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THE HYPERSPACE OF LOWER SEMICONTINUITY
AND THE FIRST POWER OF A TOPOLOGICAL SPACE

GERHARD GRIMEISEN, Stuttgart

(Received September 20, 1972)

The hyperspace H_(E, 7) of lower semicontinuity of a topological space (E, )
introduced by Z. FroL{k and M. KATETOV in [1] (p. 623) is a subspace of the (first)
power (BE, Pr) of (E, ) (“Potenzraum von (E, 7) beziiglich des Limesoperators”)
introduced by the author in [4] (p. 107) and further discussed in [7] (p. 245). In
Section 2, we present this fact (mentioned without proof in Remark 1 of the paper
[10] (p. 39)) within a framework of “finitely additive quasitopologies” (see Remark 1
after Proposition 5). Having available the terminology introduced in Section 1, we
also make some remarks (in Section 3) on the product of finitely additive quasitopo-
logies (which remarks are useful (see Remark 2) for the generalization of Proposition 8
in [10] (p. 41)). Since the auxiliary considerations for the proof of Proposition 1 will
not be needed elsewhere in the present paper, we postpone this proof to Section 4.

1. TERMINOLOGY: FINITELY ADDITIVE QUASITOPOLOGIES,
LIMIT OPERATORS, NEIGHBORHOOD OPERATORS, ETC.

Let M be a set. Each filter on a subset of M is called a filter in M. A filtered family
in M is, by definition, an ordered triple (f, I, a) consisting of a nonempty mapping f
into M, its domain I and a filter a on I. We denote by M, &M and &M the class
of all subsets of M, the class of all filters in M and the class of all filtered families in M.
Filtered families (f, I, a) are also written in the form (f(i));cr,q. Filtered families in M
of the form (id,, I, a) with the identical mapping id; on I are identified with the
filters a; under this agreement, we have ®;M < ®M. A set a £ PM is called a
quasifilter on M if and only if a is a filter on M or a = BM. Given a set a = PM,
# ya denotes (as in [2], p. 321) the set {K | K =€ M and 4 < K for some 4 € a} and
9ya denotes (as in [2], p. 322) the set {K|K = M and K n 4 + @forall 4 ea},
while %a stands for %ga with K = {Ja.
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Let E be a set. For each mapping t on BE into PE (such a mapping will be called
a quasitopology of E), we define the statements (r 1) through (z 5) by the following
lines:

(r1) 0 = 0;
(r2) «(4 U B) = 14 U 1B for all A, Be PE;
(r3) U A = U 74 for each finite set a = PE;
Aea

Aea

(t4) A g tA for all Ae BE;
(v 5) 114 < A for all A€ PE.

For each mapping Lim on &,E into PE, we define the mapping Lim’ by
Lim’ (f,I, a) = Lim fa
for all (f, 1, a) € ®E and the statements (Lim 1) through (Lim 3) by the next lines:

(Lim1) Lima= (1 U Limb for all a € $,E;

Ce%a bedoC
(Lim 2) x € Lim {{x}} for all x € E;
(Lim 3) If (f,1,a) € ®E and i — (g9, K;, b;) (i€l) is a mapping on I into OE
such that
f(i)eLim’ (9;, K;, b;) forall iel,
then
Lim’ (£, 1, a)  Lim’ (S g5, SK,, °SH))

el iel el
(for the terminology, see [3], p. 396, and [2], pp. 325, 330). For each mapping B
on E into PPE, we define the mapping Inty by

Intg X = {y | ye E and X € By}
for all X e PE and the statements (B 1) through (B 3) by the following lines:

(B 1) Bx is a quasifilter on E for all x € E;
(B 2) “if Ve Bx, then x e V” for all x € E;
(B 3) Inty X < Inty Inty X for all X € PE.

Clearly, “(t 1) and (z 2)” holds if and only if (x 3).

