Jagdish Prasad
Remarks on a theorem of P. K. Suetin

Persistent URL: http://dml.cz/dmlcz/101031

Terms of use:
© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
REMARKS ON A THEOREM OF P. K. SUETIN

JAGDISH PRASAD, Los Angeles

(Received September 18, 1969)

1. Let

$$S_n(x) = \sum_{k=0}^{n} a_k \tilde{P}_k(x)$$

denote the nth partial sum of the Fourier Legendre series of a function $f(x)$. It is well-known that $S_n(x)$ converges uniformly to $f(x)$ in $[-1, 1]$ if $f(x)$ has a continuous second derivative on $[-1, 1]$. Recently Suetin [4] has shown that $S_n(x)$ converges uniformly to $f(x)$ if $f(x)$ belongs to a Lipschitz class of order greater than $1/2$ in $[-1, 1]$.

More precisely he has established the following result.

Theorem 1. (P. K. Suetin [4]). If $f(x)$ has p continuous derivatives on $[-1, 1]$ and \(f^{(p)}(x) \in \text{Lip} \, \alpha \), then

$$|f(x) - S_n(x)| \leq \frac{c_1 \log n}{n^{p+\alpha - 1/2}}, \quad x \in [-1, 1],$$

for $p + \alpha \geq 1/2$.

In establishing this remarkable theorem he has employed the following well known theorem of A. F. Timan [6] which is a stronger form of Jackson’s theorem.

Theorem 2. If $f(x)$ has p continuous derivatives on $[-1, 1]$ and \(f^{(p)}(x) \in \text{Lip} \, \alpha \), then there is a sequence of polynomials \(\{q_n(x)\} \) for which

$$|f(x) - q_n(x)| \leq \frac{c_2}{n^{p+\alpha}} \left(\sqrt{1 - x^2} + \frac{1}{n} \right)^{p+\alpha}, \quad x \in [-1, 1].$$

Very recently Saxena [3] has proved the following theorem for $S'_n(x)$, the first derivative of $S_n(x)$ with respect to x.

349
Theorem 3 (R. B. Saxena [3]). If \(f(x) \) has \(p \) continuous derivatives on \([-1, 1]\) and \(f^{(p)}(x) \in \text{Lip } \alpha \), then together with (1.2) the following inequalities hold:

\[
(1.3) \quad (1 - x^2)^{3/4} |f'(x) - S_n'(x)| \leq \frac{c_3 \log n}{n^{p+\alpha-1}}, \quad (0 < \alpha < 1, \ p \geq 1),
\]

\[
(1.4) \quad (1 - x^2)^{1/2} |f'(x) - S_n'(x)| \leq \frac{c_4 \log n}{n^{p+\alpha-3/2}}, \quad (\frac{1}{2} < \alpha < 1, \ p \geq 1)
\]

and

\[
(1.5) \quad |f'(x) - S_n'(x)| \leq \frac{c_5 \log n}{n^{p+\alpha-5/2}}, \quad (\frac{1}{2} < \alpha < 1, \ p \geq 2)
\]

uniformly in \([-1, 1]\).

In connection with theorem 1 we shall prove the following theorem which generalizes theorem 3.

Theorem 4. If \(f(x) \) has \(p \) continuous derivatives on \([-1, 1]\) and \(f^{(p)}(x) \in \text{Lip } \alpha \), then together with (1.3) and (1.4) the following inequalities hold:

\[
(1.6) \quad (1 - x^2)^{1/4} |f(x) - S_n(x)| \leq \frac{c_6 \log n}{n^{p+\alpha}}, \quad (p + \alpha \geq \frac{1}{2})
\]

and

\[
(1.7) \quad |f^{(p)}(x) - S_n^{(p)}(x)| \leq \frac{c_7 \log n}{n^{p+\alpha-2r-1/2}}, \quad (p \geq 2r, \ \frac{1}{2} < \alpha < 1)
\]

uniformly in \([-1, 1]\).

2. To prove the theorem we shall need the following well-known results on Legendre polynomials. The orthonormalized Legendre polynomial \(\bar{P}_n(x) \) is given by [1]

\[
(2.1) \quad \bar{P}_n(x) = \sqrt{\frac{n + 1}{2}} P_n(x),
\]

where \(P_n(x) \) denotes the \(n \)th Legendre polynomial with the normalization \(P_n(1) = 1 \). From [1], [2] and [5] we have for \(-1 \leq x \leq 1\),

\[
(2.2) \quad |\bar{P}_n(x)| \leq c_7 \sqrt{n}
\]

and the inequality

\[
(2.3) \quad (1 - x^2)^{1/4} |\bar{P}_n(x)| \leq c_8.
\]
For the derivatives of $\bar{P}_n(x)$ we have the following inequalities which hold for $-1 \leq x \leq 1$,
\begin{align}
(1 - x^2)^{1/2} \left| \bar{P}_n^{(r)}(x) \right| & \leq c_0 n^{3/2}, \\
(1 - x^2)^{3/4} \left| \bar{P}_n^{(r)}(x) \right| & \leq c_{10} n
\end{align}
and the Markov's inequality
\begin{equation}
\left| \bar{P}_n^{(r)}(x) \right| \leq c_{11} n^{2r+1/2}, \quad r = 0, 1, 2, \ldots
\end{equation}

