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MODIFICATIONS OF CLOSURE COLLECTIONS

JAROSLAV PECHANEC-DRAHOS, Praha
(Received December 15, 1969)

Z. Froufk has introduced the notion of projective topologization of a presheaf
([1] p. 59). In this paper these modifications are studied.

Let & = {(Su, 1) |ouv| X} be a presheaf of closure spaces (ty is a closure in Sy
and gyy : (Syty) = (Syty) is continuous), p = {ry} its closure collection. If U is
open and ¥ is an open cover of U, we have a set A, = {ogy | ouy : Sy = (Sy1y),
Ve 7'} of maps from Sy into the closure spaces (S,1,), Ve ¥ (the closure 7y in Sy
is not considered now). Let 4y be the closure in Sy, defined by the maps from A,
projectively. The closure collection y is called projective if 7, = 7y, for every U and
every open cover ¥~ of U.

In (1.1.6) we prove that for every p there exists the finest projective collection '
coarser than p. (This assertion is without proof also in [1] p. 59). The main result is
Theorem 1.1.37 which shows how we can get the projective modification u’ of u in
case of locally compact X and finitely projective collection u. From this follows
a methode of construction of the modification y’ for an arbitrary g and moreover the
characterization of projective collections (see 1.1.43, 45).

In 1.2.19 we show that for every presheaf & over a locally compact X with a pro-
jective closure collection there exists (under certain reasonable assumptions) a natural
cofiltration. In 1.1.21—-26 we get a method of construction of various projective
collections.

1. Projective modifications.

1.1.1. Definitions, notations. For a presheaf & = {(Syty); ouy; X} of closure spaces
let us set

(1.1.2) p = {ty; U}

or briefly u = {ty}. The collection p is called closure collection of &, or briefly
collection.
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A. The set of all open subsets of a topological space X is denoted by %(X).

B. Let ¢, ¢’ be two closures in a set Y. If ¢ is finer than ¢’ we write t < t'. If p =
= {1y}, v = {ry} are two closure collections of & we write p < v if 1y < 7 for
every U e %B(X). Let 4 be a nonempty set of closures in Y. Then the finest closure in Y

coarser than every te.# is denoted by lim t-briefly lim .#. Similarly the lower
ted

bound of . in the set of closures in Yis denoted by lim ¢. If Q is a nonempty family
_te#
of collections of thepresheaf & then by lim Q resp. lim Q is denoted the closure

collection p* = {lim t§} resp. p* = {lim 7{}. pu* and p? are again closure collections.
ne neQ

It follows from the commutative diagram

1
(SU’ l_i.m t‘!‘}) ——QEK_) (SV’ hm TI;’)

» B
o
(1.1.3) (Su, ) ——— (Sy, %)
fu jV
2
(Su, lim 75) LA (Sy, lim 75) .
M

u

oLy is continuous iff for every pe Q the map iy - gy is. But iy o 0py = Quyivs
where both components on the right are continuous. Similarly one can to prove the
continuity of g3

C. Let {(X,, 1,) | « € A} be a nonempty family of closure spaces, X a set, and for
every a € A let ¢, be a map ¢, : (X,, 7,) = X resp. X > (X,, 7,)- Then the closure
defined in X by the maps ¢,, « € A projectively (inductively) will be denoted by
lim 7,) lim 7,).

D. Let U e B(X), x € U and let &, be the stalk over « in the covering space of .
Then there exists a natural map &y, : Sy — %, such that ae Sy : &y (a) = germ
of a over «. Then if A = U is an arbitrary subset, we may put &y (a) = U &y,(a),

acU

and more generaly, if M < Sy is an arbitrary subset £ (M) = U Ey4(a). Thus for
aeM
example &5 4(M) = {a | ae Sy, Eufa) e M, ae A}.

