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1. THE MAIN THEOREMS

In ", consider the coordinates (zy, ..., z,), z; = x; + iy;. Let ¢ : " — #*" be the
usual identification ¢(zy, ..., z,) = (X1, Y1, --+» Xy, ¥,)- In 22", we have the well known

induced endomorphism I : 22" — #2", I*> = —id., given by
axt o0y’ ay* ox'

Denote by I' the pseudogroup of all local holomorphic diffeomorphisms in &”

(or (T) in 2" resp.), let I'; = I' be the sub-pseudogroup of maps z; = fi(zy, .-, z,)

satisfying

(1_1) ldet M
(215 ---» 2y)

Let M™ < %" be a real submanifold; let us write again M™ instead of L(M"'),
Consider a point p e M™, the tangent space T, = TP(M"‘), and define t,as T, J T,

=1.

Lemma 1.1. Let vy € 7,. In a neighbourhood U = M™ of p, consider a vector
field v such that v, = vy and v, €1, for each g€ U. The map L’ : 7, - T”/f” be
given by L}(vo) = my([v, Jv],), my: T, T,|t, being the projection; Lp(vy)
depends on v, only. Let o, < T, be the linear hull of the set n7 '(LP(z,)). The map
LY :1, - T,|o, be defined by L} (v) = ny([v, [v, Jv]],), 7, : T, - T,[o, being the
projection; L?(v,) depends on v, only.

LY and LY are the so-called Levi maps .

Write G(M™) = {ye I'; y(M™) = M™} and G(M™) = G(M™) n T',. We propose&to
prove the following two theorems.
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Theorem 1.1. Consider the case n = 2, m = 3, i.e., M® < 6. Suppose L) £ 0
at each point pe M>. If G(M?) is transitive on M, then it is a Lie group with
dim G(M?) < 4. Consider the following manifolds

(1.2) N}:zZ + 22, =1 (r>0),
(1.3) N3:z4Z, + Z;z; =2R (R>0),
(1.4) N3 ti(zy — 2,) = (2, — Z,)*.

Let dim G(M?) = 4. Then there is exactly one manifold among the manifolds
N3, N3, N3 — denote it by N> — with the following property: choose pe M>, g e N3,
then there is a neighbourhood U < M? of p and a y € I such that y(p) = g, y(U) =
< N3. The groups G(N3}), G(Ny), G(N3) are given by

(1.5 2y =0z, — Pz,, zp = Bz, + &z,),
where «, fe €, ad + BB =1, ae R,
(1.6) zy = e’(azy + ibz,), zy = e(icz; + dz,),
where a, b, c,d,fe R, ad + bc = 1;
1.7 zy =e“z; + b +ci,

zy = 4e"cz; + i(1 — €*') 23+ z, + d + 2¢%i,
where a, b, c,d e A.

Theorem 1.2. Consider the case n = 3, m = 4, i.e., M* < €°. Suppose dim T, =
=2, I} £ 0, [P % 0 at each point pe M*. If G(M*) is transitive on M*, G(M*)
is a Lie group and dim G(M*) < 5. Let us consider a manifold M* with diim G(M*) =
= 5 and the manifold N* given by

(1.8) Z, —z, = i(Z; — zy)*, Z3 — z3 = (%, — zy)*.

If pe M*, g N* are arbitrary points, there is a neighbourhood U = M* of p
and ay eI such thaty(U) = N*, y(p) = g, i.e., M* and N* are locally I'-equivalent.
The group G(N*) is

19 . zy= azy +b+ci,
zh = daczy + a’z, +d + 2%,
zy = —12ac%z, — 6a’cz, + a3z3 + f — 4c3i,

where a, b, ¢, d, f € A.
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The first two chapters of this paper are devoted to the equivalence problems. The
treatment is based on the theory of partial differential equations due to K. Kura-
NISHI'S notes Lectures on involutive systems of partial differential equations (Publ.
da Soc. Math. de Sao Paulo, 1967) which are unfortunately not very well known.
Chapter 3 contains the theory of structures induced on manifolds M3 < %2 with
respect to the pseudogroup I'; and the proof of Theorem 1.1; in chapter 4, the mani-
folds M® < €* with dim G(M?) = 3 are studied. Finally, Theorem 1.2 is proved in
the last chapter.

From the literature, I mention just two papers of E. CARTAN devoted to the deter-
mination of all manifolds M*® = 2 with dim G(M?) = 3 (Annali di Mat., 11, 1932,
17—-90 and Verh. int. math. Kongr. Ziirich, t. II, 1932, 54——56). Unfortunately, these
papers are written in such a way that I do not fully understand them.

Parts of the results have been obtained during my stays in the USSR (State Univ.
at Vilnius) and India (Delhi, Punjab and Bombay Univ. and Tata Inst. of Fund.
Research). The paper has been written during my stay at the Humboldt-Univ. in
Berlin (GDR). My thanks go to all these institutions.

2. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

A fiber manifold is a triple (M, N, ), where:

(i) M and N are analytic manifolds, dim M = n + m, dim N = n;
(i) ¢ : M > N is an analytic map of M onto N;
(iii) to each y € M there exists its coordinate neighbourhood U = M such that

Hy

U R X R
i~
o(U) R

is commutative; here, (U, #,) and (¢(U), u,) are charts and pr, is the natural projec-
tion. Denote by J* = J(M, N, o) the analytic manifold of all k-jets of local sections
of the fiber manifold (M, N, @); let us write J* = M, J™! = N. The triple (J*, J%, o3),
1 > k, is again a fiber manifold, g, being the natural projection.

LetX e J* y = o&(X) € M, x = ¢* ,(X) € N. The space Qx(J*) = Tx(J*) be defined
by the exact sequence

0 > Qx(J¥) > Te(J%) "33 Ty (x) ().

Let ¢ €'0x(J¥). Then there exists a neighbourhood U = M of y and local sectlons
f(t) : o(U) = M, te(—e¢, €), such that

¢ = a]ﬁ(f(t)) .

Y
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The section f(f) be chosen in such a manner that ji™'(f(f)) = of_,(X). Let U be
such that we have local coordinates (x', y%); i = 1,...,n; & = 1, ..., m; in it, (y*) be
the local coordinates in ¢(U). In g(U), the local section f(r) be given by y* = f*(x', 1).
The mapping

7: Qx(J*) - 0,(M) ® S*TX(N)
be defined by
_ ak+1fa(x(i)’ 0) i

/ ., ®dx"' ®... ® dx’*,
ot ox' ... ox'™ 0y"

(¢)

here, (x{) are the coordinates of the point x and S*V is the k-th symmetric tensor
product of the space V. The mapping 7 does not depend on the choice of coordinates
(x*, . It is an isomorphism which is called the fundamental identification.

Let R* = J* be a submanifold. R* is said to be regular at the point X € R* if
there is a neighbourhood V < J* of X and functions f,:V— &; a=1,..., 4;
with the following properties:

(i) 4 + dim R* = dim J*,
(i) VAR = {Ye J* f(Y) = 0 for a =1, ..., 4},
(i) dfy, ..., df, € Tx(J*) are linearly independent.

A submanifold R* = J* is said to be a partial differential equation of order k if it
is regular at each of its points. The section f: U — M, U = N being an open set, is .
said to be a solution of R¥if j%(f) € R for each x € U.

Be given a function F : V — £, V = J* being an open set; further, let v be a vector
field on ¢f_(V) = N. The function o,F : (¢}**)™* (V) > 2 be defined as follows.
Let X e(of*")™*(V), and let f : N — M be a local section such that X = j£*'(f),
xo = 0°%'(X). Consider the local section j*f: N — J*. Then we have the local
map Foj*f : N > &; set (9,F) (X) = v(F o j*f)|

The differential equation R* being given in a neighbourhood ¥ = J* of its point
XeR* as {XeV; f(X)=0 for a=1,..,4}, define pRY,u+1)-19y = {X €
e(ek™) (V) = I [k (X)) =0, (8,f)(X) =0 for a=1,...,4 and for
each vector field v e T(¢* ;(V))}. It is easy to see that this definition does not depend
on the choice of the neighbourhoods V and the functions f,; thus we have a well
defined subset pR* = J**! which is called the prolongation of R.