3. In order to prove Theorem 4 we require the following lemmas.

Lemma 3.1. For $-1 \leq x \leq 1$, we have
\begin{equation}
(1 - x^2)^{1/4} \int_{-1}^{1} \left| \sum_{k=0}^{n} \bar{P}_k(t) \bar{P}_k(x) \right| \, dt \leq c_{11} n^{1/2}
\end{equation}
and
\begin{equation}
\int_{-1}^{1} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| \, dt \leq c_{12} n^{2r+1}.
\end{equation}

Proof. We give here the proof for (3.2) only. The proof for (3.1) can be given on the same lines. Making use of (2.6) we have
\[
\int_{-1}^{1} \left[\sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right]^2 \, dt = \sum_{k=r}^{n} \left| \bar{P}_k^{(r)}(x) \right|^2 \leq c_{13} \sum_{k=r}^{n} k^{4r+1} \leq c_{14} n^{4r+2},
\]
from which (3.2) follows.

Lemma 3.2. We have for $-1 \leq x \leq 1$ and $\alpha \geq 1/2$,
\begin{equation}
(1 - x^2)^{1/4} \int_{-1}^{1} \left(\sqrt{1 - t^2} \right)^{p+\alpha} \left| \sum_{k=0}^{n} \bar{P}_k(t) \bar{P}_k(x) \right| \, dt \leq c_{15} \log n
\end{equation}
and
\begin{equation}
\int_{-1}^{1} \left(\sqrt{1 - t^2} \right)^{p+\alpha} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| \, dt \leq c_{16} n^{2r+1/2} \log n.
\end{equation}

Proof. We shall prove (3.4) only and (3.3) can be proved in the same manner. Let us denote by $A_n(x)$ the part of $[-1, 1]$ on which $|x - t| \leq 1/n$ and by $\delta(x)$ the rest of the interval. Making use of (2.3) and (2.6), we obtain
\begin{equation}
\int_{A_n(x)} (1 - t^2)^{(p+\alpha)/2} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| \, dt \leq
\end{equation}
\[
\leq \int_{A_n(x)} \sum_{k=r}^{n} (1 - t^2)^{(p+\alpha)/2} \left| \bar{P}_k(t) \right| \left| \bar{P}_k^{(r)}(x) \right| \, dt \leq K_r \frac{1}{n} \sum_{k=0}^{n} k^{2r+1/2} \leq K_r n^{2r+1/2}.
\]

351
To estimate the integral over \(\delta_n(x) \) we make use of the Christoffel formula [5].

\[
(3.6) \quad \sum_{k=0}^{n} \bar{P}_k(t) \bar{P}_k(x) = \theta_n \frac{\bar{P}_{n+1}(t) - \bar{P}_n(t) \bar{P}_{n+1}(t)}{x - t}, \quad 0 < \theta_n \leq 1.
\]

On differentiating \(r \) times both the sides of (3.6) we have

\[
(3.7) \quad \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) = \theta_n \frac{\{ \bar{P}_{n+1}^{(r)}(t) \bar{P}_n(t) - \bar{P}_n^{(r)}(x) \bar{P}_{n+1}(t) \}}{x - t} + \\
\quad \quad + \theta_n \sum_{v=0}^{r-1} (-1)^{v-r} \frac{r!}{v!} \{ \bar{P}_{n+1}^{(v)}(t) \bar{P}_n(t) - \bar{P}_n^{(v)}(x) \bar{P}_{n+1}(t) \}. \quad (x - t)^{r-v+1}
\]

Then we have

\[
(3.8) \quad \int_{\delta_n(x)} (1 - t^2)^{(p+q)/2} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| dt \leq \\
\leq \int_{\delta_n(x)} (1 - t^2)^{(p+q)/2} \frac{\{ \bar{P}_{n+1}^{(r)}(t) \bar{P}_n(t) - \bar{P}_n^{(r)}(x) \bar{P}_{n+1}(t) \}}{x - t} dt + \\
+ \int_{\delta_n(x)} (1 - t^2)^{(p+q)/2} \left| \sum_{v=0}^{r-1} (-1)^{v-r} \frac{r!}{v!} \{ \bar{P}_{n+1}^{(v)}(t) \bar{P}_n(t) - \bar{P}_n^{(v)}(x) \bar{P}_{n+1}(t) \} \right| dt = u_1 + u_2.
\]