E. We say & = {Sy, ty); 0uv; X} is projective if the following condition holds:
If U =UV,U,V,es(X) and if there exist the elements a, € Sy, such that for

a
V.0V, we have oy y.v,(a.) = @v,v,v,(a;), then there exists ae Sy such that
ouy (a) = a, for all «.
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F. We say & is a presheaf with the unique continuation if the following conditions
are satisfied:

1. X is locally connected,
2. if U e #(X) is connected, a, b € Sy, {ya(@) = {y,(b) for some o € U, then a = b.

G. When speaking about a compact subspace in a topological space X we sup-
pose that X is Hausdorff space.

H. Let U € #(X). The set of all open coverings (finite open coverings) of U will
be denoted by IT,(IIY).

I. For a set Ylet us denote by d, (k) the discrette, (acrette) topology in Y.

J. Let (X, t) be a closure space, M its subset. Then every filter base of t-neigh-
borhoods of M will be denoted by A(M; 1).

1.1.4. Definition, notation. We say, that p = {1y} is projective if for any U € B(X)
and any covering ¥~ € IT;, we have
(1.1.5) ty =limt, (see 1.1.1.C).
Vev
Let us denote g, = {ty;1y = h, UeB(X)} resp. py; = {tp:1y =d, UeB(X)}
coarse resp. fine collection (see (1.1.1.1)). If p is a collection, let us denote Q(u) the
set of all projective collections coarser than p. There is Q(u) + 0, for p, € Q(p).

1.1.6. Proposition. ' = lim Q(u) € Q(u).

Proof. Because y’ is again a collection, it suffices to verify (1.1.5). Let U € #(X),
a e Sy, 1y € py- Then any ty-neighborhood W of a is of the form W = | W, for some

i=1

W, e M a; 7h), where thep'eQu); i =1,...,n. Let V" eIly. Any W, is the inter-
section of a finite number of sets of the form gyy(W") for Ve ¥, where W¥ e
€ A(oyy(a); ty), because py, ..., p, are projective. But any ry-neighborhood of
ouy(a) of is also a ty-neighborhood of gyy(a). Therefore Wis a finite intersection of
sets of the form ggy(WY), Ve ¥ where W" e A(guv(a); 7).

1.1.7. Definition. The collection lim Q(y) will be called projective modification of p
and will be denoted by u'.

We can see that to every u there exists its projective modification (see also [1]).

1.1.8. Notation. Let p = {t,} be a collection. For any U € #(X) let us set

(1.1.9) gy =limt, for 7 elly,
Vey
(1.1.10) 15 =limtyy; p*={t5; UeB(X)} (see 1.1.1.C).
Yelly
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1.1.11. Definition. Let U,Ve B(X), V < U, ¥v", e Iy, ¥', e II,. We say, that ¥,
refines v, if toany V, e ¥, there is V; € 7, such that V, = V.

1.1.12. Notation. Let U, Ve #(X),V < U, ¥, e IT. Let us set
(1.1.13) Vi ={VaVV,ev,} =ind, ¥,
(1.1.14) mod, ¥, =¥, Uind, ¥, .
Clearly there is indy, ¥"; € I1;,, mod, ¥, € II; and they both refine ¥",.

1.1.15. Proposition. Let U, Ve #(X),V < U, ¥, ey, ¥, e Iy, and ¥, refines ¥,.
Then the map Quy: (Svs Tu,v,) = (Sv Ty v,) is continuous.

Proof. Let us consider a commutative diagram withV, € ¥",V, € ¥, and V, < V;:

Q
(Sw Ty, v, e, (SV1 TV,)

(1.1.16) ovy I"Vﬂ';

Q
(SV’ rV,’Vz) _Vi?_) (SVz’ TVz) .

According to (1.1.9) gyy is continuous and thus the assertion (1.1.15) holds iff for
any V, € ¥ ,0py, o 0uy 15 continuous. But with respect to (1.1.16) this map coincides
with @y,y, o Quy,» Where both components are continuous (see (1.1.9)).

Now let us notice, how the 13-neighborhoods of a look like. Let U € QZ(X) aeSy.
For any 7" eIy let

(1.1.17) W) ={V,...V,} =¥

be a finite choice of sets from ¥". To any V; € W(7") let us assign the uniquely deter-
mined W¥* € A(oyy(a); 7v,) and let us denote for such chosen W

(1.1.18) W) = (W, .., W},
(1.1.19) P =P(RW)), W) = n gw,(WV')

Then 2 € A(a, 1y,y)- To every ¥ e Ily let us construct some 2(R(W(¥)), W(¥))
and let us form '

(1.1.20) QAW ). W) = U 2a(H(r), WEr)).
1.1.21. Proposition. Let u = {7} be a collection.