Let R* be a differential equation, X € R¥; R¥ be given — in a neighbourhood of the
point X — by means of the functions f,. Set

Cx(RY) = {£€ 0x(J"); &, =0 for a=1,...,4}.

By means of the fundamental identification and the natural mappings, we get

x=xq*

Cx(RY) = 0x(7%) = 0,(M) ® S* T(N) <
< 0(M) ® 57! TI(N) ® TY(N) = Qo un(J* ™) ® TEN) 5
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here, y = o(X), x = 0% 4(X). Write

A= Cx(Rk) s F = QQkk—l(X)(‘]k_l) , E = 'va(N) s
and define
pA = (4 ® E¥) n (F @ S?E¥).

Let e, ..., ¢, be a basis of E, let e, ..., ¢" be the dual basis. Let E*_; = E* be the
subspace spanned by the vectors e*1 " Set

(2.1) A(i) = A N (F ® E:—i) ) T; = dlm A(,) .
The basis ey, ..., e, is called quasi-regular with respect to A if
(22) dimpAd =19 + ... + T, ;

the space A is said to be involutive if there is.a basis which is quasi-regular with
respect to it.

Definition 2.1. The differential equation R* is called involutive at the point X € R*
if: (1) there is a neighbourhood V < J* of X such that pR|,,, V; = (ef**)~* (V), is
a submanifold of J**! and (pR¥|y,, R¥|y, oi*") is a fiber manifold; (2) the space
Cx(RY) is involutive. R* is involutive if it is involutive at each point X € R*.

Theorem 2.1. Let the differential equation R* be involutive at X, € R*. Suppose
that in a neighbourhood of the point x, = 0" (X,) € N we have local coordinates
(x*, ..., x") such that 9[ox"|,,, ..., 8]0x"|,, is a quasi-regular basis. Then there is
a neighbourhood V = J* of the point X, such that, for each X € R* 0V, 8[ox"|,, ...
oo 0[0x"3 x = 0% ((X); is a quasi-regular basis with respect to Cx(R¥).

Consider again the subspace A = F ® E*. Let e € E; the linear map ¢, : E* > #
by defined by ,(e*) = e*(e) for e* € E*. W being a vector space, define the linear
map §,: W® E* —» W by means of ,(w ® e*) = e*(e) w. For each vector e€E,
we have thus a linear map 6, : pA — A, this map being the restriction of §,: 4 ®
® E* - A.

Theorem 2.2. Let A = F ® E* and let ey, ..., e, be a basis of E. Consider the
maps '

2.3) 5

€ef+1

pAgy =2 Ay i=0,..,n—1.

The basis ey, ..., e, is quasi-regular if and only if the maps (2.3) are onto.

Be given a fiber manifold (M, N, ¢) and a submanifold Ny = N, dim N =
=dim N, + L Set J§ = (¢“,)"* (N,) = JXE); (J%, Ny, ¢ ,) is again a fiber mani-
fold. Consider the maps ¢* : J§ — J¥(M,, Ny, 0); M, = ¢~*(N,); defined as follows.
Let X € J§, ¢ ((X) = x € N,. Then there is a local section f: N — M such that
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X = j¥f)- Set *(X) = j%(f|n,), f|v, : Ny = M, being the restriction of f to N;.
Now, R* < J* being a differential equation, define S* = ¢*(R* n J%) < J¥M,,
Nla Q)'

Theorem 2.3. Let R' = J'(M, N, @) be a differential equation of order one, sup-
pose that R is involutive at X e R'. Let N, = N be a submanifold such that:
(i) x = eL,(X)e Ny, (ii) dim N = dim N, + 1, (iii) there is a quasi-regular basis
ey, ...,e,€ T(N) with respect to Cx(R') such that ey, ..., e,_1 € T,(N,). Then
S' < JY(My, Ny, @) is a differential equation involutive at X. Let , : Ny - M,
be a solution of S! defined in a neighbourhood of x € N,. Then there exists a neigh-
bourhood U <= N of the point x and a solution o : U — M of the equation R! such
that 6|y, v = 01|n,n0-

3. INDUCED STRUCTURES

Let us consider the space ¢” and its coordinates z; = x; + ix,,;; i =1,...,n.
Let %" be the real representation of " with the coordinates (x;, x, ;) endowed with
the automorphism I : #>" — %", I*> = —id., given by

P A
(3.1) S S
0x; 0%y 0Xp 1 0x;

Further, consider the fiber manifold E = (%" x #*", #°", n,), n, : #°" x A*" —
— R?" being the natural projection onto the first factor. In £2" x %#>", we have the
coordinates (x;, X4 Vi» Yasi); the coordinates of the prolongation JY(E) are
(%is Xnt > Vi Yuris Yijs Vin+js Yn+i,js yn+i,n+j)' The holomorphic mappings ¢ : U =
< R*" — R*" are now to be considered as the (local) sections of the fiber manifold E
satisfying the Cauchy-Riemann equations R!

(3'2) Yij = Vn+ip+j = 0, Yinsj t Vnrij = 0; i,j=1,..,n.

Now, let M™ < @™ = %" be an analytic submanifold, p e M™ its point. Consider
the space

oM7) = T,(4) 1 Ty(7) .

T1.1i5 space is always of even dimension; let us restrict ourselves to submanifolds M™
with dim TP(M"') = 2¢q = const. To the submanifold M™ — %", we associate a G-
structure Bo(M™) a5 follows. The tangent frame

{01, oo Ugs vq+1a ce0s U2gs Vags1s s vm}

a_t tIhc ?omt Iie M™ is situated in BG(M"') ifand onlyif vy, ..., v, € 7,(M™) and v, , =
=l fora =y q. We have the following
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Theorem 3.1. Let M™ M™ < " = %** be two analytic submanifolds, let
dim 7,(M™) = dim 7,(#™) = const. for pe M", je M™ Be given an analytic
map @ : M™ — ™ satisfying ¢4 Bo(M™) = Bg(M™). Let p, € M™ be a fixed point.
Then there exists a neighbourhood U < #*" of the point p, and a holomorphic
mapping @ : U — R*" such that ®|ymy = -

This theorem follows directly from Theorem 2.3. It has been proved by B. CENKL
and myself for m = 2n — 1 and by J. VANZURA for a general m; both papers are
unpublished.

The proof of lemma 1.1 is easy.

Now, let ¢ : € —» € be a (local) biholomorphic mapping given by z' = z'(z), i.e.,
x" + iy’ = f(x, y) + ig(x, y). The mapping ¢ induces a mapping ¢* : #*> —> #*
given by x’ = f(x, y), ¥’ = g(x, y). We have

e B ol B - )
dz 2 \0x dy 0x ay 0x dy
of o :
ax dy|
2= o ") @)
dg @' 0x dy
O0x 0y

i.e., D = A% Thus the mapping ¢ satisfies 4 = 1 if and only if D = 1. A similar
(and, of course, a more complicated) calculation shows that the same property takes
place for biholomorphic mappings ¢ : 4% — ¢2. In the associated space #*, we
thus get a volume structure. On each hypersurface M> < 2 = #* we naturally
obtain, with respect to the pseudogroup I'y, a G-structure described in more detail
in the next chapter. Its definition is as follows: a frame {v,, v, v3} at the point
me M? belongs to Bg(M?) if and only if v, €1, v, = Iv,, v3€ T,(M?) and the
volume [vy, v, v3,Iv3] = 1.

4. THE INDUCED G-STRUCTURE

Be given a 3-dimensional manifold M together with a G-structure B, G being the
group of matrices of the form

(4.1) x —B 0 :
B a0, (®+p)e?=1.
y 69

{1, 05, v3} and {wy, w,, w,} being two frames of Bg at m € M, we have

(4.2) Wy =av, — fo,, Wy = Pog + ow,, w3 =70 + v, + Qvs;
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the plane 7, < T, (M) spanned by the vectors vy, v, is thus invariant as well the
endomorphism I, : 7,, = T, IZ = —id., determined by I,v, = v,, [,v, = —v,.

