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The purpose of this remark is to show that the class of projectively closed purities 
coincides with the class of Г-purities. As a consequence we obtain the solution of one 
part of problem 7 from [1], namely that any purity œ defined by a class of „co-
projective" modules is bi-triangular (for the precise formulation see below). 

For the convenience of the reader we shall give basic definitions and notations. 
We shall say that in the category of Л-modules (here Л stands for an associative 
ring with unity) a purity œ is given if there is given a class §^^ of monomorphisms 
satisfying the following axioms: 

PO: Any homomorphism (p : Ä -^ В having left inverse ij/ : В -^ A belongs to §^, 

PI: (pxj/e bco whenever ср^фе ô^, 

P2: if ij/ç e §^^ and i/r is a monomorphism, then cp e §^, 

P3: if in the commutative diagram 

(1) 0 *K-^A 

0 >K *B 

С >0 

) - * 0 

with exact rows and columns q) belongs to §«,. then i/f e §„ as well, 

P4: if in (1) i, ф e §„, then (p e §„,. 



If we introduce the class §* of all epimorphisms a for which the canonical embed­
ding of Ker a belongs to §o), then P3 and P4 are respectively equivalent to: 
P3*: if T(T e §* and a is an epimorphism, then т e ôo)? 

P4*: for Ö-, T G §* there is xa ë §*. 

The axioms P2 and P3* can be strengthened as follows: 

P2: for xj/cp e §^ it is (p e §^, 

P3*: for To-G §* it is T e §*. 

A purity CO is said to be triangular if it satisfies P2 instead of P2. Similarly, a purity о 
is said to be co-triangular if it satisfies P3* instead of P3* (and hence P3). A purity œ 
is bi-triangular if it is both triangular and co-triangular. 

Let Г be an arbitrary class of couples (F, t/), where Î7 is a submodule of a free 
module F. Let us form the class §j^ of all monomorphisms A-^ В such that for any 
commutative diagram 

и — ^ F 

(2) 

where (F, U)e Г and x is the canonical embedding, there exists a homomorphism 
ф : F -^ Л making the diagram 

(3) 
и 

A 

commutative. It can be shown that the class §)r defines a bi-triangular purity (see 
(1,23) in [1]), the so called F-purity. 

A module P is called co-projective with respect to a monomorphism i : A -^ В if 
for any diagram 

P 

(4) 

0 В 0 

with exact row there exists a homomorphism xj/' : P -> В making the diagram 

P 

(5) 



commutative. For a purity со let us call a module P co-projective if it is co-projective 
with respect to any i e §^. The class of all co-projective modules is denoted by ^ay-
If Ш is an arbitrary class of modul'es then the class § ^ of all monomorphisms i 
such that any MеШ is co-projective with respect to i defines a purity (see (1,20) 
in [1]), which we denote by co^. The purity ш = со*" is called the projective closure 
of CO. Finally, a purity со is called projectively closed, if со = ш (i.e. §^ = ö*'^). 

Now we can start our investigation. For an arbitrary purity со let us denote by Г^^ 
the class of all couples (F, U) where (7 is a submodule of a free module F such that 
for any commutative diagram (2) where i e §Q, and x is the canonical embedding there 
exists a homomorphism ф : F -^ Ä making diagram (3) commutative. The class F^ 
is non-empty because (F, F) e F^^ for any free module F. 

Lemma 1. Let O-^U—^F-^P-^Obean exact sequence where U is a submodule 
of a free module F and x is the canonical embedding. Then P e ^^ if and only if 

Proof. Let us consider the following diagram 

(6) 

with exact rows and i e §^. At first, let us suppose P e §^ and let the diagram (2) 
be commutative, i e §^. In view of P = Coker x and nhx = nicp = 0 there exists 
& : P -^ С making the rigt square of (6) (without xj/') commutative. By hypothesis, 
there exists ф' : P -^ В with nij/' = 9. Further, Ä ^ Ker n and n{h - ф'ц) = nh — 
— Srj = 0 imply the existence of ij/ : F -> Ä with ixj/ = h — ф'ц. Finally, ii/̂ x = 
= hx — ф'г]Х = iç, hence фх = Ф, i being a monomorphism. Therefore (P, U) e P^ . 

Conversely, let (P, U) G P ^ and let us consider the diagram (4) with i e §^. The 
freeness of P (n epimorphism) impHes the existence of h making the right square 
of (6) (without ф') commutative. In view of Л ^ Ker n and nhx = ^^X — 0 there 
exists cp :U -^ Ä making the left square of (6) (without xj/) commutative. By hypothesis 
there exists xJ/ : F -^ A with фх = cp. Further, P ^ Coker x and (h — ill/) X = 
= hx — i(p = 0 implies the existence oï ф' '. P ^ В with ф'ц = h — i\j/. Finally^ 
n\j/'f] =z Tih — тф = 9ri, therefore пф' = 9,fj being an epimorphism and hence 

Lemma 2. / / со and P^, have the same meaning as above, then §o, ^ ^ j - ^ = §jjj. 

Proof. The inclusion § ^ ^ ^r^ follows immediately from the definition of F^^ 
while the equality Ьгсо == ^ш follows easily from Lemma 1 and its proof. 



Theorem 1. A purity œ is projectively closed if and only if it is a F-purity for some 
class Г. 

Proof. Any Г-purity is projectively closed by (1,29) from [l] (see also [3]), 
Conversely, Lemma 2 gives §^ = §^ с § ,̂̂  = §_, hence §^ = ô̂ co-

Corollary. Any projectively closed purity is bi-triangular. 

Proof. Follows immediately from Theorem 1 and (1,23) from [1]. 

Lemma 3. For any class Ш of modules, the purity a> is projectively closed. 

Proof. Clearly, § £ § ^ while the obvious inclusion Ш ç ^o>^ implies 

Theorem 2. For an arbitrary class Ш of modules, the purity ax^ is bi-triangular. 

Proof. It suffices to use Lemma 3 and Corollary. 
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