A. For all U € #(X) there is 1y < 1.

B. The maps opy: (Sy, 15) = (Sy, 1y) are all continuous and therefore p* is
a collection.
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Proof. Every ¥ e Iy refines ¥'* = {U} € I,. By (1.1.15) every 1, is coarser
than 7y, which with ( 1.1.10) proves A. To prove B let us notice commutative diagram
for U,VeB(X),V c U, ¥ ely:

(Su» Tu,yf)
(1.1.22) liu,vf

(Sy, 1y, mod, “V) (SV, Ty, ind, ¥7)

* ety * iy
vty) — By, Ty
) (Sv: )

The map oy is continuous and thus the assertion B holds iff for any ¥ € Iy, epyiy
is continuous, for (1.1.1 ) holds. But every ggyiy 4 by (1.1.22) coincides with iyoyyiy-
Here all the components are continuous maps according to (1.1.10, 12, 15).

1.1.23. Corollary. For a collection p there is p < p* < u'.

Proof. Let U € #(X),¥" e Iy, and let us denote ' = {1},}. Because every ty,, Ve ¥~

is coarser than 1, and p’ is (by (1.1.6)) projective, 11m T}, = Ty is coarser than [im 1, =
Vev

= 7y .4, which with (1.1.10) finishes the proof.

1.1.24. Remark. The equality 4 = ' holds iff u = p*. If u = g, then by (1.1.23)
u = p* If p = p*, then for all U we have 1, = tf. By (1.1.15) 7y is finer than
any ty,y, which is by (1.1.10) finer than 1. If 1§ = 1y, there is 1y = 1y 4 for any
7" €Iy and this is (1.1.5). Therefore y is projective, i.e. u = .

1.1.25. Corollary. If (u*)* = u*, there is u* = p'. From the supposed equality it
follows by (1.1.24), that p* is a projective collection. Finally from (1.1.6,23) we
have p* = y'.

1.1.26. Definition. We say, that the collection u = {7} is finitely projective, if
for any U € #(X), ¥~ € IT{) (see (1.1.1) the following holds:

(1.1.27) 1, =limt, (see1.1.1)C.
Vey

1.1.28. Proposition. To every collection u there exists a collection u* such that
(a) o = 0

(b) p* lsﬁnltely projective,

(c) if v is a collection satisfying (a), (b), then u* < v.

Proof. Let us denote by {(u) the set of all collections satisfying (a), (b). This set
is nonempty, because p, € O(p) (see (1.1.4)). Let us set g, = lim (), which is again
a collection. The fact, that p, e () can be proved as in (1.1.6). Therefore u* = p,
is the required collection.
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1.1.29. Proposition. Let p be a collection, u* = {ty}. Then for any U e #(X)
there is

(1.1.30) Ty = lim 7,4 (see 1.I.L.H).
Velly®
Proof. Let us set 7, = lim 7 4. Let a € Sy, ¥"; € 1Y, We A(a; t5). Thus we have
Yelly®
(1.131) W= U esiW)
Velly® Vey

where Wy € A(oyy(a), 7y) for Ve ¥ . For the sake of simplicity we can suppose,
that 7'y = (V,,V,). f ¥P eIy, i = 1,2, then ¥"'2 =1 U ¥ 2 el For Ve ¥’
let us put Wy = Wyi.. For any pair (¥%,72) (where ¥ eIy, i = 1,2) let us
form¥*? = ¥* U ¥ and for Ve ¥'1% let us form W), i = 1, 2, in the just described
way. Then we have

eov, U Neord(W)nes, U N eryWh) <

0 0
1"51’1‘,1 Vey! f’enyz Vev2
-1V -1V _
< U N ooy(Wiioy2) = U Negr(Wy) = W.
V‘eﬂ?,‘,fzeﬂg,z Veviuy? veng vey

Here the sets M; = U N oy (W,) are 1, -neighborhoods of gy (a), i = 1, 2.
V'el'lg,A Vey'i
Thus !

(1.1.32) e (M) 0 ogy,(My) = W.