Consider a point m, € M, its neighbourhood U = M, and two sections {v, v,, v}
and {wy, w,, w;} of Bg over U. We have (4.2), o, ..., ¢ being real-valued functions
over U. Let us write

(4.3) [vs,v2] = ayvy + azv, + asvy, [wy, wyo] = 4wy + Ao, + Ayws,
[0, v3] = byvy + byv, + bavs, [wy, wi] = Byw, + Byw, + Byws,
[v2, v3] = vy + cv5 + €303, [wy, W3] = Cywy + Cow, + Caws.

From the Jacobi identity

[v1, [v2, v3]] + [0, [v3, 0:]] + [03, [01, 02]] = 0, .

we get
(4.4 vic; — vpby + via; + ajc, + biey — byey — ayeq =0,
viCy — Vb, + v3a, + byes + aby — byc, —ab, =0,
v,C3 — Vb3 4+ v3as + asc, + asb, — a by — aze; =0
and analoguous equations for Ay, ..., C5. Let us study the relations existing between

ag...,c3and Ay, ..., C;. We have

[wy, wo] = [avy — Bua, Boy + avy] = (*) vy + () va + (2 + B*) azvs,

[wy, wi] = [ovy — Buay, yoy + 00, + @ua] = (*) vy + () v, +
+ (0. 0.0 — B.v0 + adas + agby + Pyas — Pocs)vs,

[, ws] = [Boy + vy, yo; + 005 + @v3] = (*) vy + () v2 +

+ (B.v19@ + 0. 0,0 + Bday + Pob; — ayas + apcs) v,
i.e.,

(4.5) @A; = (o + p*) as,
@By = a. 0,0 — B.v,0 + aday + apbs + Pyas — Pocs,
oCs = .00 + .00 + Béa; + Bobs — ayaz + agpc; .

Let us restrict ourselves to the case ay =+ 0, this being equivalent to the non-in-
tegrability of the field of the planes t,,. We get — from (4.5) — the possibility to choose
the section {w,, Wy, w3} in such a way that A; = 1, B; = C; = 0. Suppose that the
section {v;, v,, v3} has been already chosen in such a manner that a; = 1, by = ¢3 =
= 0. Then the equation (4.5,) reduces to ¢ = a® + p% and weget ¢ = 1, 0% + 2 =
= 1 from (4.1). The equations (4.5, ;) reduce to 0 = ad + By, 0 = B — ay, ie.,
6 =y = 0. From this, we get
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Lemma 4.1. The considered G-structure B; may be reduced to the H-structure By
the sections {vy, V2, v3} of which satisfy

(4.6) [v, 02] = agw, + azv; + v,
[l)l, 03] = bllil + bzvz s

[v2: 03] = eyvy + cov,,

H being the group of matrices of the form

4.7) a —f0
B «0], > +p2=1.
0 01

The equations (4.4) reduce to

(4.8) vyc; — Uaby + via, + ajc, — ase; =0,
vicy — Vb, + v3a, + a,b, —a b, =0,
¢, +by=0.

Now, let {vy, v5, v3} and {w,, w,, w3} be two sections of the reduction G. Then
[wi, wo] = [avy — Bvass Pvy + owy] = (. 0,8 — B.vs00 + a;) vy +
+ (=B. v+ . v, + ay)) v, + v3 =
= (ad; + BA;) vy + (=BA; + ady) v, + v;,
[w, ws] = [ow; — Bvss v3] = (—vs + aby + pei) vy +
+ (—v3B + aby + fcy) v, =
= (aBI -+ ﬂBZ) Uy + (_ﬂBl + aB2) vy,
[w2, wi] = [ﬁvl + avy, v3] = (—u3b + Bby + acy) vy, +
+ (—vsa + Bby + acy) v, =
= («Cy + BC3) vy + (—BCy + aC,) v, .
From the last two relations, we have
a(by —c;) — B(by + ¢;) = B, — C,) + B(B, + Cy),
ﬁ(bl - CZ) + oc(b;_ + Cl) B —ﬂ(BI - CZ) + d(Bz + Cl) >

ie.,

By = Cy = (o — B?) (b, — ¢2) — 2af(by + ¢1),
B, + C; = 2aB(b; ~ ¢;) + («* — B*) (b, + ¢y) .

Thus there exist sections {w;, W, w3} such that B; — C, = 0. Suppose that the
section {01, Uy, 03} has been already chosen in such a way that b; — ¢, = 0; from
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(4.8;), we get b, = ¢, = 0. Then
af(by, + ¢;) =0, B, + Cy = (a2 — ) (b, + ¢y).

Suppose b, + ¢; £0. Then af =0, ie, a =0, f=¢ or f =0, a = ¢ 1ESP.;}
&= +1.

Lemma 4.2. The considered G-structure B; may be reduced to a K-structure By,
the sections {v,, vy, v3} of which fulfill

(4.9) [v1, 0] = ayvy + a0, + 03,
[vy, 03] = b,v, , vc; + v3a; — aye; =0,
[”2, Us] = CyUy —0,by + v3a; —ayb, = 0.

The relation b, + ¢, = 0 is invariant. If b, + ¢, £ 0, K is the group of the
matrices of the form

(4.10) e 00 0 —¢0
0£0) or |le 00} with ¢= +1.
001 0 01

This lemma solves the equivalence problem for the G-structures with b, + ¢, + 0;
in fact, to each such G-structure we have associated four {e}-structures, and the
-equivalence problem has been reduced to the equivalence problem of {e}—structures.

Now, let us consider the more complicated case b, + ¢; = 0. Let us write ¢; = q,
b, = —gq; the equations (4.9) are now

(4.11)  [vg, 0] = agvy + ayvy + v3, [v5,03] = —quy, [v2, 03] = qvy 3
vyq + v3a; — a,q =0, v,q9 +v3a, +a;q=0.
Let {wy, w,, w3} be another section of the reduced K-structure Bg; suppose

Wy =av; — oy, Wy =Poy +ow,, wy=uv3; o>+ pE=1;

and
[wi, wo] = Aywy + Ayw, + wy, [we, wi] = — OQw,, [wy, wi] = Qw, .
We find
(4.12) Ba, = v+ afA; + 74,
Ba, = v,a — BPA; + afA,,
Bq = —U3a + BQ ’

and it is easy to verify
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Lemma 4.3. We have
(4.13)  vyay, — via, + a} + a3 — g = WAy — wid, + A7+ 43 - Q.
Let us write
(4.14) k=v,a, —va, +a} + a3 — 4, K=w4; — w4, + 4} + 41 - Q.

Clearly,
wK=a.0vk—B.vk, wK=p.vk+a.v,k, wiK=03k.

Thus we have (w,K)? + (w,K)? = (v;k)* + (v5k)* If v,k = 0, v,k = 0, we get
[v1s vz] k = 0 and v3k = 0, i.e.,, k = const. In the case k + const., we are in the
position to choose the section {w;, w,, w3} in such a way that w,K = 0. Suppose,
that the section {vy, v,, v3} has been already chosen in this way. Then g = 0 and
o« = ¢ = +1, and we obtain

Lemma 4.4. Be given a G-structure Bg, the reduction of which to the K-structure
of Lemma 4.2 is such that b, + ¢, = 0. Let k = const. Then we are able to reduce
our G-structure to the L-structure By, the sections of which satisfy v,k = 0; L is
the group of matrices

(4.15) e 00
0e0), e= +1.
001

Thus we have reduced our study to the case k = const. Be given a G-structure Bg
by means of a section {v, v,, v} satisfying (4.11) and v,k = v,k = v3k = 0. Con-
sider the system of partial differential equations

(4.16) vie = Pa,, v,a=fa,, vsa= —Pq— Pk

for the unknown function a, § being given by a? + b% = 1. It is easy to see that this
system is completely integrable. Thus, there exists a section {wy, w,, w3} of our
G-structure such that 4, = 4, = 0, Q = —k, and we have

Lemma 4.5. Be given a G-structure Bg, and let its reduction to the K-structure of
Lemma 4.2 be such that b, + ¢; = 0 and k = const. Then there are sections of Bg
satisfying

(4.17) [v, 0] =03, [ve, 03] = kvy, [v5,05] = —koy.