We define JE to be the class of all mappings = on PE into BE such that (z 3)
holds, ZE to be the class of all mappings Lim on ®,E into PBE such that (Lim 1)
holds, ¥E to be the class of all mappings B on E into PBE such that (B 1) holds.
The elements of 7 E, ZE, ¥'E are called finitely additive quasitopologies, limit oper-
ators, neighborhood operators (respectively) of E. Given a t € JE, 7 is called a pre-
topology (a topology) of E if and only if (t 4) ((r 4) and (z 5)) holds (hold).
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< We define the mappings t — Lim, (€ 7E), Lim — 7., (Lime £E), Lim —»
- By (Lime ZE), B - Limg (B VE), B > 19(Be VE), 1> B, (1€ TE) by
the following six lines (for each set M, () denotes the intersection symbol related to
the base set M, e.g. Nu® = M):

Lim,a = N tC forall ae & E;
Ce%a

umX = U Lima forall Xe$E;

aePoX

Bimx = Npe{#pa|ae PE and xeLima} forall xeE;

“x € Limg a if and only if Bx = #'ra” for all xe€ E and all a€ ,E ;
“xet,Y if and only if Ye 9;Bx” for all x€ E and all Ye PBE ;
Bx = 9{Y|xetY and Ye BE} for all xeE.

We denote these six mappings by the symbols tlg, ltg, 1vg, vlg, vtg, tvg. Let & be the
class of all sets. The symbols 7, &£, ¥~ denote the mappings M - T M, M - M,
M - ¥ M (M € &), the symbols tl, It, 1v, vl vt, tv the mappings M — tly, ..., M —
— tvy (M € &). For each M € & and each Lim € #M, we abbreviate Lim’ (f, I, a),
for each (f,I, a) e @M, by Lim (£, I, a), but we still distinguish between Lim’ and
Lim as mappings.

Proposition 1. The mappings tlg, ltg, Ivg, Vlg, Vtg, tvg are one-to-one onto ZE,
TE,V'E, E, TE, V'E (respectively), one has ltg = tIz !, vlp = Ivg ', tvp = vtz ,
and the diagram

JE o te o YE

is commutative.

Proof in Section 4.

Proposition 2. Under the mappings tl; and tvg, the class of all pretopologies of E
corresponds to the class {Lim | Lim € ZE and (Lim 2)} and to the class {8 | Be V'E
and (B 2)}. Under the mappings tly and tvg, the class of all topologies of E cor-
responds to the class {Lim | Lim € ZE and (Lim 2) and (Lim 3)} and to the class
{B|BevE and (B2) and (B 3)}.

Proof. [4], §§3—4; [8], p. 159, “Satz 4”; [3], §1. O
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The classical method of generating neighborhood operators by means of local
subbases of them (see, e.g., CECH [1], p. 242) reflects, within the present general
framework, in the following construction: Let S be a mapping on the set E into PPE.
Define the mapping 2 by

Wx = #p{Net |t is a finite subset of Sx}

for all x € E. Then, W € ¥'E, and we call MW the neighborhood operator of E generated
by C.

Assume, for the remainder of this paper except for Section 4, that 7 € E be given
and the limit operator Lim and the neighborhood operator 8B be defined by Lim =
= tlzr and B = tvyr (use of Proposition 1). We remark that, for each (f, I, a) € 9E,
Lim (f,1, a) = (N tf(C) and, for each x € E, x € Lim (f, I, a) holds if and only if,

Ce%a
for each Ve Bx, f(i) eV holds for a-almost all i€l (i.e. for all elements i:of some
set A € a).

Let M < E. Then, the trace 1y of t in M is defined by 7,(X) = M n (¢X) for all
X € PM, and one has 1), € 7 M. Define the limit operator Lim,, by Lim,, = tl,; 1),
(use of Proposition 1); then Lim,, (f, I, @) = M n Lim (f, I, a) holds for all (f, I, a)e
€ ®M. (Proof. Limy (f,I,a) = N 14 f(C) = N M n(rf(C)) =Mn N tf(C) =

Cega Cega Cega

= M n Lim (£, 1, a). [J (Cf. also [6], p. 316, “Satz 57, and [8], p. 159, “Satz 47.))