In the same way as in (1.1.21B) we can prove the continuity of all maps ggy :
:(Svs t5) = (Sy, t7). This with (1.1.32) proves, that u~ = {r7) is finitely projective.
Because 1y < 15 < 14 for every U e #(X) (which follows easily from the definition
of t), it is necessarily tj; = 1y for all U € Z(X).

1.1.33. Definition. Let u be a collection. Then the collection p* is called finite
projective modification of p.

1.1.34. Remark. The assertions (1.1.28,29) show, how u* looks like, whereas
(1.1.28) gives only the existence, but no so good picture. The assignment pu —p*
is a map of the set of all collections into itself. Its fixed points are precisely all finitely
projective collections.

1.1.35. Notation. For U € #(X), a € Sy let us denote
(1.1.36) B(a) = {egy (W"); Ve B(U),
Ve U iscompact, WYeA(eyv(a); tv)} .
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It is clear that #(a) is a base of the filter round a in S,. These bases form there
a closure, which we denote by %y. The set {fu; Ue .%(X)} = fi is clearly a collection,
coarser than p.

1.1.37. Theorem. Let X be locally compact, & = {(Sy, 1), ovv; X} a presheaf

over X and p = {1y} its closure collection. If p = pu*, then u' = p* = i.

Proof. We shall prove, that g is projective, and finer than u*. Then (1.1.23,6)
imply ' = i = pu*. Let U e B(X), a€ Sy, and let
(1.1.38) W= U N oor(Wy) e Ala; t3) — (see (1.1.20)) .

Velly VeW(¥) =¥

A local compactness of X and (1.1.15) allows us to restrict ourselves in (1.1.38) only
to the union over those ¥~ € I, which consists of relatively compact sets in U.
Let us choose such relatively compact covering ¥~ € IT; and let us take a component
in the union (1.1.38), which corresponds to it. That is

(1.1.39) W = 0 eov (Wy).

Then V=V, U...UV, is in U relatively compact, further W* = () ¢} (Wy ) €
i=1

€ Aegy(a); ), ogp(WY) =« WY =« W and o5y (W") € #(a). Therefore #(a) <

< A(a; 13). Let ggp(W") e #(a), ¥ € Iy. There exist Vy, ..., V, € ¥~ which cover V.

From the local compactness of X follows the existence of open sefs Ry, ..., R,, such

that R; = V,, R;is compact,i = 1, ...,n,and R, U ... U R, = V. Because p is finitely

projective, 7,-neighborhood W" of gyy(a) is of the form

n
(1.1.40) WY =N err (W™,
i=1

for some WXe A(oyr(a); tr,), i =1,...,n. The sets B, = gy x (W) belong to
Bloyy(a)), i = 1,...,n. Hence o5p(W") = N gy (B;). Therefore we have proved
i=1

that for the closure % there is T, = lim %, for all ¥” € II,. This finishes the proof.
Vey
1.1.41. Corollary. Let X be locally compact, p a collection. Then (p*)* = p'.
For v e I1, there is

(1.1.42) Ty Styy St STp S 1y,

IIA
lIA

which follows immediately from the definitions of 1y, and tg, in (1.1.9,10). Therefore
(vg) = ty, and because of (13)* = (vf)’, we have ty = (t)*.

1.1.43. Remark. If X is locally compact, then the collection u can be projectively
modified in two steps. First we do the finite projective modification u* following
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(1.1.29), and then the modification (u*)* of u*. But it we need not do in the complicat-
ed and for the further progress unconvenient way described in (1.1.17—20), but in
the more clear and easy to surwey way with help of bases %#(a) from (1.1.36).

1.1.44. Corollary. If X is locally compact and p = i', then for Ue.%(X) and
a € Sy the bases %(a) and A(a; ty) are equivalent.

1.1.45. Remark. We get the following description of the projective collections p
for locally compact X. u is projective iff it is finitely projective and the bases %(a)
from (1.1.36) are bases of the filter of 7,-neighborhoods of elements a € Sy, U € %#(X).
This follows from (1.1.44) and (1.1.37).

1.1.46. Definition. We say that a presheaf & = {(Sy, 1p); euys X} is full, if the
following holds: If U € #(X), a € Sy, We A(a; 1y), then there exists W’ e A(a; 1)
such that '

(1.1.47) Egulu(W) =« W (see (1.1.1.D)).

