EPI-ARCHIMEDEAN GROUPS

PAUL CONRAD, Lawrence

(Received October 4, 1972)

An epi-archimedean group is a lattice-ordered group for which each l-homomorphic image is archimedean. Such groups are abelian and have been called hyper-archimedean or para-archimedean. They are at the opposite end of the spectrum from the free abelian l-groups.

Each group in the class \mathcal{E} of epi-archimedean groups can be represented as a subdirect sum of reals. Let \mathcal{S} be the class of all l-groups which have a representation as a subdirect sum of reals in which each element has finite range. Then $\mathcal{S} \subseteq \mathcal{E}$ and, in fact, an l-group belongs to \mathcal{S} if and only if it is an l-subgroup of a vector lattice in \mathcal{E} with an order unit. \mathcal{S} is closed with respect to cardinal sums, l-subgroups, l-homomorphic images and l-hulls. If $G \in \mathcal{S}$ then the v-hull G^v of G is an a-closure of G and G^v is the unique a-closure of G in \mathcal{S} (Theorem 5.1). Also each $G \in \mathcal{S}$ has a unique essential closure in \mathcal{S} (Theorem 2.3).

In Section 4 the subdirect sums of integers that have been studied by Specker, Nobeling and others are shown to be those l-subgroups of $\Pi \mathbb{Z}$ that are generated by characteristic functions. These can also be characterized as rings of bounded integral functions. Such groups belong to \mathcal{S} and the group generated by the set of all singular elements in an arbitrary l-group is such a group. We study these groups and also their v-hulls. Epi-archimedean f-rings are investigated in Sections 4 and 6.

DEFINITIONS AND NOTATION

Let G be an l-group. If $g \in G$ then $G(g)$ will denote the convex l-subgroup of G generated by g

$$G(g) = \{ x \in G \mid |x| \leq n|g| \text{ for some } n > 0 \}.$$

If A is a subset of G then A' will denote the polar of A.

$$A' = \{ x \in G \mid |x| \wedge |a| = 0 \text{ for all } a \in A \}.$$
The cardinal sum (product) of a set \(\{G_i \mid i \in I\} \) of \(l \)-groups will be denoted by \(\Sigma G_i (\prod G_i) \) or if \(I \) is finite by \(G_1 \oplus \ldots \oplus G_n \).

A prime subgroup \(M \) of \(G \) is a convex \(l \)-subgroup such that the convex \(l \)-subgroups that contain it form a chain. \(M \) is a minimal prime if and only if \(0 < g \in M \) implies \(g' \not\in M \). A convex \(l \)-subgroup \(N \) of \(G \) that is maximal without some element \(g \) is prime and the intersection \(N^* \) of all convex \(l \)-subgroups of \(G \) that properly contain \(N \) covers \(N \). \((N^*, N) \) or just \(N \) is called a value of \(g \). \(N \) is called regular.

An \(l \)-group \(G \) is laterally complete if each disjoint subset of \(G \) has a least upper bound. If \(G \) is a subdirect sum and a sublattice of a cardinal product of totally ordered groups then \(G \) is called representable.

Let \(H \) be an \(l \)-subgroup of \(G \). Then \(G \) is an \(a \)-extension of \(H \) if for each \(0 < g \in G \) there exists \(0 < h \in H \) such that \(nh > g \) and \(ng > h \) for some \(n > 0 \). In this case \(g \) and \(h \) are said to be \(a \)-equivalent. \(G \) is an \(a \)-extension of \(H \) if and only if the map \(L \to L \cap H \) is a one to one map of the set of all convex \(l \)-subgroups of \(G \) onto those of \(H \). \(G \) is \(a \)-closed if it admits no proper \(a \)-extensions and an \(a \)-closed \(a \)-extension of \(G \) is called an \(a \)-closure of \(G \).

\(H \) is a large \(l \)-subgroup of \(G \) or \(G \) is an essential extension of \(H \) if for each non-zero convex \(l \)-subgroup \(L \) of \(G \), \(L \cap H \neq 0 \). Note that an \(a \)-extension is an essential extension.

Each archimedean \(l \)-group \(G \) has a unique essential closure \(G^e \) in the class \(\mathcal{A} \) of archimedean \(l \)-groups [13], (i.e., \(G^e \) is an essential extension of \(G \) that admits no proper essential extensions in \(\mathcal{A} \)). Also \(G \) is contained in a unique minimal vector lattice \(G^* \) in \(\mathcal{A} \) called the \(v \)-hull of \(G \). \(G \) is large in \(G^e \) (see [8] and [15]). We shall denote the Dedekind-MacNeille completion of \(G \) by \(G^\wedge \), and the divisible closure or the injective hull of \(G \) by \(G^d \).

Finally \(R \) will denote the additive group of real numbers with the natural order and \(M \prec R \) denotes that \(M \) is a group that is \(o \)-isomorphic to a subgroup of \(R \).

1. EPI-ARCHIMEDEAN \(l \)-GROUPS

The following theorem is basic for the theory developed in this paper.

Theorem 1.1. For an \(l \)-group \(G \) the following are equivalent.

1) \(G \) is epi-archimedean.

2) Each proper prime subgroup of \(G \) is maximal and hence minimal.

3) \(G = G(g) \oplus g' \) for each \(g \in G \).

4) If \(0 < f, g \in G \), then \([f - (mg \wedge f)] \wedge g = 0 \) for some \(m > 0 \).

5) \(G \) is \(l \)-isomorphic to an \(l \)-subgroup \(G^* \) of \(\Pi_1 \) and for each \(0 < x, y \in G^* \) there exists an \(n > 0 \) such that \(nx_i > y_i \) for all \(x_i \neq 0 \).
6) If \(0 < f, g \in G \) then \(f \wedge ng = f \wedge (n + 1)g \) for some \(n > 0 \).
Moreover each representation of an epi-archimedean \(l \)-group as a group of real valued functions must satisfy (5).

The history of this theorem is as follows: AMEMIYA [1] proved 1 \(\iff \) 3 for vector lattices; BAKER [2] proved 1 \(\iff \) 2 for vector lattices; PEDERSEN [19] proved 5 \(\iff \) 2; LUXEMBURG and MOORE [17] proved 1 \(\iff \) 3 for vector lattices; ZANNEN [23] proved 3 \(\iff \) 1 for vector lattices; BIGARD [5] proved 2 \(\iff \) 3; BIGARD, CONRAD and WOLFENSTEIN [7] proved 1 \(\iff \) 2 \(\iff \) 3.

Also conditions on pairs of elements from \(G^+ \) that are equivalent to (4) or (6) were derived by most of these authors.

Proof of Theorem. (1 \(\iff \) 2) \(G \) is archimedean and hence abelian. If \(M \) is a proper prime subgroup of \(G \) then \(G/M \) is an archimedean \(o \)-group and hence \(M \) is maximal.

(2 \(\iff \) 3) If \(G \neq G(g) \oplus g' \) then \(G(g) \oplus g' \subseteq M \subset G \) for some prime subgroup \(M \) which is necessarily minimal. But then \(0 < g \in M \) and so \(g' \nleq M \), a contradiction.

(3 \(\iff \) 4) \(f = f_1 + f_2 \in G(g) \oplus g' \). Thus \(mg \leq f_1 \) for some \(m > 0 \) and so \(mg \land f = f_1 \). Therefore
\[
[f - (mg \land f)] \land g = f_2 \land g = 0.
\]

(4 \(\iff \) 1) First \(G \) is archimedean. For suppose that \(0 \leq f, g \in G \) and \(ng \leq f \) for all \(n \). If
\[
0 = [f - (mg \land f)] \land g = (f - mg) \land g
\]
then \(mg = f \land (m + 1)g = (m + 1)g \) and so \(g = 0 \). Now if \(\sigma \) is an \(l \)-homomorphism of \(G \) then clearly \(G\sigma \) also satisfies (4) and so \(G\sigma \) is archimedean.

