Bedřich Pondělíček
Green’s relations on a compact semigroup

Persistent URL: http://dml.cz/dmlcz/101077

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
GREEN'S RELATIONS ON A COMPACT SEMIGROUP

BEDŘICH PONDĚLÍČEK, Poděbrady

(Received May 4, 1970)

Let \(S \) be a semigroup. Then \(\overset{\circ}{K} \) will denote the equivalence on \(S \): for \(a, b \in S \), \(a \overset{\circ}{K} b \) if and only if there exist positive integers \(m, n \) such that \(a^m = b^n \). In [1] J. T. Sedlock studies necessary and sufficient conditions on a periodic semigroup \(S \) in order that \(\overset{\circ}{K} \) coincide with any one of the Green relations [2]. In our paper [3] we considered an arbitrary semigroup having similar properties.

The fact that any element \(x \) of a compact semigroup \(S \) belongs to some idempotent (see [4]) leads us to define an equivalence \(\overset{\circ}{K}_T \) on \(S \) by: for \(a, b \in S \), \(a \overset{\circ}{K}_T b \) if and only if the elements \(a, b \) belong to the same idempotent. The purpose of this article is to investigate the structure of compact semigroups such that \(\overset{\circ}{K}_T \) coincides with any one of the Green relations.

Let \(\mathcal{C}(S) \) denote the set of all \(\overset{\circ}{C} \)-closure operations for a non-empty set \(S \), i.e.

\[
\begin{align*}
(0) & \quad U \in \mathcal{C}(S) \iff U : \exp S \rightarrow \exp S \\
(1) & \quad U(\emptyset) = \emptyset , \\
(2) & \quad A \subseteq B \subseteq S \Rightarrow U(A) \subseteq U(B) , \\
(3) & \quad A \subseteq U(A) \quad \text{for each} \quad A \subseteq S , \\
(4) & \quad U(U(A)) = U(A) \quad \text{for each} \quad A \subseteq S
\end{align*}
\]

hold.

A subset \(A \) of \(S \) will be called \(U \)-closed if \(U(A) = A \). The set of all \(U \)-closed subsets of \(S \) will be denoted by \(\mathcal{F}(U) \).

Let \(U, V \in \mathcal{C}(S) \). Then we define

\[
U \leq V \iff U(A) \subseteq V(A) \quad \text{for each} \quad A \subseteq S .
\]
We have

\begin{align*}
 (5) \quad \mathcal{F}(U \lor V) &= \mathcal{F}(U) \cap \mathcal{F}(V), \\
 (6) \quad U \leq V &\iff \mathcal{F}(V) \subseteq \mathcal{F}(U).
\end{align*}

We shall denote by \(\mathcal{A}(S)\) the set of all \(\mathcal{A}\)-closure operations for a set \(S\), i.e. \(\mathcal{A}(S) \subseteq \mathcal{G}(S)\) and for every \(U \in \mathcal{A}(S)\) and for every \(A \subseteq S\)

\begin{align*}
 (7) \quad U(A) &= \bigcup_{x \in A} U(x)
\end{align*}

holds. If \(U, V \in \mathcal{A}(S)\) then

\begin{align*}
 (8) \quad U \leq V &\iff U(x) \subseteq V(x) \quad \text{for each} \quad x \in S.
\end{align*}

Let \(U \in \mathcal{G}(S)\). We define \(U^* \in \mathcal{A}(S)\). If \(A \subseteq S\) then \(x \in U^*(A)\) if and only if \(U(x) \cap \cap A \neq \emptyset\). For \(U, V \in \mathcal{G}(S)\) we have

\begin{align*}
 (9) \quad U \leq V &\Rightarrow U^* \leq V^*, \\
 (10) \quad U(x) &= U^*(x) \quad \text{for every} \quad x \in S, \\
 (11) \quad U^* &= U^{**} \quad \text{and} \quad U^{**} \leq U.
\end{align*}

See [5].