Since \(|x - t| > 1/n \) for \(t \in \delta_n(x) \) therefore we have by using (2.3) and (2.6),

\[
(3.9) \quad u_1 \leq K_r n^{2r+1/2} \int_{\delta_n(x)} (1 - t^2)^{(p+q)/2} \left[|\bar{P}_n(t)| + |\bar{P}_n(t)| \right] \frac{dt}{|x - t|} \leq \\
\leq K_r n^{2r+1/2} \int_{\delta_n(x)} \frac{dt}{|x - t|} \leq \log n, \quad x \in [-1, 1].
\]

For \(u_2 \) we have, on making use of (2.3) and (2.6),

\[
(3.10) \quad u_2 \leq \int_{\delta_n(x)} (1 - t^2)^{(p+q)/2} \sum_{v=0}^{r-1} (-1)^{v-r} \frac{r!}{v!} \{ \bar{P}_{n+1}^{(v)}(t) |\bar{P}_n(t)| + |\bar{P}_n^{(v)}(x) \bar{P}_{n+1}(t) | \} \frac{dt}{|x - t|^{r-v+1}} \\
\leq \lambda_r \sum_{v=0}^{r-1} n^{2v+1/2} \int_{\delta_n(x)} \frac{dt}{|x - t|^{r-v+1}} \leq \lambda_r \int_{\delta_n(x)} \frac{dt}{|x - t|^{r+1/2}} \leq \lambda_r n^{2r-1/2}, \quad x \in [-1, 1].
\]

Hence from (3.5), (3.8), (3.9) and (3.10) the lemma is obtained.

Lemma 3.3. Let \(f^{(q)}(x) \in \text{Lip } \alpha \) \(0 < \alpha < 1 \) in \([-1, 1]\); then there is a polynomial \(Q_n(x) \) of degree at most \(n \) possessing the following properties:

\[
(3.11) \quad |f(x) - Q_n(x)| \leq \frac{c_{16}}{n^{q+2}} \left[(1 - x^2)^{q+2} + \frac{1}{n^{q+2}} \right]
\]

352
and

\[
|f^{(r)}(x) - Q_n^{(r)}(x)| \leq \frac{\mu_r}{n^{p+\alpha-r}} \left[(\sqrt{(1-x^2)})^{p+\alpha-r} + \frac{1}{n^{q+\alpha-r}} \right]
\]

uniformly in \([-1, 1]\) and \(r = 1, 2, \ldots, q\).

For \(r = 1\) the lemma has been proved by Saxena [7] and for \(r \geq 2\) it can be proved on the same lines.

4. The proof of Theorem. We shall confine ourselves to proving (1.7).

We write

\[
|f^{(r)}(x) - S_n^{(r)}(x)| = |f^{(r)}(x) - Q_n^{(r)}(x) + Q_n^{(r)}(x) - S_n^{(r)}(x)| \leq
\]

\[
\leq |f^{(r)}(x) - Q_n^{(r)}(x)| + \int_{-1}^{1} |Q_n(t) - f(t)| \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| dt .
\]

Now using lemma 3.3 we have

\[
|f^{(r)}(x) - S_n^{(r)}(x)| \leq \frac{\mu_r}{n^{p+\alpha-r}} \left[(\sqrt{(1-x^2)})^{p+\alpha-r} + \frac{1}{n^{q+\alpha-r}} \right] +
\]

\[
+ \frac{c_{16}}{n^{p+\alpha}} \int_{-1}^{1} \left\{ (1 - t^2)^{(p+\alpha)/2} + \frac{1}{n^{p+\alpha}} \right\} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| dt \leq
\]

\[
\leq \frac{\mu_r'}{n^{p+\alpha-r}} + \frac{c_{16}}{n^{p+\alpha}} \int_{-1}^{1} (1 - t^2)^{(p+\alpha)/2} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| dt +
\]

\[
+ \frac{c_{16}}{n^{2(p+2\alpha)}} \int_{-1}^{1} \left| \sum_{k=r}^{n} \bar{P}_k(t) \bar{P}_k^{(r)}(x) \right| dt
\]

which, with the help of (3.4) and (3.2), yields

\[
|f^{(r)}(x) - S_n^{(r)}(x)| \leq \frac{\mu_r'}{n^{p+\alpha-r}} + \frac{c_{16}c_r^* \log n}{n^{p+\alpha-2r-1/2}} + \frac{c_{16}c_{12}}{n^{2p+2\alpha-2r-1}} \leq
\]

\[
\leq \frac{c_r \log n}{n^{p+\alpha-2r-1/2}}, \quad p \geq 2r .
\]

This completes the proof of (1.7). The proof of (1.6) can be given in the same manner. One can easily see that if \(r = 0\) we have (1.2) and if \(r = 1\) we get (1.5).

Acknowledgement. The author is grateful to the referee for his valuable comments.
References

Author's address: Department of Mathematics, California State College, Los Angeles, U.S.A.
and
Department of Mathematics, City University of New York, City College, New York 10031, U.S.A.