(1, 2, 3 \(\iff \) 5) \(G \) is abelian and each prime subgroup is maximal. Thus without loss of generality \(G \) is a subdirect sum of reals, \(G \subseteq \prod R_i \). Pick \(0 < x, y \in G \). \(y = a + b \in G(x) \oplus x' \) and so \(nx > a \) for some \(n > 0 \). Thus \(nx_i > x_i \) provided \(x_i \neq 0 \). Note that we have shown that every representation of \(G \) as a subdirect sum of reals satisfies (5).

(5 \(\iff \) 6) There exists \(n > 0 \) such that \(ng_i > f_i \) for all \(g_i \neq 0 \). Thus
\[
(f \land ng)_i = \begin{cases} f_i & \text{if } g_i > 0 \\ 0 & \text{if } g_i = 0 \end{cases} = (f \land (n + 1)g)_i
\]
and so \(f \land ng = f \land (n + 1)g \).

(6 \(\iff \) 1) First \(G \) is archimedean. For if \(mg \leq f \) for all \(m \) then \(ng = f \land ng = f \land (n + 1)g = (n + 1)g \) and so \(g = 0 \). Next each \(l \)-homomorphic image of \(G \) satisfies (6) and so is archimedean.

Let \(\mathcal{E} \) be the class of all epi-archimedean \(l \)-groups. It follows at once from (2) that an \(l \)-group \(G \) belongs to \(\mathcal{E} \) if and only if \(G \) is representable and each totally ordered \(l \)-homomorphic image is archimedean. One only needs the fact that the minimal prime subgroups of a representable group are normal.
If \(G \in \mathcal{E} \) has an order unit \(u \), then \(u' = 0 \) and so by (3) \(G = G(u) \). Thus \(u \) is a strong order unit. Also each \(l \)-ideal of \(G \in \mathcal{E} \) that contains an order unit is a cardinal summand. It follows from (4) or (6) that \(\mathcal{E} \) is closed with respect to \(l \)-subgroups, \(l \)-homomorphic images and cardinal sums. But \(\prod_{i=1}^{\infty} R_i \notin \mathcal{E} \) and so \(\mathcal{E} \) is not closed with respect to cardinal product. It follows from (2) that \(\mathcal{E} \) is closed with respect to \(a \)-extensions, but Example 7.1 shows that \(G \in \mathcal{E} \) need not have a unique \(a \)-closure.

If \(G \) is an epi-archimedean \(l \)-subgroup of an \(l \)-group \(H \) then it follows from (4) that there is a maximal \(l \)-subgroup of \(H \) that contains \(G \) and is epi-archimedean.

In Section 3 we show that each \(l \)-group \(H \) admits a largest epi-archimedean \(l \)-ideal. This is the epi-archimedean kernel of \(H \) introduced by Martínez [20].

Suppose that each proper \(l \)-homomorphic image of the \(l \)-group \(G \) is archimedean and let \(K \) be the intersection of all the non-zero \(l \)-ideals of \(G \). Then there are three possibilities.

I. If \(K = G \) then \(G \) is \(l \)-simple.

II. If \(K = 0 \) then \(G \) is epi-archimedean.

Proof. Let \(\{L_\alpha \mid \alpha \in A\} \) be the set of non-zero \(l \)-ideals of \(G \). Then there is a natural \(l \)-isomorphism of \(G \) into the abelian group \(\prod_{\alpha \in A} G/L_\alpha \) and so \(G \) is abelian. Thus if \(P \neq 0 \) is a prime subgroup of \(G \) then \(G/P \) is epi-archimedean and totally ordered and hence \(G/P \vartriangleleft R \). Thus each prime subgroup is a maximal \(l \)-ideal and so \(G \) is epi-archimedean.

III. If \(0 \neq K \neq G \) then \(G \) is an extension of \(K \) by an epi-archimedean \(l \)-group \(B \cong G/K \).

The following are examples of Case III.

a) \(G \) is a lexicographic extension of an \(l \)-simple \(l \)-group \(K \) by \(R \). In particular, the lexicographic extension of \(R \) by \(R \) is such a group.

b) Let \(G \) be the wreath product of \(Z \) by \(Z \). Then \(G \) is an extension of \(K \) by \(Z \), where \(K \) is the direct product of a countable number of copies of \(Z \). Let \(K \) have the cardinal order and let \(G \) be the lexicographic extension of \(K \) by \(Z \).

c) Let \(G \) be the restricted wreath product of \(Z \) by \(Z \). Then \(G \) is an extension of \(K \) by \(Z \), where \(K \) is the direct sum, of a countable number of copies of \(Z, K = \bigoplus Z_i \). Order \(K \) lexicographically and let \(G \) be the lexicographic extension of \(K \) by \(Z \). Note that \(G \) is an \(o \)-group with one proper normal convex subgroup.

We have the following special cases.

Corollary. If \(G \) is representable then \(G \) is epi-archimedean or \(G \) is an \(o \)-group with one or no proper normal convex subgroup.

Proof. The intersection of all prime subgroups of \(G \) equals 0 and each minimal prime subgroup is normal. Thus if 0 is not prime it follows that \(K = 0 \).
Corollary. If G is abelian then G is epi-archimedean or G is an o-group with rank 2.

Lemma A. (a) If G is an l-subgroup of $\Pi_{i}R_{i}$ and for each $0 < g \in G$ there exists $0 < r, s \in R$ such that $r < g_{i} < s$ for each $g_{i} \neq 0$ then $G \in \mathcal{E}$.

(b) If $G \in \mathcal{E}$ has an order unit u then there exists an l-isomorphism τ of G into $\Pi_{i}R_{i}$ with $u\tau = (1, 1, 1, \ldots)$. Moreover, each such representation $G\tau$ of G satisfies (a).

(c) If $G \in \mathcal{E}$ and G is an f-ring with no nilpotent elements then there exists a ring l-isomorphism τ of G into $\Pi_{i}R_{i}$. Moreover, each such representation $G\tau$ of G satisfies (a).

Proof. (a) For $0 < x, y \in G$ there exist $0 < r, s \in R$ such that $r < x_{i}$ for all $x_{i} \neq 0$ and $y_{i} < s$ for all i. Pick an integer n such that $nr > s$. Then $nx_{i} > y_{i}$ for all $x_{i} \neq 0$ and so by (5) $G \in \mathcal{E}$.

(b) By Theorem 1.1 we may assume $G = G(u) \subseteq \Pi_{i}R_{i}$ and $u = (1, 1, 1, \ldots)$. If $0 < g \in G$ then by (5) there exist positive integers m, n such that $ng_{i} > u_{i} = 1$ for all $g_{i} \neq 0$ and $m = mu_{i} > g_{i}$ for all i. Thus $m > g_{i} > 1/n$ for all $g_{i} \neq 0$.

(c) Each prime l-ideal M of G is minimal and hence the join of principal polars. Thus M is a ring ideal and so G/M is o-isomorphic to a subring of R. Let $\{M_{i} \mid i \in I\}$ be the set of all prime ideals. Then there exists a ring l-isomorphism of G into $\Pi_{i}G/M_{i}$ and hence into $\Pi_{i}R_{i}$.

So (without loss of generality) we assume that G is an l-subring of $\Pi_{i}R_{i}$ and consider $0 < g \in G$. By (5) there exist positive integers m and n such that $mg > g^{2}$ and $ng_{i} > g_{i}$. Thus $m > g_{i} > 1/n$ for all $g_{i} \neq 0$.

We have not been able to answer the following questions.

Does each $G \in \mathcal{E}$ have a representation that satisfies (a)?

Find an example of $G \in \mathcal{E}$ that is not contained in an epi-archimedean f-ring with zero radical.

Suppose $G \subseteq \Pi_{i}R_{i}$ satisfies (a). Does the l-subring of ΠR_{i} generated by G belong to \mathcal{E}?