Let \(U \in \mathcal{G}(S)\). We shall introduce the equivalence \(\circ U\) on \(S\) by: for \(x, y \in S\), \(x \circ U y\) if and only if \(U(x) = U(y)\). For any element \(x\) of \(S\), let \(U_x\) denote the \(\circ U\)-class of \(S\) containing \(x\). If \(U, V \in \mathcal{G}(S)\) then we have

\begin{align*}
 (12) \quad U \leq V &\Rightarrow \circ U \subseteq \circ V, \\
 (13) \quad \circ(U \land V) &= \circ U \land \circ V, \\
 (14) \quad x \circ U y &\iff x \in U(y) \quad \text{and} \quad y \in U(x).
\end{align*}

See [3].

Let \(S\) be an arbitrary semigroup. For any \(A \subseteq S\), \(A \neq \emptyset\), let us put \(L(A) = SA \cup A\) and \(R(A) = AS \cup A\). Finally, \(L(\emptyset) = R(\emptyset) = \emptyset\). Clearly \(L, R \in \mathcal{A}(S)\). Put \(M = L \lor R\), \(H = L \land R\), \(F(L) = [F(R), F(M), F(H)]\) is the set of all left [right, two-sided, quasi] ideals of \(S\) (including \(\emptyset\)). It is known that

\begin{align*}
 (15) \quad H_e \text{ is the maximal subgroup of } S \text{ belonging to the idempotent } e.
\end{align*}

Put \(P(\emptyset) = \emptyset\). If \(A \subseteq S\), \(A \neq \emptyset\), then by \(P(A)\) we denote the subsemigroup generated by all elements of \(A\). Evidently \(P \in \mathcal{G}(S)\), \(P \leq H\) and \(F(P)\) is the set of all subsemigroups of \(S\) (including \(\emptyset\)). See [5].

Let \(K = P^* \lor P^{**}\). Then \(K = K^*\) and \(x^* K y\) if and only if there exist positive integers \(n, m\) such that \(x^n = y^m\). See [3].
Let now S be a compact (Hausdorff) semigroup. If $A \subset S$, then by $T(A)$ we denote the closure of A. It is known that $T \in \mathcal{C}(S)$ and

$$T(A \cup B) = T(A) \cup T(B) \text{ for } A \subset S \text{ and } B \subset S,$$

$$T(x) = \{x\} \text{ for each } x \in S.$$

We shall prove that

$$T(AB) = T(A) T(B) \text{ for } \emptyset \neq A \subset S \text{ and for } \emptyset \neq B \subset S.$$

Actually, it follows from 2.1.3 [6] that $T(A) T(B) \subset T(AB)$. Since $T(A)$, $T(B)$ are compact, it follows from 2.1.5 [6] that $T(A) T(B)$ is also compact and thus we have $T(AB) \subset T(A) T(B)$. By (3), we obtain that $A \subset T(A)$, $B \subset T(B)$. Hence $AB \subset T(A) T(B)$. Using (2), we have $T(AB) \subset T(T(A) T(B)) = T(A) T(B)$. This means that (18) holds.

Put $P_T = P \cup T$. It follows from (5) that $\mathcal{F}(P_T)$ is the set of all closed subsemigroups of S (including \emptyset). It is known from [4] that for $x \in S$

$$P_T(x) = T(P(x)) \text{ is the commutative subsemigroup having a unique idempotent.}$$

Lemma 1. Let $A \subset S$. Then $A \in \mathcal{F}(P_T)$ if and only if

$$P_T(x) \cap A \neq \emptyset \Rightarrow x \in A$$

for every $x \in S$.

Proof. Let $A \in \mathcal{F}(P_T)$. If $P_T(x) \cap A \neq \emptyset$ for some $x \in S$, then there exists y such that $y \in P_T(x)$ and $y \in A$. It follows from (2) that $x \in P_T^*)(y) = P_T^*(A) = A$.

Let (20) hold for every $x \in S$. Evidently $P_T^*(A) = \mathcal{F}(P_T^*)$. If $A \neq \emptyset$, then by (7) we have $P_T^*(A) = \bigcup_{x \in A} P_T^*(x)$. If $y \in P_T^*(A)$, then $y \in P_T^*(x)$ for some $x \in A$. Since $x \in P_T(y)$, it follows by (20) that $y \in A$. Therefore, $P_T^*(A) \subset A$. It follows from (3) that $A = P_T^*(A) \in \mathcal{F}(P_T^*)$.

