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DOUBLE LAYER POTENTIALS AND THE DIRICHLET PROBLEM 

IVAN NETUKA, Praha 

(Received December 18, 1972) 

Introduction. The purpose of this paper is to investigate an integral representabihty 
and boundary behaviour of solutions of the generaHzed Dirichlet problem for 
discontinuous boundary conditions. For a class of open subsets of EucUdean space, 
a representation in terms of the generalized double layer potential is given for any 
bounded function measurable with respect to the area measure on the boundary. It 
is proved that the nontangential limit of the solution of the generahzed Dirichlet 
problem coincides with the boundary condition at each point of the boundary except 
for a set of area measure zero. As a by-product we establish that the area measure 

- and the harmonic measure are mutually absolutely continuous. This generalizes the 
classical result [15] obtained for domains with the boundary of bounded curvature. 
The domains which we consider are all regular domains for the Dirichlet problem. 
On the other hand, no smoothness assumptions on their boundaries are imposed. 

The concepts used here have their origin in investigations of J. KRÄL [8] and there 
are connnections of this paper with results obtained in [И] —[13]. Some results of 
this paper were announced in [14]. 

1. Preliminaries. This section serves to recall some facts, mostly in order to explain 
terminology and notation, sometimes to point out results on the subject. 

In what follows, m > 2 will be a fixed integer and the symbol JR"* will stand for the 
EucUdean space of dimension m. For M c: R"* we shall denote by cl M and fr M 
the closure and the boundary of M, respectively; H stands for the (m — l)-dimension-
al Hausdorflf measure defind in usual way (see [11], section 1). 

For r > 0 and y e R'", denote by Qr{y) the open ball with center y and radius r and 
put Г = fr ßi(0), A = H{r). 

If ß с R"* is a Borel set and S c= R'" is an open segment or a half-line, then z e S 
will be termed a hit of 5 on Q provided both S n Q n Q^{z) and (S — g) n ß,(z) 
have a positive linear measure for every r > 0. Given y e R"*, 0 < г g oo and 
в e Г, we shall denote by n%9, y) the total number of all the hits of {y + QO; 0 < 
< Q < r} on Q. It turns out that for fixed g, r > 0 and у e K", п%в, у) is a Baire 
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function of the variable в on Г (see [8], proposition 1.6) and one may define 

Jr 
Throughout this paper, G cz R^ will stand for an open set with compact boundary 

J5 Ф 0 and the following two conditions on G will be imposed: 

(1) fr G = fr {R^ - cl G), 

(2) lim sup v^(y) < ^A . 
r~>0+ уеВ 

It follows from Krai's results that (2) implies 

(3) sup V%{y) < 00 

(see [9], remark on p. 596 and [8], theorem 2.13). Consequently, G is a set with 
finite perimeter and the m-dimensional density djl^z) of G at z is well-defined for each 
ze R"^ (see [8], proposition 2.10 and lemma 2.7). 

Let us denote by Ж the Banach space of all finite signed Borel measures with 
support in B; the norm of an element /г e 95 is its total variation ||/i||. Given z e R"", d^ 
stands for the Dirac measure concentrated at z. With each /i e S5 we associate its 
potential 

и ix(x) = p{x - y) dju(y) 

corresponding to the Newtonian kernel p(z) = j^p '"/(m — 2). 
In view of (3), for any ju G 95, the distribution ^fi defined by 

^ ß[(p) = grad (p{x) grad U ji(x) dx 

over the class ^ of all infinitely diff'erentiable functions with compact support in R"" 
can be identified with a uniquely determined element ^fi of 95 and the operator 
^ :/X i-> ^fi acting on 95 is a bounded linear operator (see [8], theorem 1.13; 
compare also [11], theorem 5 and remark 9). 

The results of [11] — [13] will be used on several places in this paper. In fact, only 
a special form of those results (corresponding to the case of /I = 0) is important for 
us here. 