All other sections satisfying (4.17) are given by w; = avy — Pv,, wy = fvy + av,,
W3 = v3, where o> + p? = 1 and a = const.

On the manifolds M and N, be given G-structures Bg and B resp. of the type
described in Lemma 4.5; suppose k = k’. In a neighbourhood of a point mye M,
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let us choose a section of B satisfying (4.17), similarly, in a neighbourhood of
a point ng € N, let us choose a section {uy, u,, u;} satisfying analoguous equations
[uy, uy] = us, [ug, us] = ku,, [uy, u3] = —ku,. Consider the manifold M x N
and, in a suitable neighbourhood of the point (my, n,), the vector fields

* % ¥ * * * * * .
Vi =ul + i — puy, Va=u; + Py +avy, Vi3 =u3 +03;

here, « = const., «> + B* = 1 and the vector fields u}, v} are given by the conditions
(dm,) v} = v;, (dn,)vf =0, (dmy)uf =u;, (dn)uf =0, n,: M x N> M and
7, : M X N — N being the natural projections. It is easy to see that

[V Vo]l =Vs, [Vi,Va] =kVy, [Va,Va] = —kV;.

Thus the distribution determined on a neighbourhood of (mg, ng)e M x N by
means of the vector fields Vy, V,, V5 is completely integrable, and it has an integral
manifold going through the point (mg, n,). This integral manifold is then a local
diffeomorphism transforming B into Bg.

Finally, let us investigate transitive G-structures. One type of these structures is
given by Lemma 4.5. Consider the type given by Lemma 4.2 with b, + ¢; + 0. The
functions ay, a,, b,, ¢; being constant, we get a,c, = a;b, = 0 from (4.9). Thus we
obtain

| 'Theorem 4.1. Let B; be a transitive G-structure on M. Then it is possible (in
a suitable neighbourhood of each point my € M) to choose its section {vy, v, v3}
in such a way that

(4.18) [v1, 2] = avy + v3, [v, 03] =0, [v305] =cvy;

a,c=const., ¢c+0;

or
(4.19) [, v2] = v3, [v4,03] = bvy, [0, 03] = cvy;
b,c=const., b+0, ¢c*+0, b+c=+0;
or
(4.20) [, 2] = v3, [v1, 03] = kvy, [v2, 03] = —kvy s
k = const. ;
respectively.

It is easy to verify that the transitive G-structures of all the types of Theorem 4.1
do exist. First of all, consider the G-structure of the type (4.18) on a manifold M.
Let my e M, then there is a coordinate neighbourhood about m, with local co-
ordinates (x, y, z) such that

9!
gc;

0 0 0 0
v2=(ax—cz)5—+——+x—, vy =—.
x

421 oy =
(4.21) ! oy oz 0z
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To proceed further, a simple check shows us that the vector fields

(422)  u, =31+2y- 3x2)-a- + 3(2x + z — 3xy) g + 3(y — x2) 9 ,
0x dy 0z

uy = (1 —2y+3x2)% +32x —z + 3xy)%+%(y+xz):—z,

u3=x—a—+2y-—a—+3z—a—
0x dy 0z

on %3 satisfy

(4.23) [ug, uy] = us, [upus] =uy, [usus]=u.
In a suitable neighbourhood of the point (4=, 0, 0) € %3, consider the vectors fields

cos x sin x

(4.24) w, =sin(y+z)£+ cos(y+z)—?—-—
0x sinx dy

0
cos(y + z) —,
cos X 0z

0 cosx . 0 sinx . 0
w, =cos(y +z)— — sin(y + z) — + sin (y + z) —,
0x  sin dy cosx 0z
0 )
W, =—+ —;
dy Oz
the direct check proves
(4.25) [wi, wo] = 2wy, [wy, wal = —=2w,, [wy, ws] = 2w, .

Now, the Lie algebra (4.20) with k = 0 is realized by (4.21) with @ = ¢ = 0. The
Lie algebras (4.19) and (4.20) with k = 0 are of the form

(4.26) [vy, v2] = vs, [v4, 03] = Bvy, [vy,05] =Cvy; BC #0.
The realizations of the Lie algebras (4.26) are as follows:

(4.27)

v, = /B.uy, v, = JC.uy, v;= 4/(BC).u; for B>0,C>0,

vy = JB.uy, v,= J(=C).us, v3= /(~BC).u, for B>0,C<0,

vy = 3J/(=B).wy, v, = 1/C . w,, vy =3/(-BC).w; for B<0,C>0,

vy = J(=B).uy v, = J(=C).uy, v3=—/(BC).u; for B<0,C<O.
Now, we are in the position to prove Theorem 1.1. The equivalence properties

have been proved above. Now, let M = %? be a 3-dimensional submanifold. It is,

clear that dim G(M) < 4 and dim G(M) = 4 if and only if the induced G-structure
Bg over M is of the type (4.20). Thus, it is sufficient to prove
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Theorem 4.2. The hypersurfaces N3, N3, Ny < 42, i.e., the hypersurfaces (z; =
=Xy + iy, 23 = X3 + 1))

(4.28) N ixi+yi+x3+yi=r" (r>0),
Ng: XX + y1y2=R (R>0),
Ng: y; =2y =0

have the induced G-structure which is reducible to the M-structure B, (see Lemma
4.5) of the type (4.20) with

]
_ N g =o.

4
ky=— 5, kp= ,
oY) TR

Proof. First of all, consider the hypersurface N ,? On #*, consider the vector fields

(4.29)

1 0 0 0 0
4.30 vy = — — Xy — =y — =X — ],
( ) 1 \/(Zr) (J’2 ox, 2 v, Y1 ox, 1 5y2)

Uy

i/(2r) % ox, oy, lox, Yoy,)’

1)——_2__yi_xi+yi_xi
Y@\ Mex oy Tax, Can)

These vector fields have the following properties: (i) they satisfy (4.20), k being the k,
given by (4.29,); (ii) in the points of N7, the considered vector fields are tangent to it;
(iii) Tvy = v,; (iv) [vy, v3, v3, Ivs] = 1 on N3. For N3 and N, we have similar results
using the vector fields

(4.31) vy = : xli—hi—xzi"*‘h'i >
23/R 0x, 0y, 0x, 0y,
v, = ! y —a— + x - 9 - X £

2723/ X4 ! 3y, ? ox, ay,)’

or
1 /0 1 /0 0 0
(432) v, = —+2y,i , Uy = —+2y1—>, vy =3/2 —
3/2\ox, 0x, 3/2\0y, 3y, 0x,
respectively.
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5. SIMPLY TRANSITIVE SUBMANIFOLDS

Consider the space ¥* and the pseudogroup Iy of its local maps. The relation
between the one-parametric local subgroups of the pseudogroup I' and the holo-
morphic vector fields on 2 is well known. Let

(5.1) v = A(zy, z,) 9 + B(zy, z,) 2
0z, 0z,

be a holomorphic vector field on %?; the corresponding local group G, consisting of
the transformations

(52) ¢t:21>=f(zla Z2s t); 22 = 9(21,22, t)a te("‘sa 8)’

is given by the differential equations

(5.3) fﬂ@gt_zzﬁ — A(f(z0 720 1), 920 220 1)

'(ML{;tzz,“tz = B(f(Zl, 225 t)’ g(zl’ Z2s t)) s

f(zla 22’ 0) =Zi, g(zla 223 0) =2Z;.

Theorem 5.1. Consider the vector field (5.1) on C*. Then G, = I'; if and only if

(5.4) Re 0A(zy, z,) + 0B(zy, z,)\ _ 0
0z 0z,

here, Re z = ¥(z + 2).