Remark. Let $A \subset S$, $A \neq \emptyset$. Then $P_T^*(A)$ is the set of all almost nilpotent elements (in topological sense) with respect to A. (See [7].)

Proof. If $x \in P_T^*(A)$, then there exists $y \in A \cap P_T(x) = A \cap T(P(x))$. If O is an arbitrary neighbourhood of A, then O is also a neighbourhood of y and thus $x^n \in O$ for some positive integer n. Therefore, the element x is almost nilpotent with respect to A.

If x is an almost nilpotent element with respect to A, then in every neighbourhood of A there exists at least one element of $P(x)$. Suppose that $x \notin P_T^*(A)$. This implies that $P_T(x) \cap A = \emptyset$. Evidently $O = S - P_T(x) = S - T(P(x))$ is a neighbourhood of A and $A \cap P(x) = \emptyset$, which is a contradiction. Therefore, $x \in P_T^*(A)$.

71
Definition. \(K_T = P_T^* \lor P_T^{**} \).

Lemma 2. \(K_T = K_T^* \).

Proof. (9) implies that \(P_T^{**} \leq K_T^* \) and \(P_T^{***} \leq K_T^* \). It follows from (11) that \(K_T = P_T^* \lor P_T^{**} \leq K_T^* \). According to (9) and (11), we have \(K_T^* \leq K_T^{***} \leq K_T \). Hence \(K_T = K_T^* \).

Lemma 3. Let \(x, e \in S \) and let \(e^2 = e \). If \(e \in P_T(x) \), then \(x^e K_T e \).

Proof. If \(e \in P_T(x) \), then \(x \in P_T^*(e) \subset K_T(e) \). It follows from (10) that \(e \in P_T(x) = P_T^{**}(x) \subset K_T(x) \). (14) implies that \(x^e K_T e \).

Lemma 4. Let \(e, f \in S \) and let \(e^2 = e, f^2 = f \). If \(e^e K_T f \), then \(e = f \).

Proof. Using (14) we obtain \(e \in K_T(f) \). Let \(A = \{ u \in S | f \in P_T(u) \} \). We shall show that \(A \in \mathcal{F}(K_T) = \mathcal{F}(P_T^* \lor P_T^{**}) = \mathcal{F}(P_T^*) \cap \mathcal{F}(P_T^{**}) \) (see (5)). If \(P_T(x) \cap A \neq \emptyset \) for some \(x \in S \), then there exists \(u \) such that \(u \in A \) and \(u \in P_T(x) \). This implies that \(f \in P_T(u) \subset P_T(x) \) and thus we have \(x \in A \). By Lemma 1, \(A \in \mathcal{F}(P_T^*) \). If \(x \in P_T^{**}(A) \), then by (7) and (10) we have \(x \in P_T^{***(u)} = P_T(u) \) for some \(u \in A \). This implies that \(P_T(x) \subset P_T(u) \). Since \(f \in P_T(u) \), hence, by (19), \(f \in P_T(x) \) and thus \(x \in A \). This means that \(P_T^{**}(A) \subset A \) and according to (3) we obtain \(A = P_T^{**}(A) \in \mathcal{F}(P_T^{**}) \). Therefore, \(A \in \mathcal{F}(K_T) \). Since \(f \in A \), (2) and (4) imply \(e \in K_T(f) \subset A \) and thus we have \(f \in P_T(e) = = \{ e \} \) (see (17)). Therefore, \(e = f \).

Theorem 1. Let \(x, y \in S \). Then \(x^e K_T y \) if and only if there exists an idempotent \(e \) of \(S \) such that

\[
(21) \quad e \in P_T(x) \cap P_T(y).
\]

Proof. Let \(x^e K_T y \). By (19) there exist \(e, f \) of \(S \) such that \(e = e^2 \in P_T(x) \) and \(f = f^2 \in P_T(y) \). Lemma 3 implies that \(e^e K_T f \). According to Lemma 4, we have \(f = e \) and \(e \in P_T(x) \cap P_T(y) \).