It follows from (2), (1) and theorems 20 and 31 in [12] that 

ysB 

In particular, 

(4) 0<da{y)< I, уеВ. 
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Put M = i^"' — cl G and observe that M is a non-void open set and fr M = Б 
(see (l))- (Note that M is just the set on which the Dirichlet problem will be investi­
gated.) RecaUing that the m-dimensional density ам{^) of M at z e jR'" is given by 
^M(^) = 1 — ас{г) we conclude by (4) that each 3̂  e Б is a regular point for the 
Dirichlet problem (see [6], corollary 10.5). 

Denote by n^(y) and n^(y) the exterior normal of G and M at y in the sense of 
Fédérer, respectively, and by Ê the reduced boundary of G (for definitions see [11], 
section 2 or [8], remark 2.11). Note here that В cz В and ^^(j;) = —/1 (̂3;) holds for 
any у G i^"'. 

It follows from (4) and from lemma 3.7 in [8] that 

(5) Я ( В - ^ ) = : 0 . 

Since H{Ê) < 00 (see remark 2.11 in [8]) we have Н{В) < oo as well. 
One easily verifies that vf{z) = v^{z) provided z e R"" and r > 0 and (l) impHes 

that both the sets Z — M and Z — G have a positive m-dimensional Lebesgue mea­
sure whenever Z is an arbitrary open set with Б n Z Ф 0. Consequently, the proposi­
tion formulated in [10] may be used to assert that G has only a finite number of 
components and their closures are mutually disjoint. (Note that the same is true 
for M.) We shall denote by g (0 ^ ^ < 00) the number of bounded components of G. 
The symbol Go will stand for the unbounded component of G (if any); the bounded 
components of G will be denoted by G ,̂ ..., G .̂ 

Finally, we shall write J^ for the null-space c^_ ^(0) of the operator 5^. 

2. Lemma. The dimension of Jf does not exceed q. 

Proof. Notice at (4) guarantees that the m-dimensional Lebesgue measure of В 
is zero (compare [13], lemma 25). Employing lemma 24 and theorem 19 in [13] 
we get 

L |grad Ufi{x)\^ dx = 0 

provided ß e Ж. Consequently, Ufi is constant on each Gj and vanishes on GQ. The 
same arguments as in the proof of theorem 26 in [13] may be used to justify that 

(6) 1//X = 0 on G implies fi = 0 

(compare also [8], lemma 4.8). 
If ^ = 0, the proof is complete. Assume now ^ > 0 and choose an arbitrary 

Zj e Gj [j = 1, ..,, q). In view of (6), the mapping 

fii-^[Uii{z,\...,Ufi{zJ] 

is an injection of Ж into R^. Consequently, dim Ж й ^^ 
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3. Notation. Let M denote the Banach space of all bounded Baire functions on В 
equipped with the supremum norm ||... ||. <̂  is the subspace of all continuous func­
tions in J*. We shall often write </, /i> instead of 

f / d / i , / e ^ , /16 95. 

For each yeW^ define v̂ , e 25 by 

(7) dv,(x) = " " ( - ) - ( - - ^ ) d H ( x ) , 

|x - j p 

and the operator T acting on ^ is introduced by 

(8) T/(};) = Л dc,(y)/(j) + </, v,> , у е Б , / e ^ . 

If follows from (5) in [12] and proposition 8 in [11] that 
(9) <T/,/i> = < / , ^ / i > , 

provided/e J* and ju e 95 (compare also with 3.2 and 3.4 in [8]). 
It should be noted that in our case 95 is a proper closed subspace of the dual space 

to M so that the traditional form of the Riesz-Schauder theory is not applicable to the 
pair of operators T, ^, On the other hand, §. SCHWABIK has recently published in 
[16] a modification of the above mentioned theory and his variant will be suitable 
for our purposes. 

Before stating an assertion concerning N — T_i(0) the following lemma is useful. 
We agree to denote by/ , the characteristic function of fr Gj (j = 1, ..., q), 

4. Lemma. Let its fix j e {l, . . . , q]. We have Tfj = 0 on В and 

(10) v,(frG,.) = 0 

whenever z e M (= K"* — cl G). 

Proof. Choose zeM and construct the function cpj-e^ in such a way that 
(Pj{cl Gj) = {1}, (Pj{z) = 0 and (Pj{cl Ĝ ) = {0} provided к Ф j . Making use of the 
formula (4) of [12] we obtain for each уеВ 

Tfj{y) = I grad (pj{x) . grad U ôy{x) dx = 0 . 

yields 

<fp v,> = icpp v,> = grad (pj . grad UÔ, = 0 . 

