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ON MANIFOLDS WITH CONNECTION

IvaN KoOLAR, Brno
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This paper presents an exact justification of the so-called invariant method of
investigation (by E. CARTAN and G. F. LAPTEV) for manifolds with connection.

In the present terminology, a manifold with connection is (at least locally) a sub-
manifold of a space with Cartan connection. E. Cartan himself showed in the case
of a surface in a 3-dimensional space with projective connection, [1], that his invariant
method can be also applied to such submanifolds. Some further development of this
method was outlined by G. F. Laptév, [12]. A great contribution to the theory of
manifolds with connection was presented by A. SVEC in a large series of papers, see
the bibliography in [13]. In particular, he has given an exact explanation of the
Cartan’s method of specialization of frames for manifolds with connection, [14].
Our attention is concentrated on the “prolongation procedure” in its pure form, i.e.
without any specialization of frames. We give the invariant definitions of all concepts
based on the theory of jets by Ehresmann and we deduce ““a posteriori” an algorithm
for finding the corresponding coordinate functions in some natural local coordinates.

Our considerations are in the category C*. The standard terminology and notation
of the theory of jets is used throughout the paper, see [2], [3], [5].

1. Let P(B, G, n) be a principal fibre bundle and let E(B, F, G, P) be a fibre
bundle associated with P. We have defined a generalized space with connection as
a quadruple & = #(P(B, G), F, C, ¢), where C is a connection (of the first order)
on the groupoid PP~! associated with P and ¢ is a cross section of E, [6]. Such
a space will be called a manifold with connection, if it holds, moreover,

a) m=dimB <dimF = n,
b) C~!(x) (o) is regular for every x € B,
¢) G acts on F transitively.

2

A manifold with connection is locally equivalent to a submanifold of a space with
Cartan connection. From now on, & will denote a manifold with connection.
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Let I : P — J'P be the representant of C on P, [5], and let @ be the connection
form of I'. The classical definition of w can be obviously restated as follows. If I'(u) =
= j,lcg, where g is a local cross section of P,ue P, x = n(u), then the relation

1) v = o(n(v)) ¥(v)

determines a local mapping Y/(v) of P into G and o, = j, ¥(v), », : T,(P) - g is the
value of w at u.

Fix an element ¢ € F and denote by H the stability group of ¢. Then the fundamental
section ¢ of & determines a reduction

Q = {ueP, u(o(n(w))) = c}

of P to the subgroup H < G. Since C™(x) (c) is regular for every x € B, the mapping
o, | T(Q) is injective for every u € Q. Fix a basis e, of g such that e; € b,

opy...=1,...,dimG; i,j,...=1,..,n; ALu..=n+1,..,dimG.

This determines a decomposition g = N @ ), where N is the linear span of e;, as
well as a decomposition N = N; @ N,, where N, or N, is the linear span of e, or e,
respectively,

pq...=14L...m; JLK...=m+1,..,n.

Letf: N, @ N, - N, be the canonical projection. Put N, = N n o(T,(Q)) for every
ue Q. Let 0 be the subspace of all ue Q such that m-dimensional subspace
N, < N is transversal to N,, i.e. f(N,) = N;. For the sake of simplicity, we shall
further denote by @ = w”e, the restriction of w to Q and by = the restriction of
n:P - Bto Q.

Introduce a mapping p : 0 — H'(B) as follows. Let u € 0, and let X, € T,(Q) be
the vectors determined by the relations o(X,)e N, and f(w(X,)) = e,- Then the
vectors m4(X,) form a basis of T,(B) and this basis can be identified with an element
u(u) e H'(B).

Lemma 1. Let ¢ be the canonical form of H'(B) and let ¢” be the components of ¢.
Then

(2) P = #*(PP .