Let (21) hold. Then according to Lemma 3, we have \(x^e K_T e \) and \(y^e K_T e \). This implies that \(x^e K_T y \).

Lemma 5. \(K \subseteq K_T \) and \(e^e K \subseteq e^e K_T \).

Proof. Evidently \(P \subseteq P \lor T = P_T \) and (9) implies that \(P^* \leq P_T^* \) and \(P^{**} \leq P_T^{**} \). Therefore, \(K \subseteq K_T \). By (12), we have \(e^e K \subseteq e^e K_T \).

Lemma 6. If \(e \) is an idempotent of \(S \), then \(eK_T e = K_T e = H_e \).

Proof. See Theorem 8 in [4].
Put $L_T = L \lor T$, $R_T = R \lor T$ and $M_T = M \lor T$. Note that $M_T = L_T \lor R_T$. It follows from (5) that $\mathcal{F}(L_T)[\mathcal{F}(R_T), \mathcal{F}(M_T)]$ is the set of all closed left [right, two-sided] deals of S (including 0).

Lemma 7. We have

1. $^{o}L = ^{o}L_T \land L = L_T^{**}$,
2. $^{o}R = ^{o}R_T \land R = R_T^{**}$,
3. $^{o}M = ^{o}M_T \land M = M_T^{**}$.

Proof. Let $x \in S$. It follows from (16), (17), (18) and (5) that $L(x) \in \mathcal{F}(L_T)$. This implies that $L(x) = L_T(x)$. By (14), we have $^{o}L = ^{o}L_T$. Further, by (10), we obtain that $L(x) = L_T^{**}(x)$. According to (8), we have $L = L_T^{**}$.

Analogously we can prove the statements 2 and 3.

Lemma 8. $L \leq R$ if and only if $L_T \leq R_T$.

Proof. If $L \leq R$, then $L_T = L \lor T \leq R \lor T = R_T$. Let $L_T \leq R_T$. Then $L_T(x) \subseteq R_T(x)$ for every $x \in S$. According to the proof of Lemma 7, we have $L(x) \subseteq R(x)$. It follows from (8) that $L \leq R$.

Lemma 9. If $A \subseteq S$, $A \neq \emptyset$, then

$$\bigcap_{x \in A} xS = \bigcap_{x \in T(A)} xS$$

holds.

Proof. Let $z \in \bigcap_{x \in A} xS$. Suppose that $z \notin \bigcap_{x \in T(A)} xS$. It follows that $z \notin uS$ for some $u \in T(A)$. By (17) and (18), uS is a closed subset of the compact semigroup S and there exists a neighbourhood O of uS such that $z \notin O$. Evidently $uS \in O$ for every $a \in S$. It follows from the continuity of multiplication that there exist neighbourhoods $O_a(u)$ of u and $O(a)$ of a such that $O_a(u) \cap O(a) = O$. It is clear that $S = \bigcup_{a \in S} O(a)$.

Since S is a compact semigroup, there exists a finite system $O(a_1), O(a_2), \ldots, O(a_n)$ which also covers S. If we put $O_0(u) = O_{a_1}(u) \cap O_{a_2}(u) \cap \ldots \cap O_{a_n}(u)$, then $O_0(u) S \subseteq O$. Since $O_0(u)$ is a neighbourhood of u, there exists $x \in A \cap O_0(u)$. Evidently $z \in xS$. If $z = xb$ for some $b \in S$, then $z \in O_0(u) S \subseteq O$ which is a contradiction. Hence $z \in \bigcap_{x \in T(A)} xS$. According to (3), we have $A \subseteq T(A)$ so that $\bigcap_{x \in T(A)} xS \subseteq xS$. Hence (22) holds.

