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Czechoslovak Mathematical Journal, 24 (99) 1974, Praha 

THE HYPERSPACE OF LOWER SEMICONTINUITY 
AND THE FIRST POWER OF A TOPOLOGICAL SPACE 

GERHARD GRIMEISEN, Stuttgart 

(Received September 20, 1972) 

The hyperspace Я_(£, т) of lower semicontinuity of a topological space (E, т) 
introduced by Z. FROLIK and M. KATETOV in [1] (p. 623) is a subspace of the (first) 
power {^E, Щ) of (E, T) ("Potenzraum von (£, т) bezüglich des Limesoperators") 
introduced by the author in [4] (p. 107) and further discussed in [7] (p. 245). In 
Section 2, we present this fact (mentioned without proof in Remark 1 of the paper 
[10] (p. 39)) within a framework of "finitely additive quasitopologies" (see Remark 1 
after Proposition 5). Having available the terminology introduced in Section 1, we 
also make some remarks (in Section 3) on the product of finitely additive quasitopo­
logies (which remarks are useful (see Remark 2) for the generalization of Proposition 8 
in [10] (p. 41)). Since the auxihary considerations for the proof of Proposition 1 will 
not be needed elsewhere in the present paper, we postpone this proof to Section 4. 

1. TERMINOLOGY: FINITELY ADDITIVE QUASITOPOLOGIES, 
LIMIT OPERATORS, NEIGHBORHOOD OPERATORS, ETC. 

Let M be a set. Each filter on a subset of M is called a filter in M. A filtered family 
in M is, by definition, an ordered triple (/, /, o) consisting of a nonempty mapping/ 
into M, its domain / and a filter a on /. We denote by фМ, ФоМ and ФМ the class 
of all subsets of M, the class of all filters in M and the class of all filtered families in M. 
Filtered famihes (/, /, a) are also written in the form {f{i))iei,a' Filtered famihes in M 
of the form (id/, /, a) with the identical mapping idj on / are identified with the 
filters o; under this agreement, we have Ф^^М g ФМ. A set a g фМ is called a 
quasifilter on M if and only if a is a filter on M or a = фМ. Given a set a g фМ, 
Ж^а denotes (as in [2], p. 321) the set {X | К g M and A ^ К for some Aea} and 
^M^ denotes (as in [2], p. 322) the set {iC | X g M and X n Л Ф 0for а1Ы e a}, 
while ^a stands for ^^a with К = \Ja, 
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Let E be a set. For each mapping т on SßE into SßE (such a mapping will be called 
a quasîtopology of £), we define the statements (т 1) through (т 5) by the following 
lines: 

(T 1) T0 = 0; 
(T 2) т(Л u J5) = тЛ u TBfor all A, В e Щ; 
(T 3) T и ^ = и 'ï̂ ^ for each finite set a g Ч^Е; 

ilea Леа 

(т4) Л g rAforallÄeSpE; 

(т 5) ттЛ g ТА for all Л e ф£. 

For each mapping Lim on 0QE into фЕ, we define the mapping Lim' by 

Lim' (/, /, a) = Lim/a 

for all (/, /, a) e Ф£ and the statements (Lim 1) through (Lim 3) by the next lines: 

(Lim 1) Lim a = П U Lim b for all ae 0QE; 
Ce^a ЬеФоС 

(Lim 2) xe Lim {{x}} for all xe E; 
(Lim 3) / / (/, /, a) e ФЕ and i -> (̂ ,-, K ,̂ b,) (iel) is a mapping on I into ФЕ 

such that 
/(i) e Lim'(âTf, Xf, bf) for all iel, 

then 
Lim' (/, /, a) g Lim' ( S ^„ S К,, «S Ь) 

iel iel iel 

(for the terminology, see [3], p. 396, and [2], pp. 325, 330). For each mapping 33 
on E into фф£, we define the mapping Int«g by 

IntjgX = {y\yeE and ХеЩ} 

for all XeSßE and the statements (5Ö 1) through (93 3) by the following Unes: 

(93 1) 93x is a quasifilter on Efor all xeE; 

{Ш 2) " i / Ve 93x, then x e F" for all xeE; 
(93 3) Intjß X g Intjß Intjg X /or all X e ф£. 

Clearly, "(T 1) and (т 2)" holds if and only if{x 3). 