Baker [2] defines an element g in ΠR_{i} to be a step function if g has finite range. Let \mathcal{F} be the class of all l-groups G which have a representation as real valued step functions. Then by (5) $\mathcal{F} \subseteq \mathcal{E}$ and by Example 7.1 $\mathcal{F} \neq \mathcal{E}$.

Now clearly \mathcal{F} is closed with respect to l-subgroups and cardinal sums. We shall show that \mathcal{F} is closed with respect to l-homomorphic images and v-hulls and that the v-hull G^{v} of $G \in \mathcal{F}$ is the unique a-closure of G in \mathcal{F}.

Also both \mathcal{F} and \mathcal{E} are closed with respect to divisible hulls. For if $G \in \mathcal{F}$ then we may assume that G is an l-subgroup of step functions in ΠR_{i} and so $G \subseteq G^{d} \subseteq \Pi R_{i}$.

If $x \in G^{d}$ then $nx \in G$ for some $n > 0$ and hence x must be a step function. If $G \in \mathcal{E}$
then we may assume that $G \subseteq G^d \subseteq \Pi R_i$. If $0 < x, y \in G^d$ then $nx, ny \in G$ for some $n > 0$ and hence by (5) there exists $m > 0$ such that $mnx_i > ny_i$ for all $x_i \neq 0$. Therefore $mx_i > y_i$ for all $x_i \neq 0$ and so by (5) again $G \in \mathcal{S}$.

Proposition 1.2. If G is an epi-archimedean l-subgroup of ΠR_i that contains the long constants then G consists of step functions and so belongs to \mathcal{S}.

Proof. If $0 < g \in G$ then by Lemma A there exists $0 < r, s \in R$ such that $r < g_i < s$ for all $g_i \neq 0$. Suppose (by way of contradiction) that g has infinite range. Then $\{g_i \mid i \in I \text{ and } g_i \neq 0\}$ is an infinite subset of the compact set $[r, s]$ and so has a limit point a in $[r, s]$. Let \bar{a} be the long constant (a, a, a, \ldots). Each open interval of R that contains a must contain a component $g_i \neq a$ or 0 of g.

Case I. A sequence of the g_i converge to a from below. Then $(\bar{a} - g) \vee 0$ has a sequence of strictly positive components that converge to zero which contradicts Lemma A.

Case II. A sequence of the g_i converge to a from above. Then $(g - \bar{a}) \vee 0$ has a sequence of strictly positive components that converge to zero.

Corollary I. Let G be an epi-archimedean vector lattice with an order unit u. Then there exists an l-isomorphism τ of G into ΠR_i with $u \tau = (1, 1, 1, \ldots)$ and $G \tau$ consists of step functions and so $G \in \mathcal{S}$.

Corollary II. An l-group G belongs to \mathcal{S} if and only if G is an l-subgroup of an epi-archimedean vector lattice H with a unit.

Proof. If $G \in \mathcal{S}$ then we may assume that $G \subseteq \Pi R_i$ and each g in G is a step function. Thus G is an l-subgroup of the group H of all step functions in ΠR_i. The converse follows from Corollary I.

An l-group G is locally \mathcal{S} (locally \mathcal{S}) if each $G(g)$ belongs to $\mathcal{S}(\mathcal{S})$. Clearly locally \mathcal{S} implies locally \mathcal{S} and it follows from (4) that G is locally \mathcal{S} if and only if $G \in \mathcal{S}$. By Corollary I each epi-archimedean vector lattice is locally \mathcal{S}.

Now Bernau [3] and Baker [2] both give an example of an epi-archimedean vector lattice that does not belong to \mathcal{S}. Therefore locally \mathcal{S} does not imply \mathcal{S}. Thus any elementwise definition of \mathcal{S} must involve an infinite number of elements; otherwise locally \mathcal{S} implies \mathcal{S}.

Finally note that Example 7.1 shows that an epi-archimedean l-group with an order unit need not belong to \mathcal{S}. Let G be as in this example. Then since G has an order unit so does its v-hull G^v. Thus if $G^v \in \mathcal{S}$ then $G^v \in \mathcal{S}$ and hence so does G, a contradiction. Thus the v-hull of an epi-archimedean group need not be epi-archimedean.
Theorem 1.3. \(\mathcal{S} \) is closed with respect to cardinal sums, \(l \)-subgroup, \(l \)-homomorphic images and \(v \)-hulls.

Proof. The first two are clear. Let \(K \) be an \(l \)-ideal of \(G \in \mathcal{S} \). Then without loss of generality \(G \) is an \(l \)-subgroup of the group \(H \) of all step functions in \(\Pi R \). Let

\[
K_\mu = \bigcap\{L \mid K \subseteq L \text{ and } L \text{ is an } l \text{-ideal of } H\}.
\]

This is the \(l \)-ideal of \(H \) that is generated by \(K \) and \(K_\mu \cap G = K \). Moreover,

\[
\frac{G}{K} = \frac{G}{K_\mu \cap G} \cong \frac{K_\mu + G}{K_\mu} \subseteq \frac{H}{K_\mu}
\]

but \(H/K_\mu \) is an epi-archimedean vector lattice with an order unit and so belongs to \(\mathcal{S} \).

It follows from a result of BLEIER [8] that the \(v \)-hull \(G^v \) of \(G \) is the intersection of all the \(l \)-subspaces of \(H \) that contain \(G \).

Another proof. \(G \subseteq G_\mu \subseteq (G_\mu)^\wedge \subseteq \Pi R \) and \(G^v \) is the \(l \)-subspace of \((G_\mu)^\wedge \) generated by \(G \). Clearly \(G \subseteq H \cap (G_\mu)^\wedge \) an \(l \)-subspace of \((G_\mu)^\wedge \). Thus \(G^v \subseteq H \) and so \(G^v \in \mathcal{S} \).

Corollary. If \(G \in \mathcal{S} \) has a unit then \(G \in \mathcal{S} \) if and only if the \(v \)-hull of \(G \) belongs to \(\mathcal{S} \).

Proof. If \(u \) is a unit for \(G \) then it is also a unit for \(G^v \) and so by Corollary I of Proposition 1.2 \(G^v \in \mathcal{S} \) implies \(G \in \mathcal{S} \) and so \(G \in \mathcal{S} \). Conversely if \(G \in \mathcal{S} \) then so does \(G^v \) and hence \(G^v \in \mathcal{S} \).

Lemma. If \(0 \neq A \) is a subgroup of an archimedean o-group \(B \) and \(\alpha \) is an o-isomorphism of \(A \) into \(R \) then there exists a unique extension of \(\alpha \) to an o-isomorphism of \(B \) into \(R \).

This follows from the fact that each o-isomorphism of a subgroup of \(R \) into a subgroup of \(R \) is a multiplication by a positive real number.

Lemma. If \(G \) is an \(l \)-subgroup of an \(l \)-group \(H \) and \(M \) is a regular subgroup of \(G \) then \(M = G \cap N \) for a regular subgroup \(N \) of \(H \).

Proof. Let \(Y \) be the convex \(l \)-subgroup of \(H \) generated by \(M \). Then \(Y \cap G = M \). Now \(M \) is maximal without some \(g \in G \) and so \(g \notin Y \). Thus \(Y \subseteq N \) a value of \(g \) in \(H \). \(N \cap G \supseteq M \) and \(g \notin N \cap G \) a convex \(l \)-subgroup of \(G \). Therefore \(N \cap G = M \).
Proposition 1.4. If G is a large l-subgroup of $H \in \mathcal{E}$ and τ is an l-isomorphism of G into ΠR_i then there exists an extension of τ to an l-isomorphism of H into ΠR_i.