The same formula yields 

The proof is complete. 
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5. Proposition. The equalities 

dim Ж = dim N = q 

hold good. 

Proof. We first note that the functions/j are linearly independent. It is therefore 
sufficient to establish the equality dim J^ = dim N, Indeed, lemma 2 says that 
dim Ж S q and lemma 4 shows dim N '^ q. 

Before referring to the Schwabik's result, observe that the bilinear form </, цУ 
on J^ X 95 separates points both of 25 and ^ (compare [16], section 4) and 

\<f,fiy\u Wfhhh / ^ ^ ' i'^^-
Lemma 33 and theorem 31 of [12] may be applied to assert the existence of a com­

pact operator T^ acting on J* and a compact operator .^^ on 95 such that 

(11) <Ti/,/i> = < / , ^ i / i > , / G ^ , / ie95 

and 
\\T- Ы1 - T,\\ = 11^ - ^ÄJf - ЗГ,\\ < iÄ, 

I and J^ being the identity operator on ^ and Ж, respectively. Consequently, the 
operator V = T — T^ possesses a bounded inverse operator F_ i mapping ^ onto ^ 
and, similarly, iT = 5" — 5"i is a Hnear homeomorphism of 95 onto itself. Moreover, 
by (9), (11) we have 

(12) <F_i/,A^> = < / , ' r _ iM>, / G ^ , / iG95. 

Proposition 4.1 and theorem 4.1 of [16] will be apphed in the following context: 
X = J", У = 95, iT = - F _ i T i , L = - ^ i - r . i . One easily verifies that К and L are 
compact operators on J^ and 93, respectively, and 

Employing proposition 4.1 in [16] we arrive at 

dim (/ -• K)_ 1 (0) = dim {J - L)_ ^ (O) . 

Consequently, by the definition of K, L, 

dim T_ i(0) = dim ^ _ i(0) 

and the proof is complete. 

6. Theorem. Let v 6 ®. Then there is a jn with ^fi = v if and only if 

(13) v(frG,.) = 0 , j= 1 , . . . , ^ . 
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Proof. Let us denote by Г the restriction of the operator Г to ^ . Then ^ is the 
dual operator to f (see (9)) and it is immediately seen that {/j, . . . , / J is a basis of 
f„i(0) (compare with lemma 4). By remark 32 in [12], in particular by the formula 
(92), the Riesz-Schauder theory is applicable to the pair of the operators T, ^. 
Now the assertions follows from the Fredholm theorem. 

7. Notation. For z e JR"* and /e J* define 

(14) Wf{y) = \ / dv , = Г /(x) . ""^.^^-^^r^^ dfl(x) . 

It is worth noting that 

(15) lim Wf{z) = Tf{y) 
zeM 

provided/G^ and уеВ. This follows immediately by (7), (8) and theorem 2.15 
in [8]. 

In the rest of the paper, Xj e Gj will be a fixed point (j = 1,..., q). We shall write, 
for the sake of brevity, ôj instead of ôxj. It is obvious that each USj is continuous on 

R" - Ы-
The basic tool for our investigations is the following theorem. 

8. Theorem. Given ge^ there are f e ̂  {determined modulo N) and uniquely 
determined constants cij{ß) such that 

(16) g = Tf + t^j{G)vàj 

holds on B. 

If, in addition, g E^, then f e^ and 

(17) lim {Wf{x) + i ajig) U ôj{x)) = g{y) 

xeM 

for each y e B, 

Proof. We shall adopt the same notation as in the proof of proposition 5. We first 
note that the equation 

(18) Tf^g-Ya^Vôj, ge^, 
j=i 

has a solution in ̂  if and only if the equation 

il-K)h = V^,{g-t^jUôj) 
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(for the unknown he^) has the same property. By theorem 4.1 in [16] the last 
equation has a solution in ̂  if and only if 

(19) <F_i(^-^X;a,^,),Ai> = 0 

for any fie ^ satisfying 

(20) {J - L)fi:=0. 