We define ^E to be the class of all mappings т on ^E into фЕ such that (r 3) 
holds, ^E to be the class of all mappings Lim on Ф^Е into ^E such that (Lim 1) 
holds, i^E to be the class of all mappings 93 on £ into ^ ^ E such that (93 1) holds. 
The elements of^E, jSf E, 'fE are called^îm^e/y additive quasitopologies, limit oper­
ators, neighborhood operators (respectively) of E. Given a т e ^E, т is called a pre-
topology (a topology) of E if and only if (т 4) ((т 4) and (т 5)) holds (hold). 
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-̂  We define the mappings т -> Lim, (т G ^É), Lim -> TLI^ (Lim e ^É), Lim -> 
-^ «Li^ (Lim e i f £), Ж -^ Lim^j (33 G 1ГЕ), ^ ^ ^^(33 e ^ £ ) , ^ ^ $B J ^ e ^ £ ) by 
the following six lines (for each set M, Пм denotes the intersection symbol related to 
the base set M, e.g. Пм^ = M): 

Lim, a = Ci-^C for all a e Ф^Е; 

4imX = и Lima for all ХЕЩ; 
аеФоХ 

^Lim^ = Cï^Ei'^E^ I ̂  ^ ^oE and X e Lim a} for all xe E ; 

"x e Limçg 0 if and only if 2Sx я ЖЕО" for all xe E and all a e Ф^Е ; 

"x e v F if and only if Ye ^^ЗЗх" for all xeE and all Ye фЕ ; 

23,x = ^£{7 | xexY and Ye Щ] for all xeE. 

We denote these six mappings by the symbols tl^, It^, Iv^, vl^, vt^, tv^. Let ^ be the 
class of all sets. The symbols ^, J^, i^ denote the mappings M -> 5^M, M -> £^M, 
M -» f^M ( M e Sf\ the symbols tl, It, Iv, vl, vt, tv the mappings M -^ tl^^,..., M -> 
-> tVjvf ( M e .9^). For each Me 9" and each Lim e ^M, we abbreviate Lim' ( / , / , a), 
for each (/, / , a) e ФМ, by Lim (/, / , a), but we still distinguish between Lim' and 
Lim as mappings. 

Proposition 1. The mappings tl^, It^, lv£, vl^, vt^, tv^ are one-to-one onto S£E^ 
^E, i^E, ^E, ^E, 'ТЕ (respectively), one has It^ = ÜE\ vl^ = Iv^ S tv^ = vt^ \ 
and the diagram 

oTE о ^^ ^o SeE 

is commutative. 

Proo f in Section 4. 

Proposition 2. Under the mappings tl^ and tv^, the class of all pretopologies of E 
corresponds to the class {Lim | Lim e 5£E and (Lim 2)} and to the class {33 | 33 e i^E 
and (33 2)}. Under the mappings tl^ and tv^, the class of all topologies of E cor­
responds to the class {Lim | Lim e i f £ and (Lim 2) and (Lim 3)} and to the class 
{Ъ\ЪеГЕ and (33 2) and (33 3)}. 

Proof. [4], §§ 3 - 4 ; [8], p. 159, "Satz 4"; [3], § L D 
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The classical method of generating neighborhood operators by means of local 
subbases of them (see, e.g., CECH [1], p. 242) reflects, within the present general 
framework, in the following construction: Let S be a mapping on the set E into ^ ф £ . 
Define the mapping 2B by 

2Bx = J^E{C)E^ I r is a finite subset of (Bx] 

for all xeE, Then, Ж e i^E, and we call Ш the neighborhood operator ofE generated 
by S. 

Assume, for the remainder of this paper except for Section 4, that т e ЗГЕ be given 
and the Umit operator Lim and the neighborhood operator 35 be defined by Lim = 
= tl̂ T and 23 = tVĵT (use of Proposition 1). We remark that, for each (/, /, a) G ФЕ, 
Lim (/, 1,й) = П '^fiÇ) <^nd, for each xe E, xe Lim (/, /, о) holds if and only if, 

Ce^a 

for each Ve 23x, /(i) eV holds for a-almost all iel (i.e. for all elements i 'of some 
set Ae a). 