Proof. We may assume (without loss of generality) that $G_i = \{ g \in G \mid (g\tau)_i = 0 \} \neq 0$ for each $i \in I$. Thus each G_i is a regular subgroup of G. Pick H_i regular in H such that $H_i \cap G = G_i$. Then

$$\frac{G}{G_i} = \frac{G}{H_i \cap G} \simeq \frac{H_i + G}{H_i} \subseteq \frac{H}{H_i}$$

and since $H \in \mathcal{E}$, $H/H_i \lt R$. The map $g \rightarrow (g\tau)_i$ is an l-homomorphism of G into R_i with kernel G_i. Thus

$$H_i + g \rightarrow H_i \cap G + g = G_i + g \rightarrow (g\tau)_i$$

is an o-isomorphism of $(H_i + G)/H_i$ into R_i and so there exists a unique extension to an o-isomorphism α_i of H/H_i into R_i. Now for $h \in H$ and $g \in G$ we consider the maps

$$h \rightarrow (\ldots, h_i + h_i, \ldots) \in \Pi H/H_i \rightarrow (\ldots, (H_i + h) \alpha_i, \ldots) \in \Pi R_i$$

$$g \rightarrow (\ldots, h_i + g, \ldots) \rightarrow (\ldots, (g\tau)_i, \ldots) = g\tau.$$

Thus we have extended τ to an l-homomorphism of H into ΠR_i with kernel $\bigcap H_i$. Now $(\bigcap H_i) \cap G = \bigcap (H_i \cap G) = \bigcap G_i = 0$ and since G is large in H we have $\bigcap H_i = 0$. Thus this extended map is an l-isomorphism of H into ΠR_i.

Corollary. Each $G \in \mathcal{E}$ admits an essential closure H in \mathcal{E}, and if $G \subseteq \Pi R_i$ then $G \subseteq H \subseteq \Pi R_i$.

We shall show in section 7 that H need not be unique even if $G \in \mathcal{S}$, but each $G \in \mathcal{S}$ has a unique essential closure in \mathcal{S}.

Suppose that G is archimedean and has a strong unit u then there exists an l-isomorphism τ of G such that

$$G\tau \subseteq \Pi R_i \quad \text{and} \quad u\tau = (1, 1, 1, \ldots)$$

Proposition 1.5. $G \in \mathcal{S}$ if and only if each $g\tau$ is a step function in this representation.

Proof. (\leftrightarrow) Trivial.

(\rightarrow) The v-hull H of G is an essential extension of G and so by Proposition 1.4 τ can be extended to an l-isomorphism φ of H into ΠR_i. Now the long constant belongs to H_φ and so H_φ consists of step functions and hence so does $G\tau$ (see Proposition 1.2).
2. THE ESSENTIAL CLOSURE OF $G \in \mathcal{F}$

If B is an essential extension of an l-group A and u is an order unit in A then u is also an order unit in B. For suppose (by way of contradiction) that $0 < b \in B$ and $b \wedge u = 0$. Then $b^* \wedge u^* = 0$, where the polar operations are in B, and since $b^* \wedge A \neq 0$ we have $a \wedge u = 0$ for some $0 < a \in A$, a contradiction.

Proposition 2.1. If $G \in \mathcal{F}$ then there exists an essential extension of G in \mathcal{F} that contains an order unit.

Proof. We may assume that G is an l-subgroup of

$$H = \text{all step functions in } \Pi R_i.$$

Let W be the l-subspace of H generated by G and $u = (1, 1, \ldots)$ and let B be an l-ideal of W that is maximal with respect to $B \cap G = 0$. Then

$$G \cong \frac{B \oplus G}{B} \subseteq \frac{W}{B} \in \mathcal{F}$$

and $B + u$ is a unit in W/B. Now if J/B is a non-zero l-ideal of W/B then $J \supseteq B$ and hence $J \cap G = 0$. Thus W/B is an essential extension of $(B \oplus G)/B$.

Corollary 1. If $G \in \mathcal{F}$ and G is an l-subgroup of ΠR_i then there exists $w \in \Pi R_i$ such that each $w_i > 0$ and for which $Gw = \{gw \mid g \in G\}$ consists of step functions.

Proof. Let K be an essential extension of G in \mathcal{F} that contains an order unit u. By Proposition 1.4 we may assume that $G \subseteq K \subseteq \Pi R_i$ and we may also assume that $G_i = \{g \in G \mid g_i \neq 0\} \neq 0$ for each $i \in I$. Since u is a strong order unit for K we have $u_i > 0$ for each $i \in I$.

Let w be the multiplicative inverse of u in the ring ΠR_i. The map $x \to xw$ is an l-automorphism of the group ΠR_i and $Kw \in \mathcal{F}$ and contains $(1, 1, 1, \ldots)$. Thus by Proposition 1.5 Kw consists of step functions and hence so does Gw.

Corollary II. If G is an l-subgroup of ΠR_i then so is $K = G + \Sigma R_i$. Moreover, if $G \in \mathcal{F}$ or \mathcal{E} then so does K.

Proof. Since ΣR_i is an l-ideal of $\prod R_i$ it follows that K is an l-subgroup of ΠR_i. If $0 < x, y \in K$ then they differ in only a finite number of places from elements in G and so it follows from (5) of Theorem 1.1 that if $G \in \mathcal{E}$ so does K.

If $G \in \mathcal{F}$ then by Corollary 1 there is a $w \in \Pi R_i$ such that each $w_i > 0$ and Gw consists of step functions. Clearly $(\Sigma R_i)w = \Sigma R_i$ and hence Kw also consists of step functions. Therefore $K \in \mathcal{F}$.
If $G \in \mathcal{S}$ has a basis then ([11], p. 3.15) there is an l-isomorphism σ of G such that

$$\Sigma_i T_i \subseteq G\sigma \subseteq \Pi_i R_i,$$

where $0 \neq T_i \subseteq R$

and by Corollary I we may assume that $G\sigma$ consists of step functions. It follows that the set of all step functions in ΠR_i is the essential closure of $G\sigma$ in \mathcal{S}.

Let X be a Stone space (that is, a compact extremely disconnected Hausdorff topological space) and let $S(X)$ be the group of all step functions in the l-group $C(X)$ of all continuous real valued functions on X. Then $S(X)$ is the subspace of $C(X)$ that is generated by the characteristic functions on the clopen subsets of X and $C(X)$ is an essential extension of $S(X)$.

Proposition 2.2. $S(X)$ is essentially closed in \mathcal{E} and hence in \mathcal{S}.

Proof. Suppose that $S(X) \subseteq K \in \mathcal{E}$, where K is an essential extension of $S(X)$. Now $S(X)$ and K have the same Boolean algebra of polars [13] and hence the same associated Stone space, namely X. Thus (see [4]) we can embed K into $C(X)$ so that $(1, 1, 1, \ldots)$ is mapped onto itself. This induces the identity map on $S(X)$ and so we may assume that

$$S(X) \subseteq K \subseteq C(X).$$

Here we use the fact that $(1, 1, 1, \ldots)$ is also an order unit for K and hence a strong order unit. Now by Proposition 1.2 it follows that K consists of step functions and so $K = S(X)$.

Theorem 2.3. Each $G \in \mathcal{S}$ has a unique essential closure in \mathcal{S} namely the l-group $S(X)$ of all step functions in $C(X)$, where X is the Stone space associated with the Boolean algebra of polars of G. Moreover $S(X)$ is essentially closed in \mathcal{E}.

Proof. Let H be an essential extension of G in \mathcal{S}. By Proposition 2.1 there is an essential extension K of H in \mathcal{S} that has a unit u. Also the v-hull of K belongs to \mathcal{S}, and so we may assume that K is a vector lattice. Thus we can embed K into $C(X)$ so that $u = (1, 1, 1, \ldots)$ and so that $C(X)$ is an essential extension of K.

$$G \subseteq H \subseteq K \subseteq C(X).$$

Thus by Proposition 1.2 K consists of step functions and so

$$G \subseteq H \subseteq K \subseteq S(X).$$

Thus $S(X)$ is an essential extension of G that is essentially closed in \mathcal{S}.