One easily verifies that a /x e S fulfils (20) if and only if /x e iO^, Now, the necessary 
and sufficient condition (19) for solvabihty of (18) reads as follows: 

<F.i(^-i:a,.t/(5,),/i> = 0, fiEiOr, , 

or, equivalently, 

(21) {g-ioijUôj^jry^o 

(see (12)). The formula (21) can be written in the form 

q 

j = i 

If {^1, ..., ßg} is a basis in J^, then the matrix (U Hk{^j)) (j, fc = 1, ..., ^) is regular 
(compare with (6)). Consequently, given ^ e J*, there are uniquely determined 
ocy = aj(g) satisfying 

q 

(22) X ^jid) и /ifc(x;) = <ог, /ift> , /c = 1, ..., g . 
j = i 

It is obvious that / enjoying (16) is determined modulo N. 
As for the second part, let t mean the same as in the proof of theorem 6. The 

Riesz-Schauder theory being applicable to the pair of the operators fand ^ , the proof 
of the existence of a n / e ^ satisfying (16) follows along the same lines as in [8] 
(theorem 4.13). In order to make the proof of our theorem complete it remains to 
refer to (15). 

9. Remark. The proof of theorems 6 and 8 is patterned after Krai's proof of the 
corresponding theorems of §3 in [8]. A little more restrictive condition on G than (2) 
is required in [8] and only g e^ are considered. Theorem 6 is related to theorem 28 
in [13] where the case of connected G for a more general problem is treated (see also 
[10]). Results of this kind has also been obtained in [3] for the situation that both G 
and M are connected (see theorems 7, 8). The importance of the theorem 8 lies in the 
fact that not only continuous but an arbitrary bounded Baire function on В possesses 
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the representation of the form (16). Of course, the proof of this theorem depends on 
a previous detailed study of the properties of the operator T acting over ^ (see [12]) 
and on Schwabik's modification of the Riesz-Schauder theory [16]. 

10. Lemma. Let g„ be a uniformly bounded sequence of elements of ^ and sup­
pose that lim ö̂ „(x) = О for each x e В. For each n, letf„ e J* and aj{gn) {j ^ 1> • • •> ^) 

M-*00 

satisfy on В 

(23) g„ = Tf„+t aj(g„) Uôj. 

If ze M, then 

(24) lim {Wf„{z) + t aj{9„) U ôj{z)) = 0 . 

Proof. Fix z e M for the time being and observe that 

(25) lim aj{g„) = 0 , j = l,...,q, 
n-^oo 

follows easily from (22) where we have written g„ instead of ^. 

Referring to (10) and to theorem 6 we may assert the existence of a /i e ® with 
^fi = v .̂ Recalling that 

Wf,{z) = </„, v,> = </„, ^1лУ = <T/„, /z> 
we arrive at 

<gn. /̂ > = wf„{z) +1 cij{gn) и A<x,.). 

Now the Lebesgue dominated convergence theorem together with (25) yields 

lim Wf„{z) = 0 . 
n-»-oo 

Using (25) once more we conclude that (24) holds. 
The proof is complete. 
The purpose of our further considerations is to estabhsh an integral representation 

for the solution (on M) of the generahzed Dirichlet problem with boundary conditions 
belonging to J*. The method of finding such a solution is well-known in the case 
that M is bounded (see e.g. [6], chap. 8). Since M has not to be bounded in our case, 
some definitions may be useful. 

11. Definition. (Compare [2] or [7] where the Dirichlet problem in the context of 
harmonic spaces is considered.) Let P с JR"" be an open set, fr P Ф 0, and / be an 
arbitrary extended real-valued function defined on fr P. We denote by '%f the set of 
all hyperharmonic functions (for definition see [6]) м on P which are lower bounded 
on P, non-negative outside the trace on P of a compact set of P'" and such that for 

66 



any 3; e fг P 
lim inf ы(х) ^ f{y). 

We put ^f = —'^^-f^ and denote Hf (resp. Hf) the greatest lower (resp. least upper) 
bound of # ^ (resp. ^ ^ ) . 

A function / on fr P is said to be resolutive (relative to P), if Hj = Hf and 
|Я^(х)| < 00 for any XE P. We set Hf = Hf, provided/is resolutive. It is worth to 
note that any bounded Baire function on fr P is resolutive ([2], Theorem 6 and the 
text on p. 94). 