Proof. Let us write

D(z1 Z t) - af(zu Z3, t) ag(zla 22, t) _ af(Zp Z), t) 69(21’ Z2, t)
0z, 0z, 0z, 0z, ’

we have D(z,, z,,0) = 1. Then
D _ P o o g P g o

3t 0z,0t0z, 0z, 01,0t 0,010z, 0z, 0z, 0t
from (5.3), we have
O oAy oadg P oAl 4l
0z, 0t 0z, 0z, 0z,0z, 0z,0t 0z,0z, 0z,0z,

%% _9B o 0B g 9B 0B

0z, 0t 0z, 0z, 0z, 0z, 0z, 0t 0z, 0z, 0z, 0z,
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Hence,

@ = a_A + QE D
0z, 0z,
and

D 0 04 0B\ .-
oDD) _ (04 | 0B 04 , 0B\ 5
ot 0z, 0z, 0zy 0z,
The theorem follows easily.

Now, let us study submanifolds M* < %2 for which the Lie algebra of the group
G(M?) is given by (1.18), i.e.,
(5.5) [v1, 02] = avy + 05, [v, 03] =0,

[va, 03] = cvy5 c*0.
Lemma 5.1. Let %, be the Lie algebra of vector fields (5.1) on € satisfying (5.4).

Let L < %, be the subalgebra (5.5). Then a =0 or vy = A(z,, z,) v, for some
function A.

Proof. It is always possible to choose the coordinates (z,, z,) of 47 in such a way
that (at least locally)

0
5.6 vy = —.
( ) ' 0z,
Let
0 0 0 0
vy = ofzy, z,) — + ﬁ(z,,zz)-o—; 9y % _ i, e€R.
0z, zy, 0z 0z,

We have 0x/0z; = 0, 0p|dz; = 0 from (5.5,). Thus the vector field v; may be written

as
0
(5.7) vy = a(z,) S (xiz, + 2) a ; AER.
0z, 0z,

Suppose # # 0. Let us choose a solution y(z,) of the differential equation

(58) aII(ZZ) - _ (x(zl).
0z, xiz, + A

and the transformation of coordinates given by {; = z; + u(z,), {, = z, — ix~*A
Of course,

3

det a(Ch CZ) — 1 L
a(Zla 22) '
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and we have

0 0
5.9 vy = —, U3 = xlC —
(5-9) LT b a

in the new coordinates. Further, suppose » = 0, 1 % 0. In this case, let us consider
the transformation of coordinates given by {; = z; + u(z,), {, = z,, u(z,) being
again a solution of (5.8). In the new coordinates,

(5.10) v, = d , u3=ii.

Thus, in suitable coordinates, the vector field v; may be written as

(5.11) vy = iz, 2 or vy = l—a« or vy = ofz,) 2 respectively .
0z, Z, _ 0z,

Suppose that vy is the vector field (5.11,), let

a 1% a 0
(5.12) v, = o(zy, z5) — + o(zy, 25) — D LY i, weR
0z, 0z, 0z, 0z,
From (5.5, 3), we obtain
0 0
(5.13) % _a, Q(L:m'zz, —xi22i=c, a=_va—a,
Z, 0z, 0z, 0z,
and we get
ﬁ:x’i——a, o= i—-a)z,, ie, fi:O
0z, 0z,

from (5.12,) and (5.13, 4). It follows from (5.13,) that % = 0, i.e., v; = 0, this being
impossible. Further, suppose that v, is given by (5.11,) and v, by (5.12). Then we
obtain

(5.14) 90 g O, % P,
0z, 0z, 0z, 0z,

from (5.5, 3), and (5.14, ,) yield a = ', i.e., a = %’ = 0 because of a € #. Q.E.D.
Theorem 5.2. Consider the manifold N> < %2 given by

(5.15) (v — 2 + Nz~ 5) +4=0, O%ced.

Its group G(N?) is

(5.16) zi =mz, — cnz, + p, zh=nz; +mz, +q,

where m, n, p,qe #, m* + c3n* = 1.
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Let M? be a manifold such that the Lie algebra of GS(M3) is (5.5). Then a =0,
and the manifolds M* and N* are (locally) I'-equivalent.

Proof. It is easy to see that (5.16) preserves N3. Using the ysual coordinates z; =
= x; + iy;, N* as a submanifold of %% is given by

(5.17) ity =1,
On #*, consider the vector fields

(518) vy =cty, = - Vi —

Uy = ¢y, — —

U3 =y oty -
0x, 0x,

We see easily that the vector fields (5.18) have the following properties: (i) Iv; = v,;
(ii) they satisfy (5.5) with @ = 0; (iii) restricted to the points of N3, they are tangent
to it; (iv) we have [vy, v,, vs, Iv;] = 1 at the points of N>. Thus N* is the model for
manifolds M? of the type (5.5) with a = 0. Now suppose that M> admits the group
G4(M?3). the Lie algebra of which is (5.5) with a =% 0. The manifold M* may be
constructed as follows. First of all, realize the Lie algebra L(5.5) as a subalgebra
L c %, The vector fields v,, v,, v; being considered as vector fields on %%, they
span an integrable 3-dimensional distribution 4. Now, M? is an integral manifold
of 4. According to Lemma 5.1, we may choose the coordinates (zy, z,) in %? in such
way that

0
vl=$—, v3=ac(zl,zz)i=(F+iG)f—.
0z, 0z, 0z,

These vector fields regarded as vector fields on %#* are

(5.19) vl=i, v3=Fi+G—a-.
‘ 0x4 0x, 0y
Let
0 0
(5.20) uzzAi_g_BU +C—(2+D—~.
0x, oy, 0x, 0y2

The distribution 4 is determined by the vector fields (5.19) and (5.20). Let M be its
integral manifold. The plane 7,, being obviously spanned by the vectors d/dx,, 8/dy,
at each point m € M?, the distribution {z,,} is integrable. This is a contradiction as
we have excluded such manifolds from our considerations. Q.E.D.
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Let us now study manifolds M* such that the Lie algebra of C,(M?) is of the type
(1.19). First of all, let us prove several lemmas.

Lemma 5.2. Consider the Lie algebra L*
(5.21) [vi,va] =0y, [vi.vs] = —vs, [0 03] = —20;
over R. The algebra L* is decomposed in a 1-parametric set of hyperboloids
(5.22) H, = {xv; + yv, + zv3; x> —4yz =k}, ke,

with the following property: Let ve Hy, v' € H,.; k = k' if and only there is an
automorphism o/ : L* — L* satisfying o/v = v'. The vector

(5.23) vy = v, —v3)Jk or v = v, + v3)/(—k) or

vy = v, respectively
is situated in Hy for k > 0 or k < 0 or k = 0 respectively.
Proof. L* has the following automorphism:

(5.24) o v, = avy, + bv, + cvy,

b .
A, =Alvy + ——— v, + L. v3) ,
a+ 1

a — 1
A3 =B v + b vy + L vy ),
a—+1 a—1
a? =1, 4bc=a>—- 1= AB:
(5.25) A, = v + avy, oA,0, = bu,,
o vy = A2av; + a’v, + v;), Ab=1;
(5.26) A, = vy + avy, A0, = A(2av; + v, + a’v;),
A 03 = bvy, Ab =1;
(5.27) S, = —v; + av,, L, = A(—2av, + a’v, + v;),
Aoy = bv,, Ab=1:
(5.28) Ao, = —v; + avy, 50, = bvy,
oA svy = A(—2av, + v, + a’v;), Ab=1.

