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LINEAR OPERATORS ON c^ 

GEORGE ALEXANDER and CHARLES SWARTZ, Tucson 

(Received October 12, 1971) 

In a recent paper [3], I. DOBRAKOV has posed several problems for spaces of vector-
valued continuous functions on a locally compact Hausdorff space S. In this note we 
show that some results of J. ВАТТ ([1]) on operator-valued series can be employed 
to solve two of these problems for the special case when S is the one-point com-
pactification of the positive integers. 

Before considering the problems, we introduce some notation. Let X, Y denote 
Б-spaces and L(X, 7) denote the Б-space of all bounded linear operators from X 
into 7equipped with the usual operator norm. (Our terminology will be that of [4].) 
We denote by Cx the Б-space of all X-valued, convergent sequences, {x„}, equipped 
with the sup-norm, ||{х„}|| = sup {||x„|| : n ^ 1}. Thus, Cx is the space Cx{S) ([9]), 
where S is one-point compactification of the positive integers. Our results all pertain 
to linear operators on c^. 

The first problem w^hich we consider is to give a characterization of unconditionally 
converging operators on Cx- (See [3], Theorem 3 and the remarks following.) Recall 
a bounded linear operator T : X -^ 7 is said to be an unconditionally converging 
(u.c.) operator if T carries weakly unconditionally convergent (w.u.c.) series into 
unconditionally convergent (u.c.) series [9]. (A series J]x„ in X is w.u.c. if and only 
if the series X!K^'' ^и)1 converges for each x' e X' ([2], Lemma 2), and the series ^x„ 
is u.c. if and only if it converges unconditionally in norm ([7], [8]).) We first give 
necessary and sufficient conditions for a bounded linear operator T : C;̂  -> 7 to be u.c. 

Recall ([6], p. 738) a bounded linear operator T : Cx ~^Y has a unique representa­
tion in the form 

(1) iy\ TO = <y\ Го(Ит x„)> + f i/, Г л > 

where С = {^n} ^ ^x^ У' ^ ^'5 TQ'.X -^ Y" and T^'^X -^Y are bounded hnear 

operators, and the series on the right-hand side of (l) satisfies ^ Цу'̂ иЦ < oo. (See 
и = 1 

[1], Theorem 1 for some equivalent formulations regarding the condition on the 
series.) 
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Theorem 1. A bounded linear operator T : Cx -^ Y is u.c. if and only if 

(i) each Tj in (l) is u.c. (j = 0, 1,...) 

(ii) the series Yß'j ^^ ^^^^ ^hat J^TjXj converges for each sequence [x-] ç X, 
|[xy|| ^ 1. (See [1], Theorem 2 for equivalent formulations.) 

Proof. First suppose that Tis u.c. Define a continuous linear operator Pj (y ^ l) 
from X into Cx by PjX = {ôj„x}^==i. Let {xj} ^ X be such that \\xj\\ g 1. Then 
J^PjXj is w.u.c. in Cx ([2], lemma 2.III) so that J^TPjXj = J^TjXj is u.c. by (1). 
Hence (ii) is satisfied. 

For J ^ 1 and XE X, equation (1) yields TPjX = TjX, so Tj is u.c. since Tis u.c. 
(j ^ 1). To establish (i) it remains to show TQ is u.c. 

Let Q:X -^ Cx be the continuous linear operator defined by Qx = (x, x , . . . ) . 
00 

Now (ii) together with (1) shows ToeL{X,Y); and in fact, TQX = TQx - ^ TjX 
00 / = 1 

for all XEX. Also (ii) and Theorem 2 of [1] show J] TjX converges uniformly for all 

||x|| S Ij i-e., To is the limit in the norm topology on L{X, Y) of the sequence of u.c. 
» 

operators [TQ — J] '^i}r=i- Thus To is u.c. since the space of u.c. operators is closed 
j = i 

in the norm of ЦХ, Y). 
Next suppose that T satisfies (i) and (ii). For each n, let S„ : c^ "^ ^ be defined by 

n 
S„C = To(limx„) + X TjXj, С = {x„}. By (i) and (1), each S„ is u.c. By (ii) and 

j = i 
Theorem 2 of [1], the series J^TjXj converges uniformly in У for Цх̂Ц ^ 1 so that 
S„ -> Г in the norm of L{cx, Y). Since the space of u.c. operators is closed in the 
norm topology of L(cx, У), Tis u.c. 

Remark. The necessity of conditions (i) and (ii) is estabhshed for the general case 
in [3], [10]; but the proof given here is simpler and involves no integration theory 
as in [3]. [10]. 

In [1], Corollary 1, Batt has shown that T: Cx -^ У is weak compact if and only if 
each TJ is weak compact and (ii) is satisfied. We recall that a Б-space X has the 
property V if and only if for each Б-space У each u.c. operator T : X -> У is weak 
compact ([9]). By Theorem 1 and the result of Batt just quoted, we may obtain 

Corollary 2. X has the property V if and only if Cx has the property V. 