1.1.48. Remark. If & is a full presheaf over a locally compact space with
a projective closure collection, then for U € B(X), a € Sy the set

(1.1.49) B = {¢50¢ux(W); K< U compact, WeA(a; 1y)}
is a filter base of ty-neighborhoods of a.

Proof. Obviously there is A(a; 7y) < B. Conversely let We A(a; y). By (L.1.44)
there exists Ve #(X) (such that V = U is compact) and W’ € A(gyy(a); 7y) such that
W = o5p(W’). To W we can find W” e A(oyy(a); ty) such that for W’ and W”
(1.1.47) holds. For W = ot (W") € A(a; 1p) there is EgpEup(W) < eopérv&r(W") =
< QUV(W) =

1.1.50. Examples. (1) Let & = {(Sy, 1); 0uv; X}, where X =E,, and for
U € B(X) let Sy, be some set of continuous functions on U, 7y, the closure of uniform
convergence and gyy :f€ Sy = f[VeS,. Then for pu = {ry} one can easily find,
that

(a) Il+ =K

(b) u = u* = {ro},
where 7y, for U € #(X) is the closure of localy uniform convergence.

It is clear, that nothing will change in this example, if we take for X instead of E,
an arbitrary locally compact topological space.

(2) Let & = {(Sy, v), 0uv» X} be a projective presheaf, where 1, = d for all
U e #(X) (see (1.1.1.E,I))). Then

() u* =
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(b) by (1.1.43) there is u' = p* = {ty}, where A(a; ) and %(a) from (1.1.36) —
i.e. in this case

(1.1.51) #(a) = {egyouv(a); Ve B(U), V< U is compact}

are equivalent. If moreover & is a presheaf with unique continuation (see (1.1.1.F)),
and U connected, then #(a) = a. Because & is projective (see (1.1.1.E)), we get
1y = d for every U € #(X), which have finitely many components.

2. Cofiltration.

Let & = {(Sy, 1); ouv; X} be a presheaf, X locally compact p = {r,} = p'. If
U e #(X), a € Sy, then according to (1.1.44) the base of the filter 2(a) from (1.1.36)
is a base of the filter of 7,-neighborhoods of a. Thus if We %(a), then the following
condition holds:

(1.2.1) There exists Ve £(U) such that ¥ = U is compact, and such that g5} (W") <
< W for some W e A(gyy(a); ty).

Let us denote by #(W) the set of all bases of the filters #(W) in U, for which the
following conditions hold:

(1.2.2) 1. Fe #(W) = F is compact, and there is F = V for some Ve #(U).
2. Q;‘}(WV) < Wfor Some WV € A(QUV(a); Ty).

Let us partially order #(W) by inclusion. Using the maximality principle, we can
easily find, that every #(W)e s#(W) can be completed to a maximal .#(W). For
every maximal J(W)e (W) let us set

(1.2.3) M(W)= 0 F,
M)
which is a nonempty compact subset in U.

It is clear, that there could exist more sets M(W), if #(W) has more than one
maximal element. If all maximal bases .#(W)e #(W) are equivalent, there exists
the unique M(W).

If U’ e B(U) is relatively compact in U, and M(W) < U’, then there exists (by
(1.2.3)) #(W) e # (W) and F € (W), such that F = U’. Moreover we have F = V
for some Ve B(U) and gy (WY) = W for some W € A(oyy(a); 1y). If we set W' =
= 0g(WY), then W’eA(gyy(a), 7y-) and at the same time gg)(W’') = W. Thus
Uedw).

1.2.4. Proposition. Let K = U be compact. Then M(W) = K for some M(W),
iff the following condition holds: “If U' € #(U), U’ = U is compact, and K < U’,
then U’ € M(W) for some M(W)e H(W)".
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Proof. If the just mentioned assumptions are satisfied, we have proved that the
condition in (1.2.4) holds just before the formulation of (1.2.4). Conversely, let the
condition hold. Then the set

(1.2.5) {U;U' e®8(U), K< U', U < U is compact} = F(W)

is a base F(W)e #(W). If we complete it to a maximal .#(W), then M(W)=
=NFecNF=K
H(W) F(W)

1.2.6. Proposition. Let Wy, W, € A(a; ;). Then to arbitrarily chosen M(W,),
M(W,) there exists M(W, n W,) such that M(W, 0 W,) = M(W;) U M(W,).