The vector v = xv; + yvs + zv; be called interior (or exterior resp.) ifx2 —4yz > 0
(or x* — 4yz > 0 respectively); the set of interior (exterior) vectors be denoted
by H* (H™ respectively). (1) Consider the vector v = ow, + Bv, + yvs ¢ Ho. (1)
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Lety # 0. If ve H, we have 4fy — o> > 0; choosing &7, (5.25) with

{ =1 4By —a?), a=—— 2 b=
A=1Vy — o), a J(4by — o%)

ENEES

we obtain o/,0 = 3o, + v3) /(4By — o?). If ve H™, we have o — 4fy > 0;
choosing <7, (5.25) with

A==l @ —ty), a=— " b=l
2y

V/(O‘Z — 4By) | 4’

we obtain /v = }(v; — v3) /(«® — 4By). (1,) Let y =0, B+ 0. Then ve H™;
choosing o/3 (5.26) with 4 = 3{u|, a = —p " 'sgna, b = A™, we obtain /30 =
= 4lof . (v, — v3). (15) Let p =y =0. Then ve H™; choosing &/, (5.24) with
a=0,b=1%sgno, c=—sgna, A =1, B= —1, we obtain v = {|o| . (v, —
— v3). (2) Suppose ve Hy, ie., 4fy — o> = 0. (2,) Let B + 0. Choosing /5 (5.26)
with 4 = 7%, a = —4a, b = B, we have /30 = v,. (2,) Let B = 0. Then a = 0;
choosing .o, (5.27) with A = y, b = y7!, a = 0, we obtain o/,v = v,. Q.E.D.

Lemma 5.3. Let (v, 8) be a couple of vectors of the Lie algebra L*. For a suitable
automorphism o : L* — L*, the. couple w = /v, W = o5 becomes one of the
following couples:

(529) w=1k(v, —vs), W =Iw,+ Los, k(I, + 1,) £ 0;
wo=k(v, —v3), W=1Lv + L(v, —v3), kl, £0;
w = k(v, — v3), W= I(v; +v,), kl +0;
w = k(v, — vs), Ww=2v, + v, + 0v3, k+0;
w=k(v, —v3), W=Iv,—v;), k+0;
w=k(v, +vs), W=1Ilv,+ s, k+0;
w = kv, , w = L, + Ls, kl, £ 0;
w = kv, , W= v, , kIl +0;
w = ko, , w=1Iv,, k+0;
w=0, W= k(v, — v3);
w=0, W= k(v, + v3);
w=0, w = kv, .

Proof. The automorphisms .« : L* — L* satisfying
(5.30) A(vy — v3) = v, — vy Of (v, + v3) =v, + vy oOr

v, = v, respectively
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are
(5.31) vy = av, + o, + av;,
v, =200, + Ha + 1) v, + Ha — 1oy,
vy =20, + Ha — v, + Ha + vy, a* -1 =44,

or
(5.32) vy = avy + ov, — ovy,

Ao, = =200, + 4(a + 1) v, — Ha — 1) vy,

Aoy = 20w —Ha — v, + Ha+ 1)vy, 1 —a*=44>,
or

5.33 Aoy = v, + av,, v, =v,,
2

vy = 2av, + a’v, + vy

respectively. Be given a vector u = ¢,v; + 0,0, + 0303 € L*. (i) There is an automor-
phism o7 (5.31) such that

(5.34) AU = 0,0, + 0,03 for (o, + 03)> — 0} >0
or
(5.35) Au = 30, + 04(v, — v3) for (0, + 03)> — 0] < 0

or -

(5.36)  ofu =o5(v; £v,)  for (o, + 03)> =07, o —03) *0
or

(5.37) u =20, +v, +vy for g, =05, 0 =403, 0,+0

respectively. Indeed, use the automorphism .o (5.31) with

a=—(0;+ 03) {(e2 + 03)° — 01} 7, a=10,{(es + 05)* — 0}} 712
or
a=o{ot — (02 + )’} 712, a= —H(or + 03) {0} — (02 + 05)*} 72
or
a=(05+03)(e3—0e3)", a= —07'005(0: — 05)7"
or

a=1403'e; + 1), a=1de;'(e3 - 1)
respectively. (ii) There exists an automorphism . (5.32) such that
(5.38) Au = 040, + a,05 for o} + (0, — 03)* # 0
it is sufficient to take
0= (02— o) (& + (02— 0P}, 5= don{ed + (02 — 02)?) M.
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For ¢, = 0, 95 = ¢,, we have &/u = u for each automorphism & (5.32). (iii) There
exists an automorphism & (5.33) such that

(5.39) Su = ogv, + o903 for g3 £ 0
or
(5.40) LU = 740, for 0;=0, 0, 0

respectively; it is sufficient to take
a= —1}g,07' or a= —g,07" respectively.

The lemma follows from what has been and from the preseding lemma.

Theorem 5.3. Let & be the Lie algebra of vector fields (5.1) satisfying (5.4) on €>.
Then, in a neighbourhood of a fixed point m e €%, we may choose holomorphic
coordinates (z,, z,) such that m = (0, 1),

5
(5.41) v, =z, < Z, 2 , Uy = 2

(542) v, =

Il

Uy

0
U, =

v, =

( p
— i 0 2 25 0
vy = zf%————S 12 L2z i) s o0,
(s + i) 23/ 0z, s2+1 524+ 1)0z,

(:} X A
v, = zi~—+(—2zlzz+lp)—;—; Py g, rsSER.
0z4 0z,

Proof. In a neighbourhood of the point m € %2, let us choose coordinates in such
a way that (5.41,). Now, let

.
(5.43) w=al bl 0L B e,
0z, 0z, 0z, 0z,



From (5.21,), we get the existence of functions ¢(z,), ¥(z;) such that a = z; +

+ ¢(z,), b = Y(z,); the condition (5.43,) assures the existence of a constant 1€ €
such that

0 . 0
(5:44) o = (24 o(z) o+ {0 = )z + 2
0z, 0z,
Let us consider a change of coordinates

A
C1=Z1+‘P(Zz), C2=Zz+%i_1a

@(z,) being a solution of the differential equation

(i = 1)z, + 2} 9'(z,) = D(z,) 9(2,) -

We get by a direct calculation

0 0 0
vy =—, vy =0 —+xi—1)
=g by (i = 1) ra

writing {; = z;, we get
d 0
(545) vy =2z — + (}fl —_ 1) Zy —
z 0z,
Let
0 :
(5.46) vzza—a—+ﬁi, a_“_y_—&:x’i, ®eR.
aZl 0Z2 a:—rl azz
From (5.215), we get
0
—61_——_—221, £=2(%l—1)22,
0z, 0z,

i.e., the existence of functions f(z,), g(z,) such that

o=z} + f(z;), B=2xi—1)z1z, + g(z)-
From (5.46,), we get 2xiz; + g'(z,) = i, i.e.,
(5.47) x=0.

Thus, g(z;) = »'iz, + d; from (5.21,),

(5.48) 2, f(z) = —2f(zz) , # =0,
i.e., we have (5.40) and
2 c\ 0 J .
(5.49) v, =z} + =)=+ (=222, +d)—; ¢, de¥.
z3) 0z, 0z,
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Thus we have proved that we may choose (at least locally) coordinates in such a way
that the vector fields vy, v,, v; satisfying (5.21) are given by (5.40) and (5.49). But
there is the possibility to choose another basis of L* satisfying (5.21). We have

d c z
v, = (221 - —~)vl + (—:f + -~ + d—1>v3;
Z, z, z,

in the point z; = 0, z, = 1,
(5.50) vy + do; — cvy =0.

The choice of the new basis in L* is now to be done in such a way that (5.50) has the
canonical form w + iw = 0, w and W being given by (5.29). Q.E.D.

Lemma 5.4. Let L* be the Lie algebra (5.21). Let L > L* be a Lie algebra with
dim L = 4. Then there is a vector vye L — L* and numbers a,, as, b, € # such
that Lis given by (5.21) and

(5.51) [v, 04] = a,v, + azvy,
[v2, v4] = 2a30, + byv,,
[v3, v4] = 2a50, — b,y
Proof. We may write
(5.52) [v1, va] = ayvy + ay05 + azv; + agv, .

[v2. v4] = byvy + byv, + byvy + buv,

[v3, v4] = cvy + vy + c3v3 + cqv, .
Consider the Jacobi identities

(5.53) [v1, [v2, va]] + [2) [vas v1]] + [va [01, 02]] = O,
(o1, [v3, va]] + o3, [vas 0] + [04, [01,03]] = 0,
[v2, [v35 va]] + [v3s [vas v2]] + [v4s [v2s v3]] = 0.