Proof. Let X e T,(Q). By definition of the canonical form of H'(B), ¢”(usX) are
the components of the vector By(1xX) with respect to the frame p(u), i-€. By(1sX) =
= ¢?(4X) m4(X ). Since fu = m, this can be rewritten as my(X) = @P(1X) m(X,,).
On the other hand, if X, e ﬂ(Qx) are the vectors determined by a)(X ,1) = e,, then
o(X) = o%(X) e, implies X = 0?(X) X, + o*(X) X,. Hence my(X) = 0P(X) my(X,),
which proves (2).

It will be convenient to express u(u) as 1-jet at 0 of a local diffecomorphism { of R™
into B, but it will suffice to deduce only an “equation” for {. Let U be a coordinate
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neighbourhood of ¢ € F, let x be a coordinate diffeomorphism x : U — R”, %(c) = 0
with coordinates x* and let a : U - G = G(F, H) be a local cross section such that
a4((0/0x")o) = e;. Considering R" as fibered manifold over R™, U is a fibered manifold
(U, h, R™) and we have a natural cross section b : R™ — U. By (1), if pu(u) = jil,
then ( satisfies the relation

©) ‘ (L)) = e(t(y)) a(b(y)), yeR™,

where y is a local cross section of Q.

2. Consider a more general situation. Let (A, v, F) be a fibered manifold and let G
act from the left on A4 in such a way that v is an equivariant map. Then we have a well-
defined projection v of the associated fibre bundle Z = Z(B, A, G, P) into E,
({(u, 5)}) = {(u, ¥(s))}, ue P, se A. Let $: B — Z be a cross section such that
#9 = 0. The first development (or the absolute differential) 3" of 3 is a cross section
of U Ji(B, Z,), while the mapping x - k($"(x)) (where k(9'(x)) means the contact

xeB

element determined by 8'(x), cf. [3]) is a cross section of U Kn(Z,) = (B, Kpn(A),
xeB

G, P). Put M = K, (A) | Ay, where A = v™!(c). Since M is an H-invariant subspace
of K,(A), we have a subbundle (B, M, H, Q) < (B, Kp(A4), G, P) and ¥3 = o implies
that the values of k(') lie in (B, M, H, Q), i.e. k(8') : B —» (B, M, H, Q).

Put ¢ = hvso that v™*(U) = A is a fibered manifold (v *(U), ¢, R™). Let M =« M
be the subspace of all elements of M transversal with respect to g. We have a natural
imbedding ¢ : M — T,,(A4) which can be introduced as follows. If X € M, X = k(Y),
where Yis a 1-jet of an m-dimensional manifold V into 4 with the target in 4, and
transversal with respect to g, then gY is an invertible 1-jet of ¥ into R™ with target 0
and we define

4 e(k(Y)) = Y(qY) ' e T,(4) .
If k(©') means the restriction of the indirect form (see [4]) of k(9*) to @ = Q, then
the values of k(@) lie in M. Further, let ©* be the indirect form of 9*, which is a map-

ping of H'(B) ® P into T,(A) (in this paper, the symbol ® will denote the fibre
product over B), cf. [10], and let i : Q — P be the injection.

Lemma 2. The diagram
KOl A

M(-——Q

(5) et l(u,n

TY(4) <>— H'(B)@ P
is commutative. »

Proof. If ueQ,, I'(u) = jio(y), then ©'(u) = u™'[8'(x)] = jiloe™'(¥) (3(»))]

and o(k(0'(w)) = jiLe™*(v) (S()]{aizle™* () (BT} - But ajz[e ™' () BO)] =
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= hji[o™'(») (7(3(»)))] = hit[e~*(») (o(y))]- On the other hand, @'(u(u),u) =
= u~}(8'(x)) p(u) = jiLo~*(¢(»)) (9(¢(y)))] where {(y) satisfies (3), or, equivalently,

(6) a(b(y)) = ¢~ (L)) x(»)) -

Applying to (6) the projection g — g(c) of G into F and taking into account that
is a local cross section of Q, we obtain

(7) b(y) = e7 () (e(t())) -
Using the projection h:U — R™, we further deduce y= h[o™({(»)) (¢(¢(»)))],
which implies j§ {(y) = {hj[e”*(¥) (o(y))]} ~*. This proves Lemma 2.