Now suppose that T is an essential closure of G in \mathcal{S}. Then clearly T is a vector lattice with an order unit u and so there is an l-isomorphism σ of T onto a large subgroup of $C(X)$ such that $u\sigma = (1, 1, 1, \ldots)$. Then as above $S(X)$ is an essential extension of $T\sigma$ and so $T\sigma = S(X)$.

201
Note that $S(X) \in \mathcal{S}$ but $S(X)^\wedge = C(X) \not\in \mathcal{S}$ unless $S(X) = C(X)$. Thus \mathcal{S} and \mathcal{S} are not closed with respect to Dedekind-MacNeille completions. For $S(X)$ is dense in $C(X)$ and so $S(X)^\wedge$ is the l-ideal generated by $S(X)$ which is $C(X)$ (see [10]).

3. SOME PROPERTIES OF EPI-ARCHIMEDEAN l-GROUPS

Most of the theory in this section is not new, but the proofs given here are shorter than those in print.

Proposition 3.1. If G is a laterally complete epi-archimedean l-group then $G \simeq T_1 \oplus \cdots \oplus T_s$ where each $T_i \subseteq R$.

Proof. Suppose (by way of contradiction) that a_1, a_2, \ldots is an infinite disjoint subset of G then so is $a_1, 2a_2, 3a_3, \ldots$. Let $x = \bigvee a_k$ and $y = \bigvee k a_k$. Then clearly x and y do not satisfy (5) of Theorem 1.1, a contradiction. Thus G has a finite basis and so $G \simeq T_1 \oplus \cdots \oplus T_s$.

Proposition 3.2. If G is an epi-archimedean l-group, $2G = G$ and each countable bounded disjoint subset has a least upper bound, then $G \simeq \Sigma T_\lambda$, where each $T_\lambda \subseteq R$. Thus if G also has an order unit then $G \simeq T_1 \oplus \cdots \oplus T_n$.

Proof. It suffices to show that each $G(g)$ has a finite basis; for then G has a basis and so we may assume

$$\Sigma T_\lambda \subseteq G \subseteq \Pi T_\lambda$$

and since each $G(g)$ has a finite basis it follows that $G = \Sigma T_\lambda$.

If $G(g)$ does not have a finite basis then there exists a countable disjoint subset g_1, g_2, \ldots of $G(g)$. Since each g_k is divisible by 2 we may assume that $g_k \leq g$ for all k and, hence, without loss of generality, $g = \bigvee g_k$. Now let $h = \bigvee (1/2^k) g_k$. Then h is a unit in $G(g)$ and hence a strong unit, but clearly $nh = \bigvee (n/2^k) g_k \not\leq g$ for any n, which contradicts (5) of Theorem 1.1.

Remarks. We can replace the hypothesis epi-archimedean by archimedean and each order unit in each $G(g)$ is a strong order unit.

If G is the l-group of all bounded sequences of integers then $G \in \mathcal{S}$ and each bounded disjoint subset has a least upper bound. Thus the hypothesis $2G = G$ cannot be dispensed with. Note that $(1, 0, 0, \ldots), (0, 1/2, 0, 0, \ldots), (0, 0, 1/2^2, 0, 0), \ldots$ has no least upper bound in G^2; so we cannot use the divisible hull of G. 202
Corollary I. If G is a laterally complete epi-archimedean vector lattice then
$G = R_1 \oplus \cdots \oplus R_n$.
This is also a corollary of Proposition 3.1.

Corollary II. (Bigard, Bernau). If G is a σ-complete epi-archimedean vector lattice
then $G = \Sigma R_\lambda$. Thus if G has a unit then $G = R_1 \oplus \cdots \oplus R_n$.

Proposition 3.3. (Bernau). If G is an epi-archimedean vector lattice with countable
dimension as a real vector space then $G = \Sigma G(f_i)$ and so $G \in \mathcal{S}$.

Proof. Let g_1, g_2, \ldots be a positive basis for the vector space G and let
$f_1 = g_1$
$f_2 = b_2$, where $g_2 = a_2 + b_2 \in G(f_1) \oplus G(f_1)'$

\vdots

$f_{n+1} = b_{n+1}$, where $g_{n+1} = a_{n+1} + b_{n+1} \in G(f_1 + \cdots + f_n) \oplus G(f_1 + \cdots + f_n)'$

Then f_1, f_2, \ldots are disjoint and $g_1, \ldots, g_n \in G(f_1 + \cdots + f_n) = G(f_1) \oplus \cdots \oplus G(f_n)$. Now $x \in G$ is a linear combination of a finite number of the g_i, say g_1, \ldots, g_n and so $x \in G(f_1) \oplus \cdots \oplus G(f_n)$. Thus $G = \Sigma G(f_i)$. By Corollary I to Proposition 1.2 each $G(f_i) \in \mathcal{S}$ and hence $G \in \mathcal{S}$.

Baker [2] and Bernau [3] both show that an epi-archimedean vector lattice with
uncountable dimension need not belong to \mathcal{S}.

Proposition 3.4. (Bigard) An l-group G is epi-archimedean if and only if G is
(l-isomorphic to) a group of real valued functions on a topological space X with
pointwise addition and order and such that

a) G separates points, and

b) the support of each $g \in G$ is compact and open.

Proof. (\rightarrow) Let E be the set of all maximal l-ideals of G and let τ be the natural
l-isomorphism of G into $\Pi_{P \in \mathcal{E}} G/P$

$g \tau = (\ldots, P + g, \ldots)$.

For each $g \in G$ let $\sigma(g) = \{ P \in \mathcal{E} | g \notin P \}$ the support of g. The $\sigma(g)$ form a basis of open sets for a topology on E. This is the hull kernel topology on E. If $P_1 \neq P_2$ then $(P_1 \setminus P_2) \cap G = \emptyset$ and so G separates points.

Suppose that $\sigma(g) = \bigcup \sigma(g_\lambda)$ for $g, g_\lambda \in G$. If $g \notin \bigvee G(g_\lambda)$ then $g \notin P \supseteq \bigvee G(g_\lambda)$ for some value P of g. Thus $P \in \sigma(g) = \bigcup \sigma(g_\lambda)$ and so $g_\lambda \notin P$ for some λ, a contradiction.
Thus \(g \in \bigvee G(g,\lambda) \) and so \(g \in G(g,\lambda_1) + \ldots + G(g,\lambda_n) \). But then \(\sigma(g) \subseteq \sigma(g,\lambda_1) \cup \ldots \cup \sigma(g,\lambda_n) \) and so \(\sigma(g) \) is compact.

(\(\leftarrow \)) \(G \) is an \(l \)-group of functions on \(X \) with compact open support. For \(0 < f, g \in G \) and \(n > 0 \) let

\[
V_n = \{ x \in \sigma(g) \mid ng(x) > f(x) \} = \sigma(g) \cap \sigma((ng - f)^+) \]

which is open. Now \(\sigma(g) = \bigcup V_n \) and since \(\sigma(g) \) is compact

\[
\sigma(g) = V_{n_1} \cup V_{n_2} \cup \ldots \cup V_{n_k} .
\]

Let \(m = \text{maximum of } n_1, n_2, \ldots, n_k \). Then \(mg(x) > f(x) \) for all \(x \in \sigma(g) \) and so by Theorem 1.1 \(G \) is epi-archimedean.

Remarks. The topology on \(E \) is Hausdorff. The set of *all* functions on \(X \) with compact open support need not be an \(l \)-group.