From (5.52) and (5.53), we get (5.51). Q.E.D.

Lemma 5.5. Consider the Lie algebra L* = % given by the vector fields (5.41)
and (5.49). The Lie algebra Lsatisfying L* = L < L;and dim L = 4 exists if and
onlyif¢ =d =0.

Proof. Let L exist, let

0 0 0A OB
4+ == =

(5.54) vy = A;, + B-—,

— xi, XER.
z, 0z, 0z, 0z,
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From (5.51,), ‘ :

0A 0B
f’— = 2a,z; — b,, — = —2a,z,,
0z, 0z,
from (5.54,),
0B

= xi — 2d,z; + b, .
0z,

Thus, there is a function ¢(z,) and a constant A € € such that

A = a,z; — byzy + @(z,), B = —2a,z,z, + xiz, + bz, + /.

From (5.51,), we get

04 : 1
zy(2a,z, — bz) —z;— — A=ayz} + ae— + a;,
22 : z5
0B
—z,— + B = azd,
0z,

i.e., there exists a number p € ¥ such that

1 1
A = a,23 — byzy + a)e— +az +p—,

22 Z2
B = —2a,z,z;, + niz; + byz, + a,d.

Finally, we obtain from (5.51,)

0 1
<Zf + ;cg) (2ayz, — bz) + (_22122 + d)ag—A— — 24z, + 2Bc - =

Z2 Z2 Z2

= 2a5z, +b, (zf + i) ,
2
Z2

1 JdB
—2a,z%z, — 2a,¢c — + d — + 2z, (B -z, a—B) + 24z, =
Zy Z, 822

= —2a3z; — 2byz 7, + b,d,
ie.,

(5.55) ay=p=xd= =0,

Suppose a; = u = x = 0. Then vy = a;0,  baw, and dim L = 3. Hence aj =
=pu=c=d=0and

(556) Uy = A0; — bzvl + i%zz —a— . 3
Z2

Of course, we have to suppose » + 0. Q.E.D.
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Theorem 5.4. Let M® < %? be a hypersurface, let the Lie algebra of the group
G,(M?>) be of the type

(5.57) [u, uy] = us, [ug,us] = buy, [uyus]=cuy,
c*+0, b+c+0, b>0 or b<0, ¢c<0O.
Then M? is an orbit of the group G generated by the fields (5.41), (5.42); the field
0 0

Uy = 23 — — 22,2, —
zy 0z,
is to be excluded.

Proof. If b > 0, let us choose a new basis
‘—‘\71;“1, Uz=;“z +mu3, Uy = Uy — -

if b < 0, ¢ < 0, consider the basis

1 1 1 b
Uy = — —— Uz, Vy=——U ———1U,, V3=— [[—]u,.
1 \/(bc) 3 2 b 1 \/(bc) 2 3 \/(C> 2

Then (5.21) is satisfied and the theorem follows from Theorem 5.3 and Lemma 5.5.

6. TRANSITIVE SUBMANIFOLDS M* c €3

In %3, consider the complex coordinates z; = x; + iy;; i = 1,2, 3. The space €*
be identified with #° in the usual way. Thus, (9/dx;, 8/0y;) is the basis of %#° and the
known endomorphism I : #° — %#°, I> = —id., is given by

A S A ST
ox; 0y; 0y; 0x;

In €* = #°, consider a real submanifold M*. Write t,, = T,(M*) nIT,(M*),
T,(M*) being the tangent space of M* at me M*. Suppose dim 1,, = 2 for each
m e M*. In the principal fiber bundle R(M*) of the frames over M*, let us choose
(locally) a section o = (vy, v,, v3, v,) in such a way that v,(m) e, and Iv;, = v,.
The section & = (wy, w,, w, w,) having the same property, we have
(6.1) vy = aw; — Bwy, vy = Pw, + ow,,

U3 = YWy + Ow, + @ws + Yw,,

vy, = Aw; + Bw, + Cw; + Dw,

with («® + B%) (@D — YC) * O.
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We may write

(6.2) [v1, 2] = a0, + a0, + av; + agv,,
[vi, v3] = byoy + byo, + byvs + byvy
[v1, v4] = €1v; + cr05 + 303 + cavy,
[v2, v3] = dyv; + dyv, + dyvs + dyvs,
[v2, va] = €0y + €0, + e3v3 + eyvy,

[U3a U4] = f1vy + [0, + f305 + favs s
the functions ay, ..., f, satisfying the Jacobi identities

(6.3) v, [v2s 03]] + [0z, [v3, 04 ]] + [v3s [0, 02]] = 0,
[v1, [v2, va]] + [¥2s [v4s v1]] + [04s [v1ov2]] = O,
(v, [vss 0a]] + [v3, [04s 0,]] + [04s [01, 03]] = 0,
[v2, [v3, va]] + [03, [v4 2] + [2a, [02, v3]] = 0.

Let pe M* be a fixed point, vy = Ao vy(p) + By v2(p) €7, a given vector. Let us
choose a vector field v = Av, + Bv, such that v(m) € t,, for each m e M*, and sup-
pose v(p) = vy. Then Iv = —Bv, + Av,, and we have

[v, Iv] = [Avy + Bv,, —Bv; + Av,| =
= (") vy + (*)va + (4% + B?) (asv; + aqvy).
If LY % 0, we do not have a5 = a, = 0. Thus, we are in the position to choose ¢ in

such a way that a, = 0, a3 # 0. The space o, (for which definition see § 1) is spanned
by the vectors vy(p), v,(p), vs(p). Further, we have

(v, [v, Iv]] = (*) vy + (*) vz + (*) v3 + (A4bs + Bdy) (4> + B?) asv, .

If L2 % 0, we do not have b, = ds = 0. For the vector v’ = dyv; — byv,, LP(v) =
= 0. Let us choose the section ¢ in such a way that L2(v,) = 0, i.e., d, = 0, by + 0.

Thus, we consider — over M* — only sections o = (vy, v,, v3, v,) satisfying (6.2)
with a, =d, =0, a; + 0, b, # 0. For any other section & = (w;, w,, w3, w,)
with the same property, we have (6.1) with § = 0, ¢ = 0 and, of course,
(6'3) [W1, wy] = dwy + Gawy + daws, ...,

[w3, W4] =f1W1 + fow, +f3W3 +i4W4 .
Now, ' N
[vi, 2] = [awy, ow,] = () wy + (*) wa + 22wy =

= () wi + () w2 + @a3Ws,
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[v1, va] = [awy, ywi + 6wy + @ws] = () wy + () wy + (1) w3 + apb,w, =
= () wy + () Wy + () w3 + Dbyw,,
and we have ad, = @aj, apb, = Db,. The section ¢ may be chosen in such a way
that a; = 1, by = 1; d; = b, = 1 implies ¢ = a?, D = 3.

Over M*, we thus consider sections o satisfying

(6.4) [0, v2] = ayv, + ay0, + 05,
[v1, v3] = byvy + by, + byvy + v,
[v1, V4] = c10y + €05 + c303 + a4,
[v2, 03] = dyo; + dyv, + dyvs,
[v2, va] = ey + e,0; + esv3 + eqv,,
[1’3, U4] = fivy + fav2 + f3v3 + favs.