One defines the mapping lim inf,, being called the limit inferior induced by =,

by liminf, (f,I,a) = N Tt Uf(i) for all (f,I, a)e &(PE). Then, for each xeE,
c

Ce%a e

x € liminf, (f, I, a) holds if and only if, for each Ve Bx, V n f(i) & 0 holds for
a-almost all i eI. It turns out (see [5], p. 98, “Satz 17, and [8], p. 159, “Satz 4”’)
that the composition

L:= EB o (llm inft)d’o(‘-BE)

of the restriction of lim inf, to the class @,(BE) with the mapping P assigning to each
set its power set is a member of Z(PE). We define the finitely additive quasitopology
Pt by Pt = Ity L (use of Proposition 1) and call Pr to be the (first) power of the
finitely additive quasitopology t. (One has to be careful not to mix up Pt with the
dower set of the set t!)

Proposition 3. Let M < E. If T is a pretopology (topology), then ty, is a pretopology
(topology). t is a pretopology (topology) if and only if Bt is a pretopology (topo-
logy).

Proof. The assertion about 7, is obvious, while that about Pr is contained in
“Satz 18” in [4], p. 108 (see also [4], p. 82). (I

18



2. MORE ON THE FIRST POWER OF A FINITELY ADDITIVE QUASITOPOLOGY

It is of general interest but (except for Remark 2) not being used in this paper that
the notion of the trace and that of the first power of a finitely additive quasitopology
are compatible with each other in the sense of Proposition 4, where indices indicate
traces and ‘B(IM) denotes the first power of 7y,.

Proposition 4. If M < E, then P(ty) = (B1)gar-
Proof. For all (f, 1, a) € ®(PM), we have the equations
B (MarUH) =B n N U = (BM) @ 0 US0).O
Cega ieC Ce¥a ieC Cega ieC

Next, we present a construction of Pt by means of the given neighborhood opera-
tor B.
Let the mapping & be defined by

SX = {¥%;{Y} |YeU Bx} forall XePE.
xeX

Let 9B denote the neighborhood operator of PE generated by S. Designate by B°E
the set (PBE)\ {0} and by S° the restriction of the mapping & to the set P°E (as
domain), furthermore by MO the neighborhood operator of PB°E generated by S°.
Then, we obtain Proposition 5, where (7)gor denotes the trace of Pt in P°E.

Proposition 5. W = tvpr) (Br) and W = tV(gor)(PT)por)-

Proof. Define Limyg and Limge by Limg = vlipg T and Limgo = vlgog,T°.
By Proposition 1, it suffices to show that, for all (£, I, a) € ®(PE),

1) Limg (f, I, a) = P lim inf, (1, I, a)
and, if f(i) + O foralliel,
®) Limg (f, I, a) = (B°E) n (B lim inf, (f, 1, a)) .

1. First, we prove (1). a) Assume X € Limg (f, 1, a), xe X and U € Bx. Then
%:{U} € WX, consequently f(i) e 9,{U}, thus U n f(i) # 0 for a-almost all iel,
therefore, by the choice of U, x €lim inf; (f, 1, a), thus, by the choice of x, X e
e P lim inf, (£, I, a). b) Assume X € P lim inf, (f, I, a) and We X. Then, there is
a finite set t & GX such that (gt S W. Let Q € r; then, for some x € X, there is
a Ye Bx such that Q = %;{Y}. By the choice of X, x and ¥, there exists an Ag€a
with f(i) € Q for all i € A,. In such a way, we choose a family (4g)ge; (admitting the
empty family in the case r = 0). Then, for all j € (\; Ag, f(j) € Nigry t S W, therefore