3. We shall first discuss the case A = F, v = id, so that 3 = ¢. Let 2! be the in-
direct form of the first development o' of ¢ and let k(X') be the restriction of the
indirect form of k(¢') to Q. Taking into account the local coordinates x* on F, we
have local identifications M = K}, ,, and M = K, ,, see [9]. By (5), we deduce
a commutative diagram

R, & 0
(7) sl 1(;:.0
TL(F) <—— H'(B)@P

Let x/, x}, be the local coordinates on T,,(F) determined by x and let y} be the natural
coordinates of K ,, [9]- Then the coordinate form of & is

(8) () = (0, (8% 7)) -

Proposition 1. Let o = we, be the restriction of the connection form of ' to (
and let aj : Q — R be the coordinate functions of k(c'). Then

9) o’ = ajw?.
Proof. Let & be the basis of g* dual to e, and let
dx' + E(x) @* =0
be the equations of the fundamental distribution on G x F. Obviously, it is
(10) £j(0) = ¢;, &) =0..

Let @ be the connection form on P, let @, be the canonical form of H'(B) and let
& = p3®, ¢y = p{P,, where p, and p, are the product projections of H'(B) @ P.
According to [10], it holds

(11) dd' + g(d)) 0" = a7,
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where &, @, : H(B)® P — R are the coordinate functions of ¢'. However, the
subspace H'(B)® Q = H'(B)® P is characterized by d' = 0 and if we further
restrict all quantities of (11) to 0 and apply (2), (7), (8), (10), we obtain (9), QED.

Now, we shall treat the general case. Choose a local coordinate system x%, x5 on 4
such that it is a prolongation of % and is compatible with the fibering v: 4 — F,

S, T,...=n+1,...,dim 4.
In particular, x' = 0 are the equations of 4,. Let
(12) dx! + E(x)a* =0, dx% + &L xT)é* =0

be the equations of the fundamental distribution on G x A. If x%, x%, xi, x5 are the
corresponding local coordinates on Tj(4) and )5, y;, v, are the natural coordinates
of M, then the coordinate form of & is

(13) %, vy ¥3) = (0, V5, (85 ¥3), v3) -

Lemma 3. Let w®e, be the restriction of the connection form of I to Q and let
b5, a, a5 : Q — R be the coordinate functions of k(3"). Then

) o’ = ajr,
(14) db® + &(0, bT) 0* = aj0” .
Proof. According to [10], we have (on H'(B) ® P)
dd’ + &) o° = dip?, db° + &(d, bT) 0" = aje?,

where the notation is analogous to that from the proof of Proposition 1. Restricting
all quantities of (15) to @ and using (2), (5) and (13), we obtain (14), QED.
We shall say that the action of G on A is special with respect to x%, x5, if

(16) &0,x7) =0.

Set &5(0, xT) = #3(x") and denote by n* the restriction of &* to H so that the equa-
tions of the fundamental distribution on H x A, are

(17) ' dxS + #5(x7) n* = 0.
Then (14) is equal to
(18) db® + 73(b7) w* = aw” .

Thus, in this special case the equations of the fundamental distribution on H x 4,
only are used in Lemma 3.

Ve
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4. The development of order r of & (or the absolute differential of order r of o
with respect to C) is defined as the cross section

o :B-UJT(BE), o(x)=[C V] (x)(o),
xeB
see [5]. We introduce also the weak development of order r of & as the cross section
J:B—> UBK;',,’,(,‘)(E,C) , (x) = k(o"(x)),
X€E.

where k(o"(x)) is the contact element determined by 6”(x), [3]. The fibered manifold
U K}, .x(E,) has a natural structure of an associated fibre bundle (B, K}, .(F), H, Q).
xeB

By means of the local coordinate system x, K}, .(F) is identified with K}, ,, = K}, o(R").
Let °K}, ,, = K}, ,, be the subspace of all elements transversal with respect to the natu-
ral projection R" - R™ Then °K], is identified with Lj_, , which introduces
some coordinates yJ, ..., ¥5, . on °K} ., [1]. The restriction of the indirect form
of X to @ is a mapping of Q into °K, .