In what follows we shall denote by /л^ the harmonic measure relative to P and x. 
We know that for any x e P 

H%x) = fan: 

provided/ is resolutive (see [7], Satz 1,2). Of course, the above introduced notions 
coincide with those given in [6] in the case that P is bounded. 

Let us note that we have tacitly used the fact that R"" (m > 2) is a strong harmonic 
space in the sense of the theory of harmonic spaces (see [1], p. 61). 

Recall also that a superharmonic function s on K" is said to be a potential, if the 
greatest subharmonic minorant of 5 equals zero. For instance, for any x, the function 
Uô^ is a potential ([1], p. 56). It should be remarked here that a (finite) linear com­
bination with non-negative coefficients of potentials is a potential. 

In the following lemma, P has the above specified meaning. 

12. Lemma. Let p be a potential in R^. Suppose that the function h is continuous 
on cl P and harmonic in P and denote by f the restriction of h to fr P. / / 

|/z| ^ |> on P , 

then Hf coincides with h on P. 

Proof. It follows immediately from [7] (see definitions 1 and 3 and theorem 1). 

13. Proposition. Let g e Ш and let f be any function satisfying (16). Then Hf 
admits on M the following representation: 

(26) H^=Wf + tciÂ9)Uôj., 

Proof. We first assume that g e<ig. One easily verifies that the estimate 

\Wf\uk.UÔ^^ 

holds on M with к chosen large enough. Hence it follows from theorem 8 (see (17)) 
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and lemma J 2 that the function 

^/ + E ̂ Â9) Щ 
coincides (on М) with Я^. 

Let us denote by ̂  the class of all g e ^ for which the assertion of the proposition 
is true. We know that ^ a Sf and we are going to prove that J* = «9̂ . 

For this purpose, let {g^ be a uniformly bounded sequence of elements of ^ , 
lim g„ = g pointwise on В and le t /e Ĵ  satisfy (16). By the hypothesis, we have on M 

Fix z e M and observe that 

(27) lim HfXz) = lim L d//f = fff (z) 
n-*co n->-ooJ 

by the Lebesgue dominated convergence theorem. Lemma 10 gives easily 

(28) lim (W/„(z) + i aj{g„) U ôj{z)) = Wf{z) + f aj{g) U 5,(z) 

and we conclude from (27) and (28) that g e 6^. Consequently, ^ = Ĵ  and the proof 
is complete. 

14. Remark. Recalling the definition of Wf (see (14)), we see that the formula 
(26) gives an integral representation of Hf for any g E ̂ , The results of [11] enable 
us to extend this result to the case of bounded functions measurable (Я) on B. 

15. Notation. The symbol ©^ will stand for the set of all elements of S which are 
absolutely continuous (Я). Let us note here that v̂  e Ъц for any у e R"*. In view of 
(4) and (5), proposition 12 of [11] is applicable (with Я = 0, of course) in our case. 
Consequently, it follows immediately that J^ cz S^. 

16. Lemma. Let for each g e ^ the constant ai(g) (/ = 1,..., q) have the same 
meaning as in theorem 8. Then there is ßi e ^^ such that 

(29) 'ai{g) = <^, î >̂ , ge^. 

Proof. Let us keep the notation adopted in the proof of theorem 8. Denoting by 
[bi,. . . , b j the I'th row of the inverse matrix to the matrix (U fijxj)) we can write 
by (22) 

cii{g) = <g. Z bjfij} , ge^. 
j = i 

Since Ж cz 95д, we conclude that jS/ = Z ^J^J ^ ®я which completes the proof. 
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17. Proposition. For any z e M, the harmonic measure fx^ belongs to S^ . 

Proof. For fixed z e M, choose x^ such that ^x^ — v .̂ (Lemma 4 and theorem 6 
guarantee the existence of such a measure.) Applying proposition 12 in [11] we arrive 
at x^ G ®я. 