We next discuss the epi-archimedean kernel of an \(l \)-group \(C \). This concept and theory are due to JORGE MARTINEZ [20]. We have removed his hypothesis that \(G \) be representable. Recall that a *value* of \(g \in G \) is a regular subgroup \(G_\gamma \) of \(G \) such \(g \in G^\gamma \setminus G_\gamma \). Let

\[
E = \{ g \in G \mid \text{each value of } g \text{ is a minimal prime} \}
\]

\[\mathcal{N} = \text{set of all prime subgroup of } G \text{ that are not minimal}.\]

Theorem 3.5. (Martinez) \(E = \bigcap \mathcal{N} \) and so \(E \) is a convex \(l \)-subgroup of \(G \) that is invariant under all \(l \)-automorphisms of \(G \). Moreover, \(E \) is epi-archimedean and contains each convex \(l \)-subgroup of \(G \) that is epi-archimedean; \(E \) is the epi-archimedean kernel of \(G \).

Proof. If \(g \in E \) and \(N \in \mathcal{N} \) then \(g \in G \); otherwise \(g \) has a value that contains \(N \). Thus \(E \subseteq \bigcap \mathcal{N} \). Conversely if \(g \in \bigcap \mathcal{N} \) and \(g \in G^\gamma \setminus G_\gamma \) then clearly \(G_\gamma \) is minimal and so \(\bigcap \mathcal{N} \subseteq E \).

Therefore \(E = \bigcap \mathcal{N} \) a convex \(l \)-subgroup of \(G \) and if \(\tau \) is an \(l \)-automorphism of \(G \) then \(\tau \) induces a permutation on the set \(\mathcal{N} \) and hence \(E\tau = E \). If \(P \) is a prime subgroup of \(G \) that does not contain \(E \) then clearly \(P \) is minimal and so \(P \cap E \) is a minimal prime in \(E \). Since each prime in \(E \) is of this form (see [11] Theor. 1.14) it follows by Theorem 1.1 that \(E \) is epi-archimedean.

Finally consider \(0 < g \in K \) an epi-archimedean convex \(l \)-subgroup of \(G \) and suppose (by way of contradiction) that \(g \in G^\gamma \setminus G_\gamma \) where \(\gamma \) is not minimal. Then \(G_\gamma \supset G_\beta \). Pick \(0 < x \in G^\beta \setminus G_\beta \). Then by replacing \(x \) by \(g \wedge x \) we may assume that \(g \leq x \) and so \(x \in K \). But then \(K \supset G_\gamma \cap K \supset G_\beta \cap K \) and so \(K \) is not epi-archimedean, a contradiction. Thus each value of \(g \) is a minimal prime and so \(K \subseteq E \).
4. SPECKER GROUPS

Let B be the group of all bounded functions in ΠIZ_i. If $g \in \Pi Z_i$ then $S(g)$ will denote the support of g

$$S(g) = \{i \in I | g_i \ne 0\}$$

and if $X \subseteq I$ then χ_X will denote the characteristic function on X.

$$(\chi_X)_i = 1 \text{ if } i \in X \text{ and } 0 \text{ otherwise}.$$

Each $0 \ne g \in B$ has a unique representation

$$g = n_1 \chi_{X_1} + \ldots + n_k \chi_{X_k}$$

where the n_i are distinct non-zero integers and the X_i are disjoint subsets of I.

The next proposition is more or less implicit in [21] but this formulation and proof is due to LASZLO FUCHS.

4.1. For a subgroup G of B the following are equivalent.

a) $g = n_1 \chi_{X_1} + \ldots + n_k \chi_{X_k} \in G$ implies $\chi_{X_i} \in G$ for $i = 1, \ldots, k$, where of course this is the unique representation of g.

b) $g \in G$ implies $\chi_{S(g)} \in G$.

c) G is pure in B and a subring of B.

A subgroup G of B that satisfies a), b), and c) is called a Specker group.

Proof. (a \rightarrow b) Clear, since $\chi_{S(g)} = \chi_{X_1} + \ldots + \chi_{X_k}$.

(b \rightarrow a) We use induction on k.

$$(n_1 - n_k) \chi_{X_1} + \ldots + (n_{k-1} - n_k) \chi_{X_{k-1}} = g - n_k \chi_{S(g)} \in G.$$

Thus by induction $\chi_{X_1}, \ldots, \chi_{X_{k-1}} \in G$ and so since

$$n_k \chi_{X_k} = g - n_1 \chi_{X_1} - \ldots - n_{k-1} \chi_{X_{k-1}} \in G$$

we have χ_{X_k} also belongs to G.

(a \rightarrow c) We first show that if $g = n_1 \chi_{X_1} + \ldots + n_k \chi_{X_k} \in B$ and $mg \in G$ for some $m \ne 0$ then $g \in G$ and so G is pure.

$$mg = mn_1 \chi_{X_1} + \ldots + mn_k \chi_{X_k}.$$

Thus by a) the χ_{X_i} belong to G and so $g \in G$. 205
Now G is generated by characteristic functions. Thus it suffices to show that if $\chi_x, \chi_y \in G$ then $\chi_x \chi_y \in G$. For then it follows that G is closed with respect to multiplication. Note that $\chi_x \chi_y = \chi_{x \cap y}$, and

$$\chi_x + \chi_y = \chi_{(x \cup y) \setminus (x \cap y)} + 2\chi_{x \cap y}.$$

Thus by a) $\chi_{x \cap y} \in G$.

(c \Rightarrow a) If $g = n\chi_x \in G$ then since G is pure $\chi_x \in G$. Now consider $g = n_1\chi_{x_1} + \ldots + n_k\chi_{x_k}$ and use induction on k.

$$g^2 - n_kg = (n_1^2 - n_kn_1)\chi_{x_1} + \ldots + (n_{k-1}^2 - n_kn_{k-1})\chi_{x_{k-1}}$$

and $g^2 - n_kg \in G$ since G is a ring. Thus by induction $\chi_{x_1}, \ldots, \chi_{x_{k-1}} \in G$. But

$$n_k\chi_{x_k} = g - n_1\chi_{x_1} - \ldots - n_{k-1}\chi_{x_{k-1}}$$

and so by purity again it follows that $\chi_{x_k} \in G$.

Note that the group of all bounded continuous functions from a topological space X into \mathbb{Z} is Specker. Also the intersection of Specker groups is Specker and the join of a chain of Specker groups is Specker.

Clearly a Specker group is generated by characteristic functions. In the next proposition we make use of the cardinal order of $\prod_{i} \mathbb{Z}_i$ and the fact that B is an l-ideal of $\prod_{i} \mathbb{Z}_i$.

4.2. For a subgroup G of $\prod_{i} \mathbb{Z}_i$ that is generated by its set S of characteristic functions the following are equivalent.

a) G is Specker.

b) G is an l-subgroup of B.

c) S is closed with respect to multiplication.

d) S is closed with respect to \wedge.

Proof. If $x, y \in S$ then $xy = x \wedge y$ and hence (c) and (d) are equivalent and clearly (b) implies (d).

(a \Rightarrow b) If $g = n_1\chi_{x_1} + \ldots + n_k\chi_{x_k} \in G$ then the $\chi_{x_i} \in G$ and so it follows that $g \wedge 0 \in G$.

(d \Rightarrow a) If $0 \neq g \in G$ then $g = m_1\chi_{Y_1} + \ldots + m_i\chi_{Y_i}$ where the m_i are integers and the $\chi_{Y_i} \in S$. Here we do not assume that the Y_i are disjoint subsets of I.

$$\chi_{Y_1 \cap Y_2} = \chi_{Y_1 \cap Y_2} = \chi_{Y_1} \wedge \chi_{Y_2} \in S.$$

Thus $\chi_{Y_1} - \chi_{Y_1 \cap Y_2} = \chi_{Y_1 \setminus Y_2} \in G$ and so we have

$$m_1\chi_{Y_1} + m_2\chi_{Y_2} = m_1\chi_{Y_1 \setminus Y_2} + (m_1 + m_2)\chi_{Y_1 \cap Y_2} + m_2\chi_{Y_2 \setminus Y_1}.$$

206
It follows that g has a representation

$$g = n_1x_1 + \ldots + n_kx_k$$

where the n_i are distinct non-zero integers, the X_i are disjoint subsets of I and each $x_i \in S$.