Proposition 2. Let w®e, be the restriction of the connection form of I' to 0, let
(19) dx' + Ei(x)@* =0,

dy; + Ph(x, Y a* =0,

prne + Poropal X Vi Vera) @ =0

be the equations of the fundamental distribution on G x K(F) and let a;,
ceer @y, 5 O = R be the coordinate functions of J'. Then the coordinate functions
Ay ey Aoy Aospery - O = Roof H1 satisfy

(20) o’ = ajor,

J J K J
da, + ¥3,(0, a;) 0" = pg® 5

da;(n-pr + T;l---l’rl(o’ a;(’ e a‘fl“"lr) o = a;x-nﬂrqwq *

Proof. Replacing 4 by K,(F) and 9§ by A, we obtain the situation of item 2.
According to [11], Lemma 1, (4)" (x) is identified with an element of K’,"*(E,) and
one deduces easily that this element is equal to 4"**(x), cf. [5]. Hence we have an
identification k((A")') = A"*'. On the other hand, by means of the local coordinate
system %, M is identified with T,,(L;_,, ), Which introduces some coordinates yJ, ...

J J J 'y . .
v+ Vpiopwr Zpp -+ Zprpery O M. By Lemma 3, the coordinate functions b7, ...
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...,bJ ] J"", v
o By Qo of k(7)Y satisfy

(21) o = a;wp i

db, + ¥7,(0, ) 0" = ap01,

J
dbpl.“p,, + Y’J

Kk K a __ J q
pxmpra(o’ bq’ e qun-qr) W =a ” .

Pi---Prq

But tJhe values of 2'+1 are semi-holonomic, which is characterized by by =aj, ...
ces by = a;;...p,s Hence our assertion is proved.

Proposition 2 gives an algorithm for finding the coordinate functions of A"+
In general, this algorithm is rather complicated, but it is essentially simplified for
those homogeneous spaces for which one can find such a basis @" of g* that

(22) do' = ch,@' A @, do* = ch @' A & + tep 0 A D

holds provided &' = 0 are the differential equations of H. (As remarked in [9],
a great number of homogeneous spaces investigated in the classical differential
geometry are of type (22).) Obviously, @ = 0 is an Abelian subgroup K <= G. The
canonical coordinates on K determined by the basis e; of f induce some local coordi-
nates on F; these coordinates will be also called the canonical coordinates on F
determined by e;.

5. Let F be a homogeneous space of type (22). The canonical coordinates on F
are prolonged to some local coordinates on K;,(F), [1].

Lemma 4. The action of G on K,(F) is special (in the sense of (16)) with respect to
the above-mentioned coordinates.

Proof. The local coordinates on KJ,(R") are introduced as follows. We have
some coordinates Yy, ..., ¥y, on °K} <= K7, o(R"). Let f: K,(R") - R” be the
jet projection. If &€ K(R"), B¢ = x, then t;'¢ e K] ,,, where t, : R" — R”" means
the translation y i— y + x. Then the coordinates x‘ of f¢ and the coordinates of t;lé
are, by definition, the coordinates of . But F is locally identified with R” by means
of the canonical coordinates and the transformations of K on F are represented by
the translations of R”, which implies easily Lemma 4.