Qer

f(i) € Wfor a-almost all i € I, thus, by the choice of W, X € Limg (f, I, a).
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2. Let X # 0 and f(i) + 0 for all i e I. Then, one obtains a proof of (2) from the
preceding part 1 if one replaces there everywhere I and BE by W° und P°E;
consider that °X = &X. [J

Given a mapping ¢ on PBE into PBE, we call (E, o) a quasitopological space; if
and only if ¢ is a finitely additive quasitopology, a pretopology, a topology, we call
(E, o) a finitely additive quasitopological space, a pretopological space (CecH [1],
p. 237: “closure space™), a topological space.

Remark 1. If ¢ is a pretopology (topology), then (1) gor, is a pretopology (topo-
logy) of P°E by Proposition 3, and, by Proposition 5 and the construction of I°,
the pretopological (topological) space (PB°E, (Bt)gor,) coincides with the hyperspace
of lower semicontinuity, H_(E, t), of (E, 7) defined in CecH [1], p. 623, Definition
34 A.1.

3. ON THE PRODUCT OF FINITELY ADDITIVE QUASITOPOLOGIES

In [5], the author has introduced (in a slightly different language) the product of
finitely additive quasitopologies (even of arbitrary quasitopologies) without discussing
its construction by means of neighborhood operators. Here, we give such a con-
struction (usual for pretopologies, see CECcH [1], p. 289, Definition 17 C.1) in full
generality.

Let (E; tz)acp be a family (D a set) of finitely additive quasitopological spaces
(E,, 7,), and define Lim, und B, by Lim, = tlz, 7, and B, = tvg, 1, for all de D

(cf. Proposition 1). For abbreviation, we set P E; = P (= cartesian product of the
deD

family (E,)p of sets E;). The mapping Ldefined, now, by

L(a) = P Lim, (prya) forall ae ®,P
deD

(where pr; denotes the d-th projection mapping on P) turns out (see [5], p. 364,

“Satz 17, and [8], p. 159, “Satz 4”) to be a member of ZP. We define the finitely

additive quasitopology P 7, of P by P 7, = tl, Land call it the product of the family
deD deD

(t))uep of finitely additive quasitopologies. (One has to be careful not to mix up

P =, with the cartesian product of the sets t,!)
deD

The notion of the product of finitely additive quasitopologies is compatible with
that of a trace of a finitely additive quasitopology in the sense of Proposition 6,
where P (74)y, designates the product of the traces (7,)y, of the 7, in M,.

deD

Proposition 6. Let (M,),.p be a family of sets M, < E,. Then, (P 1) py, =

- deD  deD
= P (t)ua
deD
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Proof (see also [6], p. 317, “Satz 6”). The equation
(dll M) n (dI:) Lim, (f(d))ier,q) =dI; (M4 Limy (f(d))ier,)

holds for all (f3)ier,c € (P M,). O
deD
Next, we reconstruct the product P 7, by means of the neighborhood operators B,.

deD

Let the mapping & be defined by
Sf = {pr;'V|de D and Ve B, f(d)} forall feP.

Let 2B, now, denote the neighborhood operator of P generated by S. We remark
that for each fe P

©) {Ngt | t is a finite subset of Sf} =
= {P ¢(d)| ¢ € P B, f(d) and, for some finite set G < D,
“ (p(S; = E, for all de D\G}.
Proposition 7. I = tvp (dPDrd).

Proof. We define the limit operator Limg of P by Limg = vl, 3B (use of Proposi-
tion 1). By Proposition 1, it suffices to show that

Limg (f i)ieI,a = E)Limd (f i(d))iel,a

holds for all (f,)ier,q € ®P. Let (f)ier,c € PP and f € P.