Let M g £. Then, the trace x^ of т in M is defined by Тм{Х) = M n (TZ) for all 
X e фМ, and one has x^ e ^M. Define the limit operator Limj^ by Lim^̂  = tlj^ Тд̂  
(use of Proposition 1); then Limjvf (/, /, o) = M n Lim (/, /, a) holds for all (/, /, a)e 
e ФМ. (Proof. Ытд, (/, /, a) = Л ^мЦС) = П M n (т/(С)) = M n П if (С) = 

= M n Lim (/, /, a). D (Cf. also [6], p. 316, "Satz 5", and [8], p. 159, "Satz 4".)) 
One defines the mapping lim inf̂ , being called the limit inferior induced by т, 

by lim infД/,/, a) = П -̂  U/(0 for all (f,I,й)eФ{Щ. Then, for each xeE, 
Ce^a ieC 

X G lim infД/,/, о) holds if and only if, for each Ve 23x, Vnf{i) Ф 0 holds for 
a-almost all iel. It turns out (see [5], p. 98, "Satz 1", and [8], p. 159, "Satz 4") 
that the composition 

L : = фo(liminf,)ф^(çp£) 

of the restriction of lim inf̂  to the class Ф^{^Е) with the mapping ^ assigning to each 
set its power set is a member of .^(фЕ). We define the finitely additive quasitopology 
фт by фт = ltç|5j5 L (use of Proposition 1) and call *»Рт to be the {first) power of the 
finitely additive quasitopology т. (One has to be careful not to mix up S^x with the 
dower set of the set т!) 

Proposition 3. Let M^E. Ifx is a pretopology (topology), then x^^ is a pretopology 
(topology). X is a pretopology (topology) if and only if фт is a pretopology (topo-
logy\ 

Proof. The assertion about x^ is obvious, while that about фт is contained in 
"Satz 18" in [4], p. 108 (see also [4], p. 82). • 
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2. MORE ON THE FIRST POWER OF A FINITELY ADDITIVE QUASITOPOLOGY 

It is of general interest but (except for Remark 2) not being used in this paper that 
the notion of the trace and that of the first power of a finitely additive quasitopology 
are compatible with each other in the sense of Proposition 4, where indices indicate 
traces and ^(тд^) denotes the first power of r^. 

Proposition 4. / / M g E, then ф(тм) = {^т)^м-

Proof. For all (/, / , a) e Ф(^М), we have the equations 

^ n (M n T и/(0) =='^{Mn n-c и/(0) = (Ч̂ м) n (^ n т и ДО) • • 
Ce^a шС Ce^a ieC Ce^a ieC 

Next, we present a construction of SJßx by means of the given neighborhood opera­
tor S3. 

Let the mapping 6 be defined by 

6 X = {^£{7} | Г е и З З х } for all ХеЩ, 
xeX 

Let 2B denote the neighborhood operator of ф £ generated by S . Designate by ф^£Г 
the set (ф£) \ {0} and by & the restriction of the mapping 6 to the set ^ ^ £ (as 
domain), furthermore by 3B° the neighborhood operator of ^ ^ £ generated by &. 
Then, we obtain Proposition 5, where {Щ)^ОЕ denotes the trace of фт in ^^E. 

Proposition 5. ШЗ = iv^<^E) i^^) (^nd Ш^ = ^У(^ОЕ){Щ'^\ЩОЕУ 

Proof. Define Lim^ and Lim^̂ ô by Lim^ = У1(^ЕУ^ ^^^ Lim^̂ jo = vl(5po£)9[B .̂ 
By Proposition 1, it suffices to show that, for all (/, / , a) e Ф{^Е), 

(1) Lim^ (/, / , a) = Ф lim int; (/, / , a) 

and, i f / (0 + 0 for a l l i e / , 

(2) Lim^o (/, / , a) = (ф«£) n ( ^ lim inf, (/, / , a)) . 

1. First, we prove (1). a) Assume Z e Lim^g ( / , / , a), xeX and UE^X. Then 
^E{U} e ШЗХ, consequently f{i) e ^E{U}, thus U nf{i) Ф 0 for a-almost all i e / , 
therefore, by the choice of I/, xe lim inf̂  (/, / , a), thus, by the choice of x, Z e 
e Sß Hm inf, (/, / , a), b) Assume X e ^ lim inf, (/, / , a) and We 2BX. Then, there is 
a finite set r g 6 X such that f)(^E)^ ^ ^- Let ß e r; then, for some xeX, there is 
a Ye 93x such that Q = ^^{i^}. By the choice of Z , x and 7, there exists an Л^ e a 
with f{i) e Q for all i e AQ. In such a way, we choose a family (^о)оег (admitting the 
empty family in the case r = 0). Then, for all j e Пг ^ Q , / ( ; ) e С\(ЩЕ) ^ Ш W, therefore 