According to (18), the equations of the fundamental distribution on H x Kj, ,
only are to be used in (20). In [9], formula (45) and Appendix 2, we have described
the homomorphism of H into L, determined by the canonical coordinates on F.
Hence it will be sufficient to deduce an algorithm for finding the equations of the
fundamental distribution on L, x K} . R

6. The equations of the fundamental distribution on L!, x K, ,, can be found in [9],
formula (10). Assume by induction that we have deduced the equations of the funda-
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mental distribution on L, * x K;,!in the form
- JK i
(23) dyp + ¥3(5y> @) = 0,
_J 7 K _K i ;i _
dVp.pp-y T+ 'Pmmpr—x(yq’ oo Vagogropp Wjp oeos w.il"'jr—l) =0,

where j7, ..., 5., _, are the above-mentioned coordinates on °K}.! and @, ...
—i : : r—1%
<o @5, _, is the natural basis of [[” ™.
Proposition 3. Using (23), write formally the relations
J J( . K i J
(24) d.Yp + q’p(yq 7. (Pj) = ypq(pq H

J J K K i i J .
dyPl---Pr-l + Ylmmpr—x(yq’ e y‘ll-“qr—l’ P> s (pix-njr—x) = ym---prq)p
Applying the exterior differentiation to the last row of (24) and replacing: a) de?,
d(pj-, v d‘l’j'l...jr-l according to the structure equations of the canonical form ¢,
of H'(B), [7], b) dy}, ..., dy;, ., according to (24), ¢) ¢’ according to the formal
relation

(25) o’ = y,07,

we obtain an expression of the form

J J K K i i r
(Vo + Poin Ve o Varoa @ oo 9ij)] A @7 =0
Then the equations of the fundamental distribution on L}, x K, , are

(26) dy; + ¥y(vgs @) = 0,

7 7 K ‘K i i _
dyPlu»Pr + !Pm---l/r(yq’ T ym-uqr’ @Djs -y wj,...j,) =0 4

i i
where wj, ..., ®

. . *
iv...ir 1S the natural basis of 1",

Proof. Consider an n-dimensional manifold M and an m-dimensional submanifold
V< M. Put Q(V) = H'(M) |V and define Q"(V) in the same way as in [9]. Then
K,7'(M) |V =K~V) is an associated bundle of the symbol (V, K},!, L, ",
Q" (V). Let Kr;"~'(M) be the space of all non-holonomic contact m’-elements on M
tangent to K'~'(M). Let K~"~'(V) = K~"~'(M)|V, Kyt = (K57~ *(R")), and
let °K;" "' be the subspace of all elements of K%' transversal with respect to

the canonical projection R" —» R™ On °K]”7~!, there are natural coordinates

7 J J 7 : : or— .
z z tys ++es Upy...p- If @ is @ local cross section of K"~*(V), then jio, x €V,

P Zpreape-v
is identified with an element of K™ ~'(V), see [11], Lemma 1. Consequently,
JY(K"~Y(V)) can be considered as an associated fibre bundle (B, K77 %, L, Q'(V)).

nm >
We first deduce

Lemma 5. Let by, ..., b}, | be the coordinate functions of a geometric object
field 6 :V — K'~\(V). Then the coordinate functions by, ..., b7 o’ . . al
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of the section j'o :V — K™ "'(V) satisfy bl = (ji")* bl ..., b0, = (i )*e

r

bpl <Pr- and

% S g
(27) ¢ = app”,
ab] + 0%, 0 =
’ oy 7 ~
db;x Pr-1t + TL -Pr- 1(b : q1 qr-1° (p.l’ tee (pjx--~f.-—1) = amu.pr—x(pq’

where @', ..., ‘ﬁj'l...j,_l are the components of the restriction of the canonical form
of H'(B) to 0'(V).

Proof of Lemma 5 is quite similar to that of Proposition 2 of [9] and we shall
use freely the notation introduced there. For every X € T,(0"(V)), we have a decom-
position X = X; + X,, where X, € T;(Q; '(V)). By Lemma 1 of [8], we get

(28) dby(X>) = *’I”(B"(u) &)

db,..poi(X2) = = ¥5p 1(5"(’4) > Bgregr (@ & o &) -
By Proposition 1 of [9], we obtain
(29) ¢ = app”.
Finally, in the same way as in [9], we deduce

(30) dby(Xy) = aiq(u) &

dBJ ~Pr- 1(X1) m Pr-lq(u)é

However, (28), (29) and (30) are equivalent to (27), QED.