Let us evaluate (^g, x^) for ^ e ^ . By (16) we have 

ig, x,> = <T/, x,> + f aj^g) U x,{xj) = </, v,> + . . . = 

= W / ( z ) + t a , ( 3 ) l 7 ^ , ( z ) + f b,a,(^) 

where we have put bj = U x^{xj) — U ôj{z). By virtue of (26) and (29) we get 

Hf (z) = <g, щу 
a 

with x^ = K^ — YJ ̂ jßj ^ ^H- Consequently, iif = x^e ^ц, 

18. Corollary. / / / is a hounded function measurable {H) on B, then f is resolutive 
relative to M. 

Proof. For each z e M, the function/ being measurable (Я), is measurable (jW )̂. 
Since В is compact, / is integrable (fi^). Now it is possible to refer to [7], Satz 2-

19. Proposition. Let N^ consist of all functions on В which are equivalent (H) 
to a function of N, 

Suppose that ge^ and g = 0 almost everywhere (Я). Then there is an f e ^ 
such that 

(30) Tf^g. 

Iff G ^ satisfies (30), then feNji. 

Proof. We shall apply theorem 8. Observe that by lemma 11 ai{g) = 0, / = 1, . . . 
..., ^, so that the existence o f / G ^ fulfilHng (30) follows from theorem 8. 

Suppose now tha t /G J* is a solution of (30). Choose an arbitrary v G Жд such that 
v(fr Gj) = 0, J = 1, . . . , q. By theorem 6 and by proposition 12 in [11] we may assert 
the existence of a // G Ъ^ with ^^i = v. Consequently, 

(31) 0 = ig, fi} = <Г/, /i> = </, агцу = </, v> . 

Define on the linear space ©я the linear functionals as follows: 

ФХХ) = </ , ,Х>, Ф{Х) = (Г,ХУ, х е « я . 
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If XQ e 33jfj satisfies Ф/^о) = 0 for all j , then </, XQ} = 0 by (31), or, which is the 
same, Ф(%о) = 0- Consequently, as well-known from the linear algebra, there are 
numbers Cj such that 

Ф = X ^j'^j • 

Now we arrive at 
<f-tcjfj,>cy = 0, х е З З я , 

which implies / = ^ Cjfj Я-almost everywhere. 

20. Notation. For Q cz R^, у e R"^, let us call the contingent of ß at у and denote 
by contg (6 , y) the system of all half-lines {y + r9; r > 0}, в e Г, for which there 
is a sequence of points УпЕ Q with y^ Ф y, lim y„ = у and 

It is easy to see that 
contg (cl Q, y) = contg (6 , y) . 

In particular, 
contg (Б, y) = contg {B, y) , уеВ. 

Indeed, cl Б = Б by (4) and by lemma 3.7 in [8]. 
Suppose that F is a function defined on M. The number к is termed the nontangen­

tial limit of F at z e Б (relative to M) provided 

lim F(X) = к 
x-*z 
xeS 

for any set S a M, for which z G cl S and 

contg (S, z) n contg (Б, z) = 0 . 

21. Proposition. If fe^, then the nontangential limit of Wf at z relative to M 
equals Tf(z) at each z e В except for a set of H-measure zero. 

Proof. Before applying lemma 2.1 of [4] observe that 

(32) f m • l " 7 ^ - ^ " , r ^ l dHiy) ^ ll/ll . v-{z) < ex, 

for each z e В (compare [8], lemma 2.12) and 

(33) sup ^ 'Y-, < °° 
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provided y e В (see [8], corollary 2.14). Note also that H{Q,{z) n B) > 0 whenever 
z E B, r > 0. This is a consequence of (4), (5) and of lemma 3.7 in [8]. 

Denote by В the set of all z G Б for which 

lim 
^0+ H{Q,{z)nB) J 

fdH=f(z) 

The results of A. S. BESICOVITCH and A. P. MORSE show that H(B — B) = 0 (see [5], 
section 8.7). 

Fix now z e В and S cz M such that z e cl 5' and 

contg (S, z) n contg (Б, z) = 0 

and consider first the function/^ = / — /(2). Since (32) and (33) hold, lemma 2.1 
in [4] may be applied and one esily derives 

(34) lim Wf^{x) = < / „ v,> . 
xeS 

The formula (2.19) of theorem 2.15 in [8] (with С = M a n d / a s the constant function 
/(z)) together with (34) and (8) yields 

lim Wf{z) = </, v,> + A da{z)f(z) = Tf(z) , 
x-*z 
xeS 

which concludes the proof. 