/(f) G PF for a-almost all i e I, thus, by the choice of Ж, Z e Lims;s (/, / , a). 
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2. Let X Ф 0 and / ( ï ) ф 0 for all iel. Then, one obtains a proof of (2) from the 
preceding part 1 if one replaces there everywhere SB and ^E by Wß^ und Sp^E; 
consider that 6^Z = SX. Q 

Given a mapping a on ^ L into ф £ , we call (L, a) a quasitopological space; if 
and only if СГ is a finitely additive quasitopology, a pretopology, a topology, we call 
{ E , (T) a finitely additive quasitopological space, a pretopological space (CECH [1], 
p. 237: "closure space"), a topological space, 

R e m a r k L I f r i s a pretopology (topology), then (̂ т)(Ц50£) is a pretopology (topo­
logy) of ^^L by Proposition 3, and, by Proposition 5 and the construction of Wß^, 
the pretopological (topological) space (^^L, {^^\^OE)) coincides with the hyperspace 
of lower semicontinuity, H^{E, т), of [E, т) defined in CECH [1], p. 623, Definition 
34A.L 

3. ON THE PRODUCT OF FINITELY ADDITIVE QUASITOPOLOGIES 

In [5], the author has introduced (in a sHghtly diff'erent language) the product of 
finitely additive quasitopologies (even of arbitrary quasitopologies) without discussing 
its construction by means of neighborhood operators. Here, we give such a con­
struction (usual for pretopologies, see CECH [1], p. 289, Definition 17 C.l) in full 
generality. 

Let (Ej, T̂ )̂ ex) be a family (D a set) of finitely additive quasitopological spaces 
{E^, T )̂, and define Lim^ und 33̂  by Lim^ = tl^^т^ and 33̂  = tv^^TJ for all de D 
(cf. Proposition 1). For abbreviation, we set P £^ = P ( = cartesian product of the 

deD 

family {Ea)deD of sets E^). The mapping L defined, now, by 

L(a) = P Lim^ (pr^ o) for all a e ФоР 
deD ' 

(where pr^ denotes the d-th projection mapping on P) turns out (see [5], p. 364, 
**Satz 1", and [8], p. 159, "Satz 4") to be a member of J^fP. We define the finitely 
additive quasitopology P TJ of P by P т^ = tip Land call it the product of the family 

deD deD 

i'^d)deD of finitely additive quasitopologies, (One has to be careful not to mix up 
P Tj with the cartesian product of the sets т^!) 

éeD 

The notion of the product of finitely additive quasitopologies is compatible with 
that of a trace of a finitely additive quasitopology in the sense of Proposition 6, 
where P (Т^)МЙ designates the product of the traces (га)ма ̂ ^ ^^^ ^d ^^ ^d-

deD 

Proposition 6. Let {M^^^J^ be a family of sets M^ g E^. Then, ( P t^) P м^ = 
deD deD 

= P V^djMd-
deD 
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Proof (see also [6], p. 317, "Satz 6"). The equation 

( P M,) n ( P Lim, {fid%r.a) = P (M, n Lim, {fld%r.a) 
deD deD deD 

holds for all (Л).е/,а ^ Ф( P M,). D 
deD 

Next, we reconstruct the product P т̂  by means of the neighborhood operators 3?̂ -
deD 

Let the mapping 6 be defined by 

S / = {pr7 VI J e Z) and Fe ЗЗ^Д /̂)} for all / e P . 

Let 2B, now, denote the neighborhood operator of P generated by S. We remark 
that for each feP 

(3) {OE^ I r is a finite subset of 6 /} = 

= { P (p{d) I <p e P ^df{d) ^iid, for some finite set G ^ D, 
deD deD 

cp{d) = Ed for all deD\G}, 

Proposition 7. $B = tvp ( P т^). 
deD 

Proof. We define the limit operator Lim ĝ of P by Lim^̂  = vlp SB (use of Proposi­
tion 1). By Proposition 1, it suffices to show that 

Lim ö̂ (/i)ie/.a = P Lim^ (/i(^))iej,a 
deD 

holds for all (/,),e/.a ^ ФР. Let (Л),,,,, e ФР a n d / e P. 