We are now in position to prove Proposition 3. By means of the exterior differen-
tiation of (27) and by the standard procedure based on Lemma 2 of [8], we obtain
the equations of the fundamental distribution on L, x K;::n"l. But the subspace
K}, < K" is characterized by zj = t,, ..., 2y, ,._, = by, _,. Summarizing all
these results in a direct algorithm, we deduce Proposition 3.

7. Using the above-mentioned homomorphism of H into L, we deduce the equa®
tions of the fundamental distribution on H x K, . By Proposition 2, Lemma 4 and
(18), we obtain directly the following

Proposition 4. (Cartan-Lapt&v algorithm for manifolds with connection of type
(22).) Let #(P(B, G), F, C, ) be a manifold with connection and let F be of type
(22). Let o = w?e, the restriction of the connection form of T' to Q. Then the co-
ordinate functions of the successive weak developments of & can be treated by
a recurrent algorithm which starts from the relation '

J __ J,..p
o = a,0".
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Assume that after r — 1 steps of this algorithm we have deduced
(31) o’ = ajor,

da) + ‘I”l(ax)a) = a,07,

7 J ok i J .
daPl-~~Pr—1 + Tm---pr—ll(all’ e a'h...qr—l) CO - apx...p,wp s
where a;, e a;....p, are the coordinate functions of the r-th weak development
of & and
J
(32) dy; + ¥ l(y )t =

7 7 K i
AYpropeos T 'Pm--.pr-xl(yq’ s yqn~--qr—1) =0

are the equations of the fundamental distribution on H x K} ,!. Applying the
exterior differentiation to the last row of (31) and replacing: a) daj, ..., da,, , _,
according to (31), b) dw® according to (22), ¢) w’ by ajw®, we obtain a relation of the

form

J 7 K A .
[damn-pr + Tm---prl(aq’ qn qr) @ ] A @” 0.
Then the further coordinate functions aj,_,. . of the (r + 1)-st weak development
of & satisfy
J T K 7
dam-~-pr + q’px---prl(aq’ e qx qr) o apxn-prqwq

and the equations of the fundamental distribution on H x K, are (32) and

et + YotV o Virg) @ = 0.

Remark 1. It should be underlined that we have to use the structure equations
do = —}[w, ®] of G and not the structure equations do = —3{w, o] + Do
of the connection form of I'.

Remark 2. We shall evaluate the condition for a’ to be symmetric in both
subscripts. Using the equations of the fundamental dlstrxbutlon on H x K,, w 191
we obtain

(33) o’ = ajo?,

daj — (ajel, + ajayck, — ajex, — ¢p,) 0 = ap0f.
On the other hand, it is
(34) do' = ch,0’ A o* + RLw? A o?.
Applying (33) and (34) to

J
do’ = da; A @F + a,dw?,
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we deduce that a;q are symmetric in both subscripts if and only if
(35) R} 0" A 0% = a]R, 0" A 0.

Explained geometrically, (35) asserts that the second weak development of & is
holonomic if and only if the reduced torsion form of & vanishes. We have established
this result in a quite different way in [5], Theorem 2.

Remark 3. Modifying in an unessential way our Definition 3 of [3] in the sense
of [4] and [9], we can define a semi-holonomic geometric m'-object on F as an equi-
variant mapping of H-space K}, (F) into another H-space A. If & is a manifold with
connection of type F satisfying dim B = m, then u is extended to a mapping ji:
(B, K, (F), H, Q) - (B, 4, H, Q) and the section pA":B — (B, 4, H, Q) can be
called the value of u on &. Since the algorithm of Proposition 4 gives the equations
of the fundamental distribution on H x K}, ,, the method of G. F. Laptdv, [12],
p. 301 (as explained in Appendix 1, [9]) can be used for (at least local) analytic con-
structions of the above-mentioned equivariant mappings. '

Remark 4. If the connection C is integrable, then & is locally isomorphic to
a submanifold of the homogeneous space F. In this case we have deduced again our
results of [9] for submanifolds of homogeneous spaces of type (22).
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