Lemma 10. If $A \subseteq S$, $A \neq \emptyset$, then

$$\bigcap_{x \in A} SxS = \bigcap_{x \in T(A)} SxS$$

holds.
Proof. Let \(z \in SxS \). Suppose that \(z \notin SxS \). It follows that \(z \notin SuS \) for some \(u \in T(A) \). By (17) and (18), \(SuS \) is a closed subset of the compact semigroup \(S \) and there exists a neighbourhood \(O \) of \(SuS \) such that \(z \notin O \). Evidently \(aub \in O \) for every \(a, b \in S \). It follows from the proof of Lemma 9 that there exist neighbourhoods \(O'_a(au) \) of \(au \) such that \(O'_a(au) S \subset O \) for every \(a \in S \). The continuity of multiplication implies that there exist neighbourhoods \(O(a) \) of \(a \) and \(O'_a(u) \) of \(u \) such that \(O(a) O'_a(u) \subset O'_a(au) \). Evidently \(S = \bigcup_{a \in S} O(a) \). Since \(S \) is a compact semigroup, there exists a finite system \(O(a_1), O(a_2), \ldots, O(a_n) \) which also covers \(S \). If we put \(O_0(u) = O_{a_1}(u) \cap O_{a_2}(u) \cap \ldots \cap O_{a_n}(u) \), then \(SO_0(u) S \subset \bigcap_{i=1}^n O'_a(a_iu) S \subset O \). Since \(O_0(u) \) is a neighbourhood of \(u \), there exists \(x \in S \). Evidently \(z \in SxS \). If \(z = axb \) for some \(a, b \in S \), then \(z \notin O_0(u) S \) which is a contradiction. Hence \(z \notin \bigcap_{x \in T(A)} SxS \). The rest of the proof is analogous to that of Lemma 9.

Theorem 2. The following conditions on a semigroup \(S \) are equivalent:

1. \(S \) is right regular;
2. \(P^*_T \leq R_T \);
3. \(K_T \leq R_T \);
4. \(\circ K_T \subset \circ R \).

Proof. 1 \(\Rightarrow \) 2. Let \(S \) be a right regular semigroup. Let \(A \) be a closed right ideal of \(S \), i.e. \(A \in \mathcal{F}(R_T) \). If \(u \in P_T(x) \cap A \), then by (2) we have \(R_T(u) \subset A \). Since \(S \) is right regular, \(x \in x^nS \) for every positive integer \(n \). It follows from Lemma 9 that \(x \in \bigcap_{x \in S} vS = \bigcap_{x \in P_T(x)} vS \). This implies that \(x \in uS \subset R_T(u) \subset A \). By Lemma 1 we have \(A \in \mathcal{F}(P^*_T) \). It follows from (6) that \(P^*_T \leq R_T \).

2 \(\Rightarrow \) 3. Suppose \(P^*_T \leq R_T \). Since \(P \leq R \), it holds \(P_T \leq R_T \). According to (9) and Lemma 7, we have \(P^*_T \leq R^*_T = R \leq R_T \). Thus \(K_T = P^*_T \vee P^*_T \leq R_T \).

3 \(\Rightarrow \) 4. This follows from (12) and from Lemma 7.

4 \(\Rightarrow \) 1. If \(\circ K_T \subset \circ R \), then by Lemma 5 we have \(\circ K \subset K_T \subset \circ R \). It follows from Theorem 6 in [3] that \(S \) is right regular.

The dual statement reads as follows:

Theorem 3. The following conditions on a semigroup \(S \) are equivalent:

1. \(S \) is left regular;
2. \(P^*_T \leq L_T \);
3. \(K_T \leq L_T \);
4. \(\circ K_T \subset \circ L \).
Theorem 4. The following conditions on a semigroup S are equivalent:

1. S is a union of groups;
2. $P_T^* \leq R_T \land L_T$;
3. $K_T \leq R_T \land L_T$;
4. $^\circ K_T \leq ^\circ H$.

Proof. $1 \Rightarrow 2 \Rightarrow 3$. This follows from Theorem 2 and Theorem 3.

$3 \Rightarrow 4$. It follows from (12), Lemma 7 and (13) that $^\circ K_T \subseteq ^\circ (R_T \land L_T) = ^\circ R_T \land \cap ^\circ L_T = ^\circ R \land ^\circ L = ^\circ (R \land L) = ^\circ H$.