Proof. We use (1.2.4). Let U’ e B(U), M(W,) u M(W,) = U’. Because M(W;) =
< U, there is ggg{W;) = W; for some W/ e A(gyy(a); y-)- Then Wy N W, o
2 050 (W) 0 aggAWy) = egu (WY n W}") and the proof is finished.

1.2.7. Proposition. Let W, W, € A(a; ty), Wy, = W,. Then to every M(W,) there
exists M(W,), such that M(W,) = M(W,).

Proof. LetVe #(U), M(W;) < V. Then o5 (W') = W, for some W’ € A(gyy(a); ty).
Then for this W’, og( W') = W, also holds, which proves the proposition.

1.2.8. Corollary. Let Wy, W, € A(a; ty). Then to every M(W; N W,) there exists
M(W,) and M(W,) such that M(W,) U M(W,) = M(W, n Wy).

Proof. Because W; n W, = W,, there exists (by (1.2.7)) M(W;) such that M(W,;) =
< M(W, " W,), i = 1,2. Thus M(W,) U M(W,) = M(W; n W,).

1.2.9. Corollary. Let W, W, € A(a; ty). Then to every M(W;) and M(W,) there
exists M(W, n W,) and M(W,), M(W,) such that

(1.2.10) M(Wy) v M(W,) = M(W, n W,) = M(W,) u M(W,).
Proof. It is the combination of (1.2.6,8).

1.2.11. Corollary. Let Wy, W, € A(a; ty). Then to every M(Wy N W,) there exist
M(W,) and M(W,) such that M(Wy n W,) = M(W,) v M(W,).

Proof. Let us choose some M(W; n W,). According to (1.2.8) we find N (W;)
and M(W,) such that K(W,) v M(W,) = M(W; n W,). By (1.2.6) we find to M(W,)
and M(W,) a set M(W, n W,) such that

(1.2.12) M(W, a W,) = M(W,) v M(W,) « M(Wy 0 W),

and thus M(W; n W,) = M(W, n W,), and in (1.2.12) holds everywhere the equality.
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1.2.13. Assumption. Later we shall suppose:

A. If Ue%(X), ae Sy, there exists with respect to finite intersections a closed
filter base A(a) of the t,-neighborhoods of a such that for We A(a) any two maximal
bases M (W), M ,(W) e #(W) are equivalent.

B. f U,VeB(X),V < U, ae Sy, We Aloyy(a)), then o5y (W) € A(a).

1.2.14. Corollary. Let (1.2.13) hold. Then to any Wy, W, € A(a) there is M(W; n
N W,) = M(W,) u M(W,).

Proof. From the assumption about # (W) for We A(a) follows that it has the
unique maximal element and thus there exists the unique M(W), which with (1.2.11)
finishes the proof.

1.2.15. Definition. A family 2 of subsets of some set L will be called cofilter base
(resp. cofilter), if it is nonempty and the following holds:

(1.2.16) K,K,e# =K, UK, =« K; forsome K;eiX,

(resp. K, K e =K, UK, e X).

We say that to a presheaf & = {(Sy, 1), @uy» X} there is given a cofiltration, if
to every U € (X) and a € S, there is given a base 2#°] of cofilter in U such that the
following holds: ,If U, Ve #(X), V< U, aeSy, Ke XAy, ), then K < L for

some Le 0.7 If to & there is given a cofiltration x = {KV; U € #(X), a € Sy}, we
shall say, that & is a presheaf with the cofiltration x.

1.2.17. Corollary. Let U € B(X), a € Sy and let (1.2.13) hold. Then the base A(a)
generates in U a cofilter base #'C.

Proof. Let us set #'Y = {M(W); We A(a)}. If K, K, € A7, then K; = M(W,)
for W; = A(a), i = 1,2. Then W, n Wy e A(a) and M(W,) v M(W,) = M(W, n
AW, =Ksex?.

We shall notice the relation betwen ') and X, ), for Ve®(U). If We
€ A(oyy(a)), it can be easily seen, that if #(W)e #(W), then F(W)e #(ogy(W)).
Thus M(egy(W)) = M(W). For the proof of the conversed inclusion we need.

