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CERTAIN FUNDAMENTAL CONGRUENCES ON THE TENSOR 
PRODUCT OF COMMUTATIVE INVERSE SEMIGROUPS 

NoBUAKi KuROKi, Funabasi 
(Received November 12, 1971) 

1. Two elements of a semigroup X are called to be ^-equivalent if they generate 
the same principal left ideal of X. .^-equivalence is defined dually. The join of the 
equivalences ^ and ^ is denoted by ^ and their intersection by Ж. By an inverse 
semigroup we mean a semigroup X in which to each element a there corresponds 
a unique element a ~ ̂  (the inverse of a) such that 

aa~^a = a and a~^aa~^ = a~^, 

In this note we shall prove that the tensor product of ^(^, ^ , ^)-equivalences on 
commutative inverse semigroups X and Y is also ^(^, ^, c#)-equivalence on the 
tensor product X ® У. And we consider the analogous properties for the minimum 
semilattice congruences and the maximum idempotent-separating congruences on 
commutative inverse semigroups. MUNN [10] has given that a semigroup X is said 
to be fundamental if the only congruence on X contained in Ж is the identity 
congruence. We also prove that the tensor product of commutative inverse fundamen­
tal semigroups is fundamental. For other properties of the tensor product of con­
gruences, see the authors [6], [7] and [8]. The notation and terminology of CLIFFORD 
and PRESTON [1] will be used throughout. 

2. By the tensor product X ® У of commutative semigroups X and У we mean the 
quotient semigroup F(X x У)/5 where F(X x Y) is the free commutative semigroup-
on the set X x У and ô is the smallest congruence relation for which: 

and 
{^, У1У2) S (x, j i ) (x, У2) 

hold for all Xi, X2,xeX and y, y^ y2 e У -
P. A. GRILLET [3] has given the definition of the tensor product of congruences on 

semigroups: If y{X) and y(Y) are respectively congruences on semigroups X and У„ 
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then the tensor product y(X) ® y{Y) of y(X) and y{Y) is the smallest congruence 
relation on the tensor product X ® 7 containing all pairs 

(xi ® У1, X2 ® У2) 
such that 

{хг,Х2)еу{Х) and (y^, J2) e y(F). 

3. A semilattice is a commutative semigroup of idempotents. By the minimum 
semilattice congruence on a semigroup Z we mean the smallest congruence a{X) 
on X for which Z/oc(Z) is a semilattice. TAMURA and KIMURA has given the minimum 
semilattice congruence on a commutative semigroup X as follows: For a.beX, 
(a, b) e (x(X) if and only if there exist elements x, у eX and positive integers m, n 
such that 

ax = b^ and by = a", 

, ([11] Theorem 5 or [1] Theorem 4.12). 
A congruence on a semigroup X is called idempotent-separating if each congruence 

class of X contains at most one idempotent. It has been shown by HOWIE ([4] Theorem 
2.4) that the maximum idempotent-separating congruence ß{X) on an inverse semi­
group X has been given the following: For a,beX, 

(a, b) e ß(X) if and only if a~^ea = b~^eb 

for all idempotents eeX. And this is the greatest congruence contained in Jf ([9]). 
It is clear that, for a commutative semigroup X, the equivalences ^, ^, ^ and Ж 

are congruence relations on X. In this case we obtain that ß(X) = Ж, In the case 
when X is a commutative inverse semigroup, from these and by Theorem 1.6 of [5], 
we have the following lemma: 

Lemma 1. het X be any commutative inverse semigroup, and a{X) and ß{X) be 
respectively the minimum semilattice congruence and the maximum idempotent-
separating congruence on X. Then 

a{X) = ß{X) = ^ = ^ = 9 =Ж . 

4. The following property is well-known: 

Lemma 2. ([3] Corollary 3.5). Let y(X) and y{Y) be congruences on semigroups X 
and Y, respectively. Then the tensor product X/y(X) ® 7/^(7) is isomorphic to 
{X ® Y)Jiy{X) ® y{Y)). 

The following property is an immediate consequence of Proposition 4 of [2]. 
We shall give a proof for completeness according to a point of view of congruences. 

Lemma 3. Let a(X) and a(Y) be the minimum semilattice congruences on com­
mutative semigroups X and Г, respectively. Then the tensor product a{X) ® а(У) 
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of a{X) and a(Y) is the minimum semilattice congruence on the tensor product 
X ®YofX andY. 

Proof. As is easily seen, the tensor product of semilattices is also a semilattice. 
Thus it follows from Lemma 2 that a(X) ® a{Y) is a semilattice congruence on X ® 7. 
Let (x{X ® Y) be the minimum semilattice congruence on X ®Y. Then it is clear that 

a{X ® y) Ç a(X) ® a(7) . 