$4 \Rightarrow 1$. If $^\circ K_T \subseteq ^\circ H$, then by Lemma 5 we have $^\circ K \subseteq ^\circ H$. It follows from Theorem 8 in [3] that S is a union of groups.

Theorem 5. The following conditions on a semigroup S are equivalent:

1. S is intraregular;
2. $P_T^* \leq M_T$;
3. $K_T \leq M_T$;
4. $^\circ K_T \leq ^\circ M$.

Proof. $1 \Rightarrow 2$. Let S be an intraregular semigroup. Let A be a closed two-sided ideal of S, i.e. $A \in \mathcal{F}(M_T)$. If $u \in P_T(x) \land A \ (x \in S)$, then by (2) we have $M_T(u) \subseteq A$. For every positive integer n, we have $x^{n+2} \in Sx^nS$. It follows from Theorem 9 of [3] and (6) that $Sx^nS \in \mathcal{F}(M_T) \subseteq \mathcal{F}(P_T^*)$. Lemma 2 in [3] implies that $x \in Sx^nS$. It follows from Lemma 10 that $x \in \bigcap_{e \in P_T(x)} SuS = \bigcap_{e \in P_T(x)} SvS$. This implies that $x \in Sx^eS \subseteq M_T(u) \subseteq A$. It follows from Lemma 1 that $A \in \mathcal{F}(P_T^*)$. By (6) we have $P_T^* \leq M_T$.

$2 \Rightarrow 3 \Rightarrow 4$. The proof is analogous to the proof of Theorem 2.

$4 \Rightarrow 1$. If $^\circ K_T \subseteq ^\circ M$, then by Lemma 5 we have $^\circ K \subseteq ^\circ M$. It follows from Theorem 9 of [3] that S is intraregular.

Theorem 6. The conditions of Theorems 2, 3, 4 and 5 and the following condition on a semigroup S are equivalent:

$$^\circ K_T = ^\circ H.$$

Proof. 2 of Theorem 2 \Rightarrow 2 of Theorem 5. If $P_T^* \leq R_T$, then $P_T^* \leq R_T \leq M_T$.

2 of Theorem 5 \Rightarrow 1 of Theorem 4. Let $x \in S$. It follows from (19) that $e \in P_T(x)$ where $e^2 = e$. By Theorem 1 and Lemma 6 we have $ex \in H_e$. (15) and (6) imply that $e \in SexS \in \mathcal{F}(M_T) \subseteq \mathcal{F}(P_T^*)$. According to Lemma 1, we obtain that $x \in SexS$. Then there exist $a, b \in S$ such that $x = axb$. If we put $c = ae$, then $x = cxb$ and $c = ce$. This implies that $x = c^nxb^n$ and $c^n = c^ne$ for any positive integer n. Let
f \in P_\tau(c) where f^2 = f (see (19)). Then by Lemma 9 we have \(x \in \bigcap_{v \in P(c)} vS = \bigcap_{v \in P_\tau(c)} vS \) so that \(x \in fS \). Since \(P(c) = P(c) e \), we obtain by (18) and (17) that \(P_\tau(c) = P_\tau(c) e \). Since \(f \in P_\tau(c) e \), it holds \(f = ue \) for some \(u \in P_\tau(c) \). Therefore \(f = u e^2 = fe \). Since \(x \in fS \), \(x = fz \) holds for some \(z \in S \). This implies that \(x = fz = f^2z = fx = fex \). According to (19), we have \(x = xe \) and thus \(R(xe) = R(x) = R(fex) = R(fxe) = R(xe) \). Therefore \(R(xe) = R(ex) = eR(x) \). Since \(x \in eR(x) \), it follows that \(x = ew \) for some \(w \in R(x) \). This implies that \(x = ew = e^2w = ex \in H_e \). Hence \(S \) is a union of groups.