1.2.18. Assumption. Let U,Ve B(X), V < U, ae Sy, We Agyy(a)). If for some
V'e B(V) and some W"' € Aoyy(a)) there is ogp(WY") < ogy (W), then gy (WY') =
< W for some WY e Aloyy(a)). '

If (1.2.18) holds, then M(ggz}(W)) = M(W). If there were M(egy(W)) & M(W),
there would be M(ogy(W)) = U’, M(W) ¢ U’ for some U’ € B(U). Then for some
WY e Aleuy-(a)) there is og3 (W) = ogy(W). By (1.2.18) we have oyg(W") c W
for some WY e A(qu'(a)) and thus M(W) < U’-contradiction.
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1.2.19. Corollary. Because (1.2.13) holds, we can to every ae Sy assign the
cofilter base 'Y in U. If (1.2.18) holds, then

(1.2.20) K}

tov@) < Ha -

Thus to a presheaf & = {(SU, v)s Quv; X} with a projective closure collection, which
fulfils (1.2.13,18), there exists a natural cofiltration founded by the bases o> from
(1.2.17). It can be easily seen, that this cofiltrations uniquely depends on the choice
of the bases A(a) from (1.2.13). For any other choice we could get other natural
cofiltration.

If Ue #(X), ae Sy, We Aa), then by (1.2.13) the set
(1.2.21) Fla) = {W'; W eAa), K=MW)=MW)}
is a filter base in S, round a. Then the set
(1.2.22) Fla) = {Eg(W); We Fi(a)}

is a filter base round grg a in Y ~!(K) (see (0.19,20)).

1.2.23. Proposition. Let U,Ve®B(X), V< U, aeSy,, KeX'

euv(a)

K < L. Then the filter base #(a) Ny~ '(K) majorizes the base F (a).

LexY,

Proof. Let F, = &yg(W,) e Fx(a) for some W, e Fy(oyy(a)). Let us choose
F, = &y (W,) € # (a) arbitrarily. By (1.2.13B) there is W = o5y (W,) n W, € A(a).
From (1.2.18) we have M(W) = M(ogy(W;)) U M(W,) =K U L= L and thus
We & (a). Therefore F = &, (W)e #,(a) and F n Y ~Y(K) =-F,.

Conversely from (1.2.19,23) we come to the following: If we assign in every U e
€ B(X) to every ae Sy a cofilter base #'Y such that every K e A’V is compact,
and if we define moreover for every K e "] a filter base % ¢(a) in ¢ ~*(K) round the
set gry a, such that (1.2.23) holds, we can set (see (0.19))

(1.2.24) B(a) = {Egg(F); Fe Fla), Ke X7} .

From (1.2.20,19,23) follows easily, that #(a) is a filter base round a in Sy. These
bases form in every Sy a closure pyy v, (briefly pv). The family p, = {po} isaclosure
collection, because as a result from (1.2.20) the all maps oyy : (Sy, pxv) = (S,
D) are continuous.

If we moreover take the cofilters 'Y such that

(1.2.25) Kex], KcU,u...uU,; U,egd(),

n
b; = opy(a), i=1,...,n=>there exists K;e Ay} such that K = {J K,
i=1
and the bases #g(a) such that for Le #°], Ke A} ), K = L the bases F(a),
F ;(a) n Y~ Y(K) are equivalent, then the collection p, is projective, i.e. u, = p,.

Thus we get methode for constructing of projective collections.

588



1.2.26. Remark. The cofilter base in (1.1.17) depended on the element a. It can be
ditferent for any a e Sy. But if our presheaf & = {(Sy, ty), oyy; X} consists of
semiuniformisable spaces (with the semiuniformities n,) we can do the same instead
for neighborhoods of the elements, for neighborhoods of the diagonal, if the collec-
tion {5y, U € B(X)} is projective. Then in every U we get the unique base of cofilter
AV, which do not depend on a e Sy. Through the whole this paragraph we can quite
analogicaly study the semiuniformity collections. All results concerning modifications
and cofiltrations are analogous and the way, in which we get them, is quite same as
the method we used here.
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