1. Assume f e Limg (f)icr,o- Let c€ D und Ve B, f(c). Define a mapping ¢ by
letting ¢(d) = E, for all d € D\ {c} and ¢(c) = V. Then, by (3), P ¢(d) € 2f. Thus,
deD

there is an A € a such that f; € P (p(d) especially f{(c) €V, for all i e A. Therefore, by

the choice of ¥, f(c) € Lim, ( f,(c)),el « thus, by the choice of ¢, f € P le,, (f{d))icr.a-
. Assume fe P Lim, (f{(d))icr,c» and let We 2Bf. Then, there exists (by (3))

a mapping ¢ € P ﬂ},, f(d) and a finite set G < D such that ¢(d) = E,forallde D\ G

and P (p(d) c W. By the choice of f and ¢, there is, for each d € D, a set A, € a with
deD

(4) fld)e o(d) forall ieA,.

Define 4 by A = (\; 4, (admitting the trivial case G = 0); then A € a (since G is

deG

finite and a is a filter on I), and one obtains f{(d) € ¢(d) for all ie 4 and all de D,
using (4) in the case G # 0. Therefore, f; € P ¢(d) = W holds for a-almost all i1,
deD

thus, by the choice of W, f e Limgg (f3)icr,o- O
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Remark 2. In the paper [10], the author has written everything in a way that the
proofs there remain valid — up to slight modifications — also in a setting of finitely
additive quasitopologies instead of topologies (see Remark 4 in [10], p. 43). Of
course, given finitely additive quasitopological spaces (E, 7) and (F, o), a mapping ¢
on E into F is called (t, o)-continuous if and only if ¢(tX) < o(¢X) holds for all
X € BE. In terms of limit operators, this definition reflects in the assertion that

¢ is (1, 0)-continuous if and only if ¢(Lim, (f,1, a)) < Lim, (¢ o f, 1, a)

for each (f,1, a) € @E, where Lim, = tl;t and Lim, = tlp o (see Proposition 1);
and it is clear, how the definition looks like in terms of neighborhood operators.
Based on this definition of continuity for mappings, everything else (more precisely:
the definition of (r, ¢)-continuity of a mapping from E into F, Definitions 1 und 2,
Propositions 1 through 8, Theorems 1 through 3) in the paper [10] can be carried
over to finitely additive quasitopological spaces, including the proofs, word by word
except for the following change (necessary by the fact that Bx with x € E can degener-
ate to BE under the present situation): In part 1 of the proof of Proposition 5 in [10],
p. 40, one has to replace the words “We have” by the words “If a = M, then, for
some Ve a (choose V= 0), U h(z) + 0 holds for all zeV. Let a & PM. Then,
we have”. Proposition 7 of the present paper serves as a lemma within the proof of
the generalized Proposition 8 in [10], p. 41, and the present Proposition 4 replaces
the statement (0) in [10], p. 36 (which serves as a lemma for the Propositions 4 and 7
in [10], p. 39 and 41).

4. PROOF OF PROPOSITION 1

Let E be a set fixed for the whole section and, down to the Lemma 2, a = BE.
a is called a grill on E if and only if

(5) a+0,0¢a, #ra=aand, for all sets A, B, if AUBea, then Acaor Bea,

a quasigrill on E if and only if a is a grill on E or a = 0 (i.e., if and only if (5) without
the requitement a = § holds).

Lemma 1. Let a + 0,0 ¢ a and # za = a. Then a is a filter on E (grill on E) if and
only if Gga is a grill on E (filter on E).

Proof. [2], p. 323, “Satz 3”. [J

Lemma 2. Let #'za = a. Then a is a quasifilter on E (quasigrill on E) if and only
if 9gais a quasigrill on E (quasifilter on E).

Proof. Use Lemma 1 and 4;BE = 0, 9:0 < BE. [
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For each mapping t on BE into PE, define the mapping (€ 7) [ ] by (e7) [x] =
= {M | M e BE and x € tM} for all x € E. (In other terms, (€ 7) [ ] is the mapping
on E into PPE induced, in the indicated sense, by the relation € T Which be defined
by x(e7) M if and only if x € tM (for all x € E and all M € BE).)