Proof. IÎ X has V, Cx has F by the remarks above. 

If Cx has Fand 17 : X -> Tis u.c., then TiCx-^ У defined by U = Ux^, С = {xJ, 
is also u.c., and hence weak compact. Since for x eX, Ux = TP^x, it follows that U 
is weak compact. 
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Remark. This result was established in [10] by other methods. 

We finally show that Cx has the Dunford-Pettis property if and only if X has the 
Dunford-Pettis property. (See [3], §6, for a discussion of this problem and some 
partial results.) Recall that a Б-space X is said to have the Dunford-Pettis property 
(D.P. property) if and only if for every Б-space Y each weak compact operator 
T: X -^Y carries weak Cauchy sequences into norm convergent sequences ([3], 
§6; [5]). For convenience we refer to a bounded linear operator T:X -^Y which 
carries weak Cauchy sequences into norm convergent sequences as a completely 
continuous (cc) operator. 

We first observe that the space of cc operators is closed in the uniform operator 
topology. 

Proposition 3. The space, cc[X, Y), of all cc operators from X into Y is closed in 
the norm topology of L{X, Y). 

Proof. Let T„ecc(X,y), TeL{X,Y) and Цт;, - Т| | -^ 0. Let {x„} be weak 
Cauchy in X and e > 0. There is iV > 0 such that || Тдг - Т\\ < г/ЗБ, where В > О 
is such that ||x„|| g В. Now T^is a cc operator so {Tj^x„}^^i is norm convergent, and 
there exists N^ such that n, m ^ N^ implies ||Т^(х„ — x^„)|| < г/3. Thus for n, m "^ 
^ iVi, \\T{x„ - xJII ^ \\{T - 7]v) x,|| + \\{T^ - T) x4 + \\T,{x, - x^)\\ < e. 
Hence, Tis a cc operator. 

The analogue of Theorem 1 for cc operators is 

Theorem 4. Ä bounded linear operator T : Cx -^ Y is a cc operator if and only if 

(a) each Tj is a cc operator (j = 0, 1, ...) 
(b) the series ^Tj satisfies condition (ii) of Theorem 1. 

Proof. First, suppose T is a cc operator. For j ^ 1 denote by Pj the bounded 
hnear operator from X into Cx defined by PjX = {ô„jx}^=i. Let {xj} ^ X be such 

n 

that \\xj\\ ^ 1, and set z„ = ^Pj^j^ Cx- Recall the dual of Cx can be identified 

with the space /^(X') of all absolutely summable X'-valued sequences ([6], p. 736; 
n 00 

[3]), so that if a = {x^} e c^, then <a, z„> = J] <x}, Xj} -> J] <x}, Xj}, Hence {z„} 
n j=l J=l 

is weak Cauchy in Cx, and thus {Tz„} = {YJ ^J^J} ^^ norm convergent. That is, (b) 
is satisfied. •''̂ ^ 

By a proof analogous to that used in Theorem 1 to show Ta u.c. operator implies 
condition (i), it follows from the preceding paragraph and Proposition 3 that T a cc 
operator implies condition (a). 

The converse is also estabhshed exactly as in Theorem 1. For each n set S„C = 
n 

= To(lim x„) + Y TjXj, С = {^j} e Cx- Each S„: Cx -^ Yis a cc operator, and by (b) 
j = i 

and Theorem 2 of [1], ||5„ - Т\\ -^ 0. By Proposition 3, Tis a cc operator. 
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Remark. It would be interesting to obtain an analogue of this characterization for 
general cc operators T : Cx{S) -^ 7, when S is an arbitrary compact Hausdorflf space. 

Using this theorem we obtain 

Corollary 5. X has the D.P. property if and only if Cx has the D.P. property. 

Proof. Suppose X has the D.P. property and Т : с ; ^ - ^ 7 is weakly compact. 
Then by Corollary 1 of [1] and Theorem 4, Tis a cc operator. Hence, Cx has the D.P. 
property. 

Let Cx have the D.P. property and U : X -^Ybc weak compact. Then T : c^ -> У 
defined by TC = t /xj , (, = {x„}, is weak compact, and hence T is a cc operator. 
For X e X, TP^x = Ux so that U is a cc operator. 

Remark. See Theorem 13a of [3] where the result is established by using integration 
theory. The proof given here is entirely elementary. 

Corollary's 2 and 5 solve the two problems posed in [3] for the very special case 
when S is the one-point compactification of the positive integers. Of course, the 
methods employed here will not be applicable in the general case, but they do furnish 
some interesting applications of some of the results in [1] pertaining to operator-
valued series. 
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