22. Theorem. Given a bounded function g on В measurable (Я) there are uniquely 
determined constants aj and a bounded function f on В measurable (Я) [determined 
modulo Njj) such that 

(35) H^ = Wf + Y ^j U^j ^^ ^ • 

Moreover, the nontangential limit of Hf equals g at each point of В except for 
a set of H-measure zero. 

Proof. Choose g e ^ to be equivalent (Я) to g and note that 

(36) H f = Hf 

by proposition 17. According to theorem 8 there a r e / e J* and numbers aj such that 

(37) g = Tf + tajUôj, 

Coming back to proposition 13 and to (36) we conclude that (35) holds. 

Referring to proposition 21 the assertion concerning nontangential limits follows 
immediately by (35) and (37). 
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It rernains only to investigate the question of uniqueness. Suppose t h a t / i , / 2 are 
bounded functions on В measurable (Я) and a j , a? constants such that 

Wi +1 «] US J = wf2-ht «i Щ 
holds on M. Choosing first/^ e ^ in such a way that/^ = /^ Я-almost everywhere and 
recaUing that Wfi = Wfi (i = 1, 2) we easily obtain by proposition 21 that the equaUty 

holds on В except for a set of Я-measure zero. If pie Ж (i.e. £^fi = 0), then // e Ж^ 
and 

and we conclude that aj = aj for each j = 1, ..., g (compare with (22)). 
We have, a fortiori, that T(J\ - / 2 ) is equivalent (Я) to zero. According to 

proposition 19,/1 — /2 e Мд, Consequently,/i — /2 e iV^. 
The proof is complete. 

23. Remark. It is natural that the exceptional set in theorem 22 be one of Я-
measure zero. Indeed, if E is any set of Я-measure zero and x its characteristic 
function, then H^ vanishes identically (proposition 17) and limits of H^ do not 
coincide with x just on E. 

The problem arises whether one could improve the assertion concerning the 
boundary behaviour of Hf. More specifically, whether it is possible to state that the 
ordinary limit (i.e. with respect to M) of H^ equals g on В except for a set of Я-
measure zero. It is not too surprising that the answer is negative. 

24. Example, (m = 3) Let G = Я^ — <0, 1>^ (the complement of the unit cube). 
Note that in this case 

lim sup vf(y) = n = iÄ , 
r-»-0+ уеВ 

Let Я с <(0, 1) be chosen such that, for any interval J a <0, 1>, both the sets J n R 
and J — R have a positive Hnear measure (for a construction of such a set see [17], 
excersise 5 on p. 244). Put 

ß = и P X i^ X {j}) u{Rx {j} X R)u ({;} x R x R)] 
i = o 

and observe that H{Q,{y) n Q) > 0 and H{Q,{y) - Q) > 0 provided уеВ and r > 0. 
Let g stand for the function which equals 1 on g and zero elsewhere in B. Given an 
arbitrary set Z с Б of Я-measure zero, then there is always a point у e В — Z such 
that the ordinary Hmit of H^ does not exist at y. 

25. Proposition. Let z E M and let M^ be the component of M containing z. Then 
the restriction of H to the boundary of M^ is absolutely continuous (fi^). 
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Proof. Fix zeM. Choose an arbitrary g с fr M^ such that /xf (ß) = 0 and denote 
by g the characteristic function of ß. The non-negative function Ef (being harmonic 
and vanishing at z) is equal to zero on M^. It follows by theorem 22 that ^ = 0 at 
each point of В except for a set of Я-measure zero. In other words, H{Q) = 0. 

The proof is complete. 
Propositions 17, 25 show, that, for connected M, the measures Я, /zf (z e M) have 

the same class of zero sets. This fact together with Satz 2 in [7] imphes the validity of 
the corollary given below which clears up the reason why we have limited ourselves 
in theorem 22 to the case of functions measurable (Я). 

26. Corollary. A bounded function on В is resolutive (relative to M) if and only if 
it is measurable (Я). 
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