L Assume / e Lim ĵ {f)iei,a- Let с e D und Fe »e/(^)- Define a mapping cp by 
letting <p(d) = Ed for all d e i) \ {c} and (p{c) = F Then, by (3), P (p{d) e Щ. Thus, 

there is an Л e a such that/^ e P (?)(J), especially/^(c) e F, for all i e Л. Therefore, by 
deD 

the choice of F, /(c) e Lim^ (/f(<̂ ))tej.û» thus, by the choice of c, / e P Lim^ ifi{d))iei,a' 
deD 

2. Assume / e P Lim^/i((i)).-^j^a, and let FFeSB/. Then, there exists (by (3)) 
deD 

a mapping cpeP ^dfi^) ^^^ ^ ^^i^^ set G g D such that (p(d) = Ed for allJ e D \ G 
deD 

and P (p{d) g Ж By the choice of/ and cp, there is, for each d e D, a set Л^ e a with 
deD 

(4) fld)ecp{d) for all i e ^ ^ . 

Define ^ by Л = fli^d (admitting the trivial case G = 0); then Aea (since G is 
deG 

finite and a is a filter on /), and one obtains fi{d) e (p{d) for all i e A and all rf e D,. 
using (4) in the case G Ф 0. Therefore, /^ e P (p{d) g Ж holds for a-almost all i e I^ 

deD 

thus, by the choice of Pf, / e Lim^s {fi)iei,a- • 
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R e m a r k 2. In the paper [10], the author has written everything in a way that the 
proofs there remain valid — up to slight modifications — also in a setting of finitely 
additive quasitopologies instead of topologies (see Remark 4 in [10], p. 43). Of 
course, given finitely additive quasitopological spaces (E, т) and (F, a), a mapping cp 
on E into F is called (т, o)-continuous if and only if (р(тХ) g а(фХ) holds for all 
X e фЕ. In terms of limit operators, this definition reflects in the assertion that 

cp is (T, G)"Continuous if and only if ф(От^ (/, I, o)) g Lim^ {cp o/, / , a) 

for each (/, / , a) e ФЕ, where Lim^ = tljg т and Lim^. = tip a (see Proposition 1); 
and it is clear, how the definition looks like in terms of neighborhood operators. 
Based on this definition of continuity for mappings, everything else (more precisely: 
the definition of (т, ö')-continuity of a mapping from E into F, Definitions 1 und 2, 
Propositions 1 through 8, Theorems 1 through 3) in the paper [10] can be carried 
over to finitely additive quasitopological spaces, including the proofs, word by word 
except for the following change (necessary by the fact that 35x with xe E can degener­
ate to ЩЕ under the present situation): In part 1 of the proof of Proposition 5 in [10], 
p. 40, one has to replace the words "We have" by the words "If a = фМ, then, for 
some Vea (choose F = 0), Un h(z) ф 0 holds for all z e К Let a ф фМ. Then, 
we have". Proposition 7 of the present paper serves as a lemma within the proof of 
the generahzed Proposition 8 in [10], p. 41, and the present Proposition 4 replaces 
the statement (0) in [10], p. 36 (which serves as a lemma for the Propositions 4 and 7 
in [10], p. 39 and 41). 

4. PROOF OF PROPOSITION 1 

Let E be a set fixed for the whole section and, down to the Lemma 2, a g SßE, 
й is called a grill on E if and only if 

(5) a Ф 0, 0 ^ a, J f jgO = a and, for all sets A, B, if A и В e a, then Ae a or Be a, 

a quasigrill on E if and only if a is a grill on £ or a = 0 (i.e., if and only if (5) without 
the requirement a ф 0 holds). 

Lemma 1, Let a ф 0, 0 ^ a and Жр<х = a. Then a is a filter on E (grill on E) if and 
only if ^j^a is a grill on E (filter on E). 

Proof. [2], p. 323, "Satz 3". D 

Lemma 2. Let Ж^^ == a. Then a is a quasifilter on E (quasigrill on E) if and only 
if ^E^ is a quasigrill on E (quasifilter on É), 

Proof. Use Lemma 1 and ^ ^ ^ E = 0, ^^0 =:= щ^ Q 
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For each mapping т on ^E into SßE, define the mapping (б т) [ ] by (G T) [X] = 
= (M I M e фЕ and x e тМ} for all xeE, (In other terms, (e t) [ ] is the mapping 
on E into ^ ^ £ induced, in the indicated sense, by the relation e т which be defined 
by X(G T) M if and only if x e тМ (for all xeE and all M e ф£)-) 

By the definitions, it is clear that 

Lemma 3. t e ^E if and only if (e т) [x] is a quasigrill on E for each xeE. 