Note that each Specker group belongs to \mathcal{S}. Also if L is an l-ideal of a Specker group G then clearly L satisfies (b) of 4.1 and so L is also Specker.

4.3. Each l-ideal L of a Specker group G is a ring ideal.

Proof. Since $G \in \mathcal{S}$, $G = G(g) \oplus g'$ for each $g \in G$. So each $G(g)$ is a ring ideal, but L is the join of a directed (by inclusion) set of such $G(g)$ and so L is a ring ideal.

Theorem. (Nobeling [21]) If $G \in H$ are Specker groups then $H = G \oplus F$ where F is a free abelian group with characteristic basis.

Laszlo Fuchs (unpublished) and Paul Hill [16] have derived simpler proofs of this remarkable result.

Actually, as we now show, Specker groups occur quite naturally, in the theory of l-groups. Recall that an element s in an l-group H is singular if $s > 0$ and

$$0 \leq g < s \text{ implies } g \land (s - g) = 0 \text{ for each } g \in H,$$

and let S be the set of all singular elements in H. Then in [10] it is shown that:

4.4. The subgroup $[S]$ of H generated by S is an abelian l-ideal of H.

4.5. There exists an l-isomorphism τ of $[S]$ onto a subdirect sum of Π_iZ_i and for each such mapping τ, $[S]\tau$ is Specker and hence a subring of Π_iZ_i.

Proof. In [10] it is shown that τ exists and for each $s \in S$, τs is characteristic. Thus $[S]\tau$ is Specker by (b) of 4.2.

It follows that a group G is (isomorphic to) a Specker group if and only if there exists a set S of generators of G and a lattice order for G in which each $s \in S$ is singular. An l-group G is l-isomorphic to a Specker group if and only if G is generated as a group by singular elements.

4.6. If τ is an l-homomorphism of $[S]$ then $[S]\tau$ is also an l-group that is generated by singular elements as a group.

Proof. It is shown in [10] that if $s \in S$ then $\tau s = 0$ or τs is singular.
Definition. An *S-group* is an *l*-group *G* that is generated (as a group) by singular elements. Such a group *G* is free abelian, belongs to \mathcal{S} and each *l*-homomorphic image of *G* is also an *S*-group. A subgroup *H* of *G* that is generated by its set *T* of singular elements is an *l*-subgroup and hence an *S*-group if and only if *T* is closed with respect to \wedge.

4.7. Let $G = [S]$ be an *S*-group. Then there exists a unique multiplication on *G* so that it is a ring for which $st = s \wedge t$ for all $s, t \in S$. Moreover *G* is an *f*-ring with zero radical, each *l*-ideal of *G* is a ring ideal and each *l*-homomorphism of the group *G* is a ring homomorphism.

Proof. We may assume that *G* is an *l*-subgroup of $\prod Z_i$ and each $s \in S$ is characteristic. Since *G* is Specker it is a subring of $\prod Z_i$ and so $st = s \wedge t$ for $s, t \in S$.

Now suppose that \cdot and $*$ are multiplications for *G* so that it is a ring for both and

$$s \cdot t = s \wedge t = s * t \quad \text{for all} \quad s, t \in S.$$

Then

$$(ms) \cdot (nt) = mn(s \cdot t) = mn(s * t) = (ms) * (nt)$$

for all $m, n \in Z$ and it follows that $g \cdot h = g * h$ for all $g, h \in G$.

It follows from [14] that this multiplication on *G* has a unique extension to the v-hull G^v of *G*.

Note that if *u* is an order unit in an *S*-group $G = [S]$ then $\chi_{S(u)}$ is an order unit and a singular element.

4.8. If $G = [S]$ is an *S*-group and $s \in S$ is an order unit for *G* then the multiplication in 4.7 is the unique multiplication so that *G* is an *f*-ring with identity *s*.

Proof. Clearly $s = \bigvee S$. Thus if $a \in S$ then $sa = s \wedge a = a$ and so s is the identity in the above multiplication. In [12] it is shown that there is at most one such multiplication.

Corollary. If *G* is an *l*-group with a singular element *u* as a strong order unit then *G* is an *S*-group and there is a unique multiplication on *G* so that it is an *f*-ring with identity *u*.

Proof. Let *S* be the set of all singular elements of *G*. Then $[S]$ is an *l*-ideal of *G* that contains a strong order unit of *G* and so $G = [S]$.

Suppose that $G = [S]$ is an *S*-group with no order unit. Then without loss of generality G is a subdirect sum and a subring of $\prod Z_i$. Let

$$H = G \oplus Z(1, 1, 1, \ldots).$$
Then H is an I-subgroup of ΠZ_i. In fact H is an S-group with G as an I-ideal and with $(1, 1, 1, \ldots)$ as a unit. Or one can define H by

$$H = Z \oplus G$$

and let H^+ be the subsemigroup of H generated by all the elements of the form

$$(n, 0), (n, -s), (0, s), (0, 0) \text{ where } 0 < n \in Z \text{ and } s \in S.$$

Here $(1,0)$ is an order unit; in fact $(1, 0)$ is the join of all the singular elements in G. Then by 4.8 H is an f-ring with identity $(1, 0)$ and, of course, this is just the standard way of adjoining an identity to the ring G.

Let F be the group of all functions in ΠR_i with finite range. Each $0 \neq g \in F$ has a unique representation

$$g = a_1\chi_{X_1} + \ldots + a_k\chi_{X_k}$$

where the a_i are distinct non-zero reals and the X_i are disjoint subsets. The proofs of the next two propositions are almost identical with the proofs of 4.1, 4.2 and 4.3 and we shall omit them.

4.9. For a subspace G of F the following are equivalent.

a) $g = a_1\chi_{X_1} + \ldots + a_k\chi_{X_k} \in G$ implies each $\chi_{X_i} \in G$.

b) $g \in G$ implies $\chi_{\Lambda(g)} \in G$.

c) G is a subring of F.

d) G is generated as a subspace of F by a set of characteristic functions and G is an I-subgroup of F.

e) G is generated as a subspace of F by a set S of characteristic functions and S is closed with respect to \wedge.

A subspace G of F that satisfies a)–e) will be called a Specker space.

4.10. Each l-ideal of a Specker space is a ring ideal and, of course, a Specker space.

4.11. If H is an l-subgroup of ΠR_i consisting of step functions and $u = (1, 1, 1, \ldots) \in H$ then H satisfies condition a) of 4.9. Thus if G is an epi-archimedean vector lattice with order unit u then G is (l-isomorphic to) a Specker space and there exists a unique multiplication so that G is an f-ring with identity u.

Proof. Each $0 < h \in H$ has a unique representation

$$h = a_1\chi_{X_1} + \ldots + a_k\chi_{X_k}$$

where $0 < a_1 < a_2 < \ldots < a_k$ are real numbers and the X_i are disjoint subsets of I.

209
Pick positive integers \(m \) and \(n \) so that \(n a_{k-1} < m < n a_k \). Then

\[(nh - mu) \vee 0 = t \chi_{X_k} \text{ where } 0 < t = n a_k - m.\]

Now pick a positive integer \(q > 1/t \). Then

\[\chi_{X_k} = qt \chi_{X_k} \wedge u \in G.\]

Thus each of the \(\chi_{X_i} \) belongs to \(G \).

Let \(\tau \) be an \(l \)-isomorphism of \(G \) into \(\Pi_f R_f \) such that \(\mu \tau = (1, 1, 1, \ldots) \). By Proposition 1.2 \(G \tau \) consists of step functions and so by the above is a Specker space. Thus \(G \tau \) is a subring of \(\Pi_f R_f \) with identity \(\mu \tau \). Finally it is shown in [12] that there exists at most one multiplication so that \(G \) is an \(f \)-ring with identity \(u \).