To prove the converse inclusion, let Xj and X2 be any elements of Z such that 

(xi, X2) e a(X). 

Then it follows from the definition of a{X) that there exist elements и and v and 
positive integers m, n such that 

XiU = X2 and X2V = x" . 

Then for any element 3; e У, we have 

(xi ® y){u ® y) = (xjw) ® у = X2 ® 3̂  = (x2 ® j) '" 
and 

(^2 ® j ) (t̂  ® 3̂ ) = (̂ 2̂ )̂ ® У = ^1 ® J = (^1 ® j ) " . 

Since и ® у and г; ® j are elements of X ® 7, it follows from the definition of 
a{X ® 7) that 

(xi ® y, X2 ® y)e oc{X ® 7) . 
Similarly, 

( y i , J2 ) ea (7 ) 
imphes 

(x ® j i , X ® У2) e (x{X ® 7) 

for any element XGX. Therefore it follows that 

(xi,X2)Ga(X) and ( j i , J2) ^ 4 ^ ) 
imply 

(xi ® Vi, X2 ® У1) e cc{X ® 7) 
and 

(x2 ® Уи ^2 ® У2) e a(Z ® 7) , 
and eventually 

(xi ® j i , X2 ® У2) e a{X ® 7) . 
Therefore we obtain that 

a{X) ® a(7) Ç a{X ® 7 ) , 

which completes the proof of the lemma. •'̂  

5. Now we give our main result. 
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Theorem 4. Let a and ß be respectively the minimum semilattice congruence and 
the maximum idempotent-separating congruence. Then the following congruences 
(1) ^ (12) on the tensor product X ®Y of commutative inverse semigroups X 
and Y are equal to each other: 

(1) a(Z) ® a(y), 

(2) a(X ® У), 
(3) ß{X) ® ß{Y), 

(4) ß{X ® У), 
(5) ^(X) ® ^ ( y ) , 
(6) ^{X ® y), 
(7) ^ ( Z ) ® ^ (y ) , 
(8) ^{X ® y), 
(9) 9{X) ® ^ (y ) , 

(10) ^ ( X ® y), 

(11) ^ ( x ) ® j r (y ) , 
(12) Ж{Х ® y), 

where we denote by y(X) a congruence у on a semigroup X, 

Proof. It is well-known ([2] proposition 6) that the tensor product of commutative 
inverse semigroups X and У is also a commutative inverse semigroup. Then it follows 
from Lemma 1 that 

a(Z ® y) = ß{X ® У) = ^{X ® y) = 0î{X ® У) = 9{X ®Y) = Ж{Х ® Y). 

We have also by Lemma 2 that 

a(X) ® a(y) = ß{X) ® ß{Y) = £e{X) ® ^ (У) = ^(X) ® ^(У) = 

= ^(X) ® 9{Y) = Ж{Х) ® ^ ( y ) . 
Since by Lemma 3 

a{X ®Y) = (x{X) ® a (y) , 

we obtain that these congruences (1)'^ (12) on X ® У are equal to each other. This 
completes the proof of the theorem. 

6. Munn [10] has given the following: A semigroup X is said to Ы fundamental 
if the only congruence on X contained in Ж is the identity congruence i(X). Thus an 
inverse semigroup X is fundamental if and only if the maximum idempotent-separating 
congruence ß[X) is equal to the identity congruence z(X), ([10] p. 160). Moreover he 
has given that if X is an inverse semigroup thenX/j^(X) is fundamental, ([10] Theorem 
2.4). From these we have the following properties: 
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Theorem 5. Let X and Y be commutative inverse semigroups. If X and Y are 
fundamental, then the tensor product X ® Y is fundamental. 

Proof. By the definition of the tensor product of congruences, the tensor product 
i{X) (X) i(Y) of the identity congruences i{X) on X and i{Y) on У is also the identity 
congruence i(X 0Y) on X ®Y. Then it follows from Theorem 4 that 

ß(X ®Y) = ß(X) ® ß{Y) = i{X) ® f(y) = i{X 0 y ) . 

merefore Z ® yis fundamental. This completes the proof. 

Corollary 6. Let ß{X) and ß(Y) be the maximum idempotent-separating con­

gruences on commutative inverse semigroups X and У, respectively. Then the tensor 
product X\ß(X) ® YJßiY) is fundamental. 

Proof. From Theorem 2.4 of [10], XJß^X) and Ylß{Y) are fundamental. Then it 

follows from Theorem 5 that Xjßlx) ® Ylß{Y) is fundamental. 

Acknowledgement. I am indebted to Professor T. HEAD for some valuable com­

ments. 
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