Lemma 4. tv^ is a one-to-one mapping on ̂ E onto f^E and we have vt^ = (tv^)" Ч 
Proof. 1. By the Lemmas 2 and 3, it is clear that tv^ maps ^E into f^E and vt^ 

maps -ТЕ into ^ E . 

2. Let T G ^ E and M G ^ E . Then, one has, for all xeE, the logical chain 

X G (vt£((tv£) (T))) MoMe ^^^^((GT) [X]) 

<^ M G (GT) [X] 

o x G T M , 

since for the mappings "^E and ЖЕ on ^ ^ E into ^фЕ the equation ^^ о ̂ ^ = ЖЕ 
holds (see [2], p. 323, ''KoroUar 1"). Thus, YXE О tv^ = id^^E) {= identical mapping 
on ^E). 

3. Let 93 G i^E and xeE. Then, one has, for all V^ E, the logical chain 

Ve (1УЕ{Ы (95))) xoVe ^^(G (vt^(«))) [x] 

oVe^E^E^^ 

<:>FG93X, 

since ^E^' ^E == ^E- Thus, tv^ о vt^ = id^^£) (= identical mapping on VE), 

1, 2 and 3 assure the assertion. П 

Lemma 5. tl̂ ; is a one-to-one mapping on ^E onto S£E, and one has It̂  = (tl^)"^. 

Proof. §§ 3 and 4 in [4], pp. 104-107, and [8], p. 159, "Satz 4"; or [9], p. 370, 
"KoroUar zu Satz 6". D 

Lemma ^. xe Lim ĵ (93x) holds for all (x, 93) G E x {VE) with the property 
93x Ф фЕ. 

Proof.If 93x Ф фЕ, then 93x e Ф^Е and 93x g 93x; furthermore, use the defini­
tion of Limjß in Section 1. D 

23 



Lemma 7. ЭЗх = П«РЕ {^£Û | X e Lim ĝ a and a e 0QE] for ail xe E and ail 
ЪеГЕ. 

Proof. 1. Let Fe 23x. If аеФ^Е and xeLim^ga, then 33x g Ж^^, therefore 

2. If Ve Пч5£ {^E^ I ^ e Limgj a and a G ФО^}» then Fe ЗЗх holds by Lemma 6 
if 93x Ф ф£, while Fe ЗЗх holds trivially if 35x = ^ £ . D 

Lemma 8. tl^ о vt^ = vljs and Iv^ = (vl^)"^ 

Proof. 1. Let 33 e i^E, a e Ф^Е, у e E and put, for abbreviation, U^ = /. Then, 

у e Lim^ a <^ 35y g J^E^ ^ ^£Û g "^Е^У 

o{Ce^ja=>Ce ^ЕЩ 
oye П {X\XEE and С e ^^ЗЗх} 

Cevitt 

O3^e((tl£ovt£)(33))a. 

(For the proof of the second о in this logical chain one uses (1.12) in [2], p. 322, 
and that ^E О ^E = ^E^ ^E^^E^" ^E aii^ ^E ° ^E = ^E hold for the mappings 
^£ and ЖЕ on ^'ipE into ффЕ.) 

Thus, vl£ = tl£ о vtjE. 

2. By Lemma 7, we have Iv^ о vl^ = id^£ (= identical mapping on 'VE). Since, 
by Lemma 4, Lemma 5 and part 1 of this proof, the range of vljs is equal to the domain 
of lv£, we have shown that Iv^ = (vl^)"^. П 

Proposition 1 is now proven by Lemma 4, Lemma 5 and Lemma 8. 

Acknowledgment: It is difficult for me to trace back in every detail the influence, 
JÜRGEN SCHMIDT (see [11]) might have exerted to the development of Section 1 down 
to Proposition 1 and of Section 4, since we used to exchange unpublished results and 
ideas years ago in a fruitful period of cooperation (which started in 1957). The rela­
tionship between Schmidt's paper [11] and Sections 1 and 4 of this paper can partly 
be deduced from the footnotes 14, 19, 21 in [3] and footnote 1 in [9]. 
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