For another section ¢ with the same properties, we have

(6.5) vy = aw,,
U, = aw, ,
vy = yo, + Owy + o’ws,
vy = Awy + Bw, + Cwy + o®w,, a=+0.
Now,
[v1, v,] = [awy, aw,] = afad; — wox) wy + o{ad;, + wia) w, + a’wy =
= (xa; + y) wy + (2ay + ) w, + a?ws,
[v1, v3] = [owy, yw, + oW, + &®w;y] =
=()wy + () wz + (20w, + & + a’b3) wy + LPwy =
= () wi + (-) w2 + (2%b3 + C) wy + oLPwy,,
[v2: 03] = [awa, yw, + Sw, + aws] =
= (Wi + () w2 + (2owpx —y + a?d;) wy =
=()w, + (\)w2 + o?dsws '
[Ul’ U4] = [awla Aw, + Bw, + ‘13“’4] =
=()wy + ()w2 F () ws + aB32wy0 + C + 03E) wy =
= () wy + () w2 + () ws + Pcawy,
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and we obtain
aw,a + a’d, = aa, + 6,

—aw,a + o?d; = aa; + 7y,
202w, + ad + oa3by = by + C,
Qaw,a —y + a*dy = ads,
302w e + C + &3¢y = a’c,
and '
306 + a’(by — 24,) = a*(bs — 2a,) + C,
—3y + o®(d; + 2d,) = a(d; + 2a,),
C + (&, — 33,) = a*(c, — 3ay) — 308 .
Thus we are in the position to choose a section ¢ in such a way that
(6.6) by =2a,, dy= —2a,, c4=3a,.
& being another section satisfying (6.6), we have (6.5) with
(6.7) y=06=C=0.
Now,
[v1, v3] = [awy, a?ws] = a®(—wsa + aby) wy + a*byw, +
+ 20 (Wit + ady) wy + Pwy =
= (by + A)wy + (aby + B)w, + 2¢%a,ws + &’wy,
[02, 03] = [aw,, @®ws] = o®dywy + a®(—wsex + ad,) wy + 20%(wox — ad;) wy =

ad,w, + ad,w, — 20%a,wy ;

Il

from these relations, we get
a®b, = ab, + B
and
a3(51 bl 52) = a(bl - dz) + A .

The section ¢ may be chosen in such a way that
(6.8) b, =0, d, =b,;
& being another section with the same properties, we have (6.5) with (6.7) and

(6.9) A=B=0.
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Lemma 6.1. Let M* < %* be a submanifold with dimt, = 2, L)) £ 0, )’ £ 0
for each pe M*. Then there is a section ¢ = (vy, v,, Vs, v) of R(M*) such that
v, = Iv, and

(6.10) [vs, v2] = a0y + ayv, + 03,

[vy, v3] = by, + 2a,05 + vy,

[1)1, va] = €10y + €205 + c303 + 3ayu,,

[v2, 03] = dyvy + byv, — 2ayvs,

[v2, va] = eyv) + €0, + €303 + eqvs,

[1’3, U4] = f1vy + fo0, + f305 + fav, .
& = (Wy, wy, ws, w,) being another section with the same properties, we have
(6.11) V=AW, U, =oaw,, V3= 02wy, U, =ow,; a+0.

Now,

a(ady — wyot) wy + a(ad, + wyo) wy + aPwy =

[v1, v,] = [awy, aw,]

aa,wy + aa,w, + oaws,

I

ie.,
(6.12) woo + ad; = a;, wa+ ad, = a, ;
[v1, 03] = [awy, 0?w3] = 0 (—wao + aby) wy + 202 (ad;, + wo) wy + a’w, =

= ab,w,; + 20%a,w; + oa>w,,

ie.,
(6.13) —oaws + a?bh; = by ;
[0, 0] = [ows, o®w,] = o (—waa + ;) wy + 08w, + a*E3ws +
+ 303(wya + ady) wy = ac;wy + ac,wy + alcywy + 3adarwy,
ie.,
(6.14) o, = ¢, a?8 =c;,
(6.15) —o?wao + a3 = ¢; ;

[0, 03] = [awy, a2ws] = Pdywy + 2?(—waa + aby) wy + 20*(wya — ad;) wy =
= ad,w; + abw, — 20%a,w;,
ie.,

(6.16) od; = d, ;
[v2, v4] = [oawz, a®wa] = ate wy + ad(—wao + a8y) wy + atEiw,y +

~ 2 3
+ oc3(3w2a + af,) wy = oe;wy + ae,w, + alesws + alegw,
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ie.,
(6.17) | e, =e,, o%8; =e;,
(@ — &) =1c; —e,, a3d, +8&,)=3a, +e,
by means of (6.15) and (6.12);
[v3, 04] = [@Pw3, &Pw,] = &*Fyw; + &’ Fowy + «*(=2waa + of ) wy +
+ a* (3w + afs) wy = af Wy + afyw, + a¥fywy+ 3fw,

ie.,

(6'18) “4f1 =fi, “4f2 =f2 s
W3(fs — 28)) = f3 — 2¢,, o*(fs + 3b)) = f4 + 3b,

by means of (6.15) and (6.13).

In what follows, let us restrict ourselves to manifolds M* with dim G(M“) > 4.
Consider the equation (6.14,). If ¢, # 0, we are able to specialize the section ¢ in
such a way that ¢, = 1. We see at once that there is exactly one section ¢ satisfying
(6.10) with ¢, = 1; in fact, we have & = 1 from ¢, = &, = 1. This section is clearly
preserved by G(M*), hence dim G(M*) < 4. Thus dim G(M*) > 4 implies ¢, = 0.
From similar reasons, we get

Lemma 6.2. Let M* = 4° be a submanifold with dim 7, = 2, L} # 0, P %0
for each pe M*, suppose dim G(M?) > 4. Then there exists a section ¢ = (v,, v,,
v3, v4) such that v, = Iv, and

(6.19) [v1, v2] = ayo; + a0, + v;,
[v1, v3] = by, + 2a,03 4 v,,
[v1, v4] = €10y + 3a,v,,
[v2, v5] = byv, — 2a,v,,
[v2, v4] = civ, — 3ayv,,
[v3, v4] = 2c,v3 — 3byv, .

For another section & with the same properties, we have
(6.20) Uy =awy, Uy =aw,, U3 = oPwy, U4 = a’w,;
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Sfurther,
(6.21) wo +oad, = a,, awsa — a’bh; = —b,,
woa — ad; = —a;, oPwao — ¢ = —c; .
The functions ay, a,, by, ¢, satisfy
(6.22) via, — vb; — a;by =0, vsa, + v,b; — ayby —c; =0,
via, + v,a, — by =0, vsa; — v,¢; — 2a,¢, =0,
048, + vic; — 2a5¢; =0, vsby —v3¢y — byiey =0.

The equations (6.22) follow directly from (6.3). Consider now the system of partial
differential equations

(6.23) V0= oa,, V0= —0a;, U0 = —ab;, v,= —oc,

for a. Its integrability conditions are exactly (6.22), i.e., the system is completely
integrable and its solution a is determined by the value «(m,) at a fixed point m, € M*.
From this and from (6.21), we obtain

Theorem 6.1. Let M* < %> be a submanifold with dim T, =2, L(If) £0, L(;” £0
for each pe M*, dim G(M*) > 4. Then there is a section 6 = (vy, v,, v3, v4) such
that v, = Iv, and

(6.24) [v5, 9] =03, [0y, 03] =04,
[v1, va] = [v2 v3] = [v2, 0] = [v3,04] = 0.
Any other section 6 of the same type is given by
(6.25) vy =oaw,, v, =aw,, v3=0o’ws, v,=0w,; 0= a= const

Hence, dim G(M*) = 5.

It is obvious that two manifolds of the type described in this Theorem are (locally)
I'-equivalent.

Consider the manifold N* < 3 given by
(6.26) Z,—z, =%, — z;)%, Z3—z3=(Z, — z1)*.
Considering it as a submanifold of £°, its equations are
(6.27) y2=2%, yi= —4yi;
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here, z; = x; + iy;. On %5, consider the vector fields

0 0 0
(6.28) vy = — + 4y, — — 6y, —,
9y, 0y, 0ys
0 0 0
b= = —dy 6y,
0x, 0x, 0x3
vy = —4i + 24y1»a—,
0x, X3
vy = 24 i
0x3

It is easy to see that v, = Iv,; and we have (6.23). Further, the vectors (6.27) are
tangent to N* at its points. Thus we have proved Theorem 1.2.

Author’s address: 11800 Praha 1, Malostranské nam. 25, CSSR (Matematicko-fyzikalni
fakulta UK.)
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