4 of Theorem 4 \(\Rightarrow \)^ 4K_t = \(^0H \). Suppose \(\^0K_t \subset \^0H \). If \(\^0K_t \neq \^0H \), then there exist \(x, y \in S \) such that \(K_{tx} \neq K_{ty} \) and \(K_{tx} \subset H_x = H_y \supset K_{ty} \). Let \(e \in P_\tau(x) (e^2 = e) \) and let \(f \in P_\tau(y) (f^2 = f) \). Lemma 3 implies that \(e \in K_{tx} \) and \(f \in K_{ty} \) and thus we obtain that \(e, f \in H_x \). According to (15), we have \(e = f \) so that \(K_{tx} = K_{te} = K_{ty} \) which is a contradiction. Hence \(\^0K_t = \^0H \).

\(\^0K_t = \^0H \Rightarrow 4 \) of Theorem 3. This follows from \(\^0H \subset \^0L \) (see (12)).

2 of Theorem 3 \(\Rightarrow 1 \) of Theorem 2. Let \(x \in S \). It follows from (19) that \(e \in P_\tau(x) \) where \(e^2 = e \). Since \(e \in Se \in \mathcal{F}(L_T) \subset \mathcal{F}(P_\tau^\bullet) \) (see (6)), hence \(P_\tau(x) \cap Se \neq 0 \). By Lemma 1 we have that \(x \in Se \). Therefore \(x = ue \) for some \(u \in S \) and so \(x = ue = ue^2 = xe \). According to Lemma 6 and Lemma 3, we have \(x \in H_e \). This implies that \(S \) is a union of groups and therefore, \(S \) is right regular.

Theorem 7. The following conditions on a semigroup \(S \) are equivalent:

1. \(S \) is a semilattice of right groups;
2. \(S \) is a union of groups and \(L_T \leq R_T \);
3. \(P_\tau^\bullet \leq L_T \leq R_T \);
4. \(K_T \leq L_T \leq R_T \);
5. \(^0K_T \subset ^0L \subset ^0R \);
6. \(^0K_T = ^0L \).

Proof. 1 \(\Rightarrow 2 \). It follows from Theorem 10 of [3] that \(S \) is a union of groups and \(L \leq R \). By Lemma 8 we have \(L_T \leq R_T \).

2 \(\Rightarrow 4 \Rightarrow 5 \). This follows from Theorem 3, Theorem 4 and from (12).

5 \(\Rightarrow 6 \). If \(^0L \subset ^0R \), then by Theorem 6 and (13) we have \(^0K_T = ^0H = ^0L \).

6 \(\Rightarrow 1 \). If \(^0K_T = ^0L \), then by Theorem 6 and Lemma 5 we have \(^0K \subset ^0K_T = ^0L = ^0H \subset ^0R \). Theorem 10 in [3] implies that \(S \) is a semilattice of right groups.

We have:

Theorem 8. The following conditions on a semigroup \(S \) are equivalent:

1. \(S \) is a semilattice of left groups;
2. \(S \) is a union of groups and \(R_T \leq L_T \);

76
Theorem 9. The following conditions on a semigroup S are equivalent:

1. S is a semilattice of groups;
2. S is a union of groups and $L_T = R_T$;
3. $P^*_T \leq R_T \leq L_T$;
4. $K_T \leq R_T \leq L_T$;
5. $^\circ K_T \in ^\circ R \in ^\circ L$;
6. $^\circ K_T = ^\circ R$.

Proof. $1 \Rightarrow 2$. It follows from Theorem 12 of [3] that S is a union of groups and $L = R$. Thus we have $L_T = R_T$.

$2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6$. This follows from Theorem 7 and Theorem 8.

$6 \Rightarrow 7$. It follows from Theorems 7 and 8 that $L_T = R_T$. According to Lemma 8 and its dual, we have $L = R = M$ so that $^\circ K_T = ^\circ L = ^\circ M$.

$7 \Rightarrow 1$. Theorem 6 implies that $^\circ H = ^\circ K_T = ^\circ M = ^\circ L = ^\circ R$. According to Lemma 5, we have $^\circ K \in ^\circ L = ^\circ R$. It follows from Theorem 12 in [3] that S is a semilattice of groups.

References

Author's address: Poděbrady — zámek, ČSSR (České vysoké učení technické).