By the definitions, it is clear that
Lemma 3. t € JE if and only if (€ 1) [x] is a quasigrill on E for each x € E.

Lemma 4. tvy; is a one-to-one mapping on I E onto ¥'E and we have vty = (tvg) ™'

Proof. 1. By the Lemmas 2 and 3, it is clear that tvy; maps J E into ¥'E and vtg
maps ¥E into J E.

2. Let 1€ T E and M € BE. Then, one has, for all x € E, the logical chain
x € (vtg((tve) () M < M € 4, %((er) [x])
<M € (er) [x]
<x etM,

since for the mappings ¥ and 5, on PPE into PPE the equation %o G = #
holds (see [2], p. 323, “Korollar 1”). Thus, vtz o tvg = id s (= identical mapping
on JE).

3. Let Be ¥'E and x € E. Then, one has, for all ¥ < E, the logical chain
Ve (tve((vte) (B)) x < Ve Gy(e (vis(B))) [x]
<Ve G,9:,Bx
Ve Bx,
since 950 Yy = Hyp. Thus, tvgo vty = id 45 (= identical mapping on ¥'E).
1, 2 and 3 assure the assertion. []
Lemma 5. tl; is a one-to-one mapping on 7 E onto ZLE, and one has 1ty = (tlg)™*.

Proof. §§ 3 and 4 in [4], pp. 104—107, and [8], p. 159, “Satz 4”; or [9], p. 370,
“Korollar zu Satz 6. []

Lemma 6. x € Limg (Bx) holds for all (x,B)e E x (¥V'E) with the property
Bx += PE.

Proof. If Bx & PE, then Bx € $E and Bx £ Bx; furthermore, use the defini-
tion of Limg in Section 1. [J
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Lemma 7. Bx = (\pg {#ra|xeLimya and ae ®E} for all x€E and all
B e VE.

Proof. 1. Let Ve Bx. If ae ®,E and x € Limyg a, then Bx < #'ra, therefore
Ve A ga.

2. If Ve Npg {#sa | xe Limg a and a € @yE}, then Ve Bx holds by Lemma 6
if Bx + PE, while Ve Bx holds trivially if Bx = PE. [

Lemma 8. tl; o vty = Vg and lvg = (vlp) ™'
Proof. 1. Let Be ¥'E, ae ®,E, y € E and put, for abbreviation, Ua = I. Then,
yelimga< By € #ra< Ya s 9By
< (Ce %a= Ce 9,By)
<ye () {x|xeEand Ce ¥Bx}

Ce¥%1a

< ye((tlg o vtg) (B)) a.

(For the proof of the second <> in this logical chain one uses (1.12) in [2], p. 322,
and that 9 o #p = Gy, Gpo Yy = Hgand Hy o # = Ay hold for the mappings
%y and # 5 on PPE into PPE.)

Thus, vl = tlg o Vtz.

2. By Lemma 7, we have lvg o vly = idyg (= identical mapping on ¥ E). Since,
by Lemma 4, Lemma 5 and part 1 of this proof, the range of vl is equal to the domain
of 1vg, we have shown that lvy = (vlg)™*. O

Proposition 1 is now proven by Lemma 4, Lemma 5 and Lemma 8.

Acknowledgment: It is difficult for me to trace back in every detail the influence,
JURGEN SCHMIDT (see [11]) might have exerted to the development of Section 1 down
to Proposition 1 and of Section 4, since we used to exchange unpublished results and
ideas years ago in a fruitful period of cooperation (which started in 1957). The rela-
tionship between Schmidt’s paper [11] and Sections 1 and 4 of this paper can partly
be deduced from the footnotes 14, 19, 21 in [3] and footnote 1 in [9].
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