chosen if (40) [(41)] holds. By simple induction we have

o) = L0

(1)

From here it is seen that c(¢) is defined for large ¢ since y(f) + 0 near ¢t = oo in view
of (39). By (40), (41) and (42) we have

-l < 1 F 9(t) 1/2 _ 1 — (1) 1/2
I on B o vl
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where K is a suitable constant. On the other hand it follows from (24)

— IA(t)I < (1) y'() ([t - ),2(;)]1/2 < |4(r)

|[4| Re 4 = 2 Re A /[1 — y*(1)] ~ |A|Re A’

Using the same argument as in the proof of (37) we get

< .

f [0 - e

Evidently, this condition is equivalent to the following one
0

(44) f [1 - y(3] dt <

since y*(f) - 1 when ¢ — co. Since

1 - 72(’) < a2
Jharis = 0 -7l

for a suitable constant Land large ¢, it is seen from (41) that

|2()) F 4] = L1 = v*(1)] -

This inequality and (44) quarantee the convergence of the integrals in (33), (34).
The proof is complete.
We will complete our considerations by noting that the preceding theorems have

their analogies for the real system (1). We will not introduce them here since they may
be stated without difficulties.
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