Note that if \(G \) is an epi-archimedean vector lattice and \(0 < g \in G \), then \(G(g) \) satisfies 4.11. Thus “locally” \(G \) is an \(f \)-ring with no nilpotent elements.

4.12. (Bleier). If \(G \) is an epi-archimedean vector lattice that is finitely generated as a vector lattice then \(G \simeq \sum_{i=1}^{n} R_i. \)

Remark. Note that Example 7.1 shows that an epi-archimedean \(l \)-group generated by two elements need not belong to \(\mathcal{F} \).

Proof. If \(g_1, \ldots, g_n \) generate \(G \) then clearly \(G = G(u) \) where \(u = |g_1| + \ldots + |g_n| \).

So by 4.11 we may assume that \(G \) is a Specker subspace of \(\Pi_f R_f \). Then \(G \) is generated by a finite number of characteristic functions and in fact by a finite number of disjoint characteristic functions.

Corollary. A finitely generated Specker space is \(l \)-isomorphic to \(\sum_{i=1}^{n} R_i. \)

Corollary. Each finitely generated epi-archimedean vector lattice is generated by two elements.

Proof. \(\sum_{i=1}^{n} R_i \) is generated by \((1, 1, 1, \ldots)\) and \((1, 2, 3, \ldots, n)\).

Corollary. \(R \oplus R \) is the free epi-archimedean vector lattice on the one generator \((1, -1)\). There is no free epi-archimedean vector lattice on more than one generator.

Proof. Suppose that \(F \) is a free epi-archimedean lattice on two generators, then we may assume that \(F = \sum_{i=1}^{n} R_i \) for some \(n > 0 \). Then there must be a linear \(l \)-homomorphism of \(F \) onto \(\sum_{i=1}^{n+1} R_i \) since \(\sum_{i=1}^{n+1} R_i \) is generated by two elements, but this is impossible.
Let $G \subseteq \Pi_i R_i$ be a Specker space generated by a set S of characteristic functions. Then $[S]$ is a Specker group and so $[S]$ is an l-subgroup of $\Pi_i Z_i$ and G is the v-hull of $[S]$. Conversely let $[S] \subseteq \Pi_i Z_i$ be a Specker group and let G be the subspace of $\Pi_i R_i$ generated by $[S]$. Then G consists of all real linear combinations of the elements of S. Since S is closed with respect to multiplication it follows that G is a Specker space and the v-hull of $[S]$.

4.13. For a vector lattice G the following are equivalent.

a) $G \in \mathcal{S}$ and G is an f-ring with no nilpotent elements.

b) G is the v-hull of an S-group.

c) G is I-isomorphic to a Specker space.

Proof. We have shown that b) and c) are equivalent and clearly c) implies a). The fact that a) implies c) follows from the next proposition.

4.14. If $G \in \mathcal{S}$ is an f-ring with no nilpotent elements then G can be embedded as a ring into a cardinal product of reals and each such representation consists of step functions. Thus if G is an f-algebra then it is I-isomorphic to a Specker space.

Proof. By Lemma A we can embed G as an f-ring into $\Pi_i R_i$. Suppose (by way of contradiction) that $0 < g = (..., g_i, ...) \in G$ has infinite range. By Corollary I of Proposition 2.1 there exists $w \in \Pi R_i$ such that $w_i > 0$ for all i and Gw consists of step functions. Now there is an infinite subset J of I for which the g_j are all distinct and each $g_j w_j = k$, a constant. Thus $g_j^2 w_j = k g_j$ and so $g^2 w$ is not a step function, a contradiction.

5. THIS SECTION CONSISTS OF THE FOLLOWING THEOREM

Theorem 5.1. If $G \in \mathcal{S}$ then G^v is an a-closure of G. Moreover, G^v is the unique a-closure of G in \mathcal{S}. In particular $G \in \mathcal{S}$ is a closed if and only if G is a vector lattice.

Proof. Case I. G has an order unit u. By Proposition 1.5 we may assume that G is an l-subgroup of $\Pi_i R_i$ consisting of step functions and containing $(1, 1, 1, ...)$. By 4.11 G satisfies condition a) of 4.9. Thus G^v is the Specker space generated by the set S of characteristic functions in G. If $0 < h \in G^v$ then $h = h_1 \chi_{X_1} + ... + h_k \chi_{X_k}$ where the h_i are non-zero reals and the X_i are disjoint subsets of I. Thus $g = \chi_{X_i} + ... + \chi_{X_k} \in G$ and clearly $G^v(h) = G^v(g)$ and so G^v is an a-extension of G.

If H is an a-extension of G^v then $H \in \mathcal{S}$ and so by Proposition 1.4 we may assume that $G \subseteq G^v \subseteq H \subseteq \Pi_i R_i$, and by Proposition 1.2 H consists of step functions. Consider

$$0 < h = h_1 \chi_{X_1} + ... + h_k \chi_{X_k} \in H$$
where the X_i are disjoint subsets of I and $0 < h_1 < \ldots < h_k$. By 4.11 the $\chi_{X_i} \in H$. Now there exists $0 < g \in G^\circ$ such that $H(g) = H(\chi_{X_k})$. In particular, $\chi_{X_k} = \chi_{S(g)} \in G^\circ$ and since G° is a vector space, $h_k \chi_{X_k} \in G^\circ$. Thus $h \in G^\circ$ and so G° is a-closed.

Case II. G does not contain an order unit. $G^\circ \subseteq (G^\circ)^\wedge$ and so if $0 < h \in G^\circ$ then $h < g$ for some $g \in G$.

$$G = G(g) \uplus g' \quad \text{and} \quad G^\circ = G^\circ(g) \uplus g^*.$$

Now $h \in G^\circ(g) = G(g)^\circ$ and g is a unit for $G(g)$. Thus by Case I $G^\circ(g)$ is an a-extension of $G(g)$ and so h is a-equivalent to an element in G. Therefore G° is an a-extension of G.

Now suppose that H is an a-extension of G° and consider $0 < h \in H$. Then $H(h) = H(g)$ for some $0 < g \in G^\circ$ and $H \in \mathcal{G}$. Thus,

$$H = H(g) \uplus g^* \quad \text{and} \quad G^\circ = G^\circ(g) \uplus g^*$$

where $\#$, $*$ are the polar operations in H and G° respectively. Now $H(g)$ is an a-extension of $G^\circ(g)$ and $G^\circ(g)$ is a vector lattice in \mathcal{G} with an order unit g. Thus by Case I $G^\circ(g) = H(g)$ and so $h \in G^\circ(g) \subseteq G^\circ$. Therefore G° is a-closed.

Thus we have shown that if $G \in \mathcal{G}$ then G° is an a-closed a-extension of G. Now let K be an a-closure of G in \mathcal{G}. Then K is a vector lattice and without loss of generality

$$G \subseteq G^\circ \subseteq \Pi_I R_I \quad \text{and} \quad G \subseteq K \subseteq \Pi_I R_I.$$

Thus $G^\circ \cap K$ is a vector lattice that contains G and so $G^\circ \cap K = G^\circ$. Therefore $G \subseteq G^\circ \subseteq K$ and so $G^\circ = K$.

6. $\textit{EPI-ARCHIMEDEAN } f\textit{-RINGS}$

Suppose that $G \in \mathcal{G}$ is an f-ring with no nilpotent elements and let X be the Stone space associated with the Boolean algebra of polars of G. By the embedding theorem of Bernau [4] G is (l-isomorphic to) a large subring of the ring $D(X)$ of continuous extended real valued functions on X. Here each $f \in D(X)$ is real on a dense open subset of X.

Lemma 6.1. $G \subseteq S(X)$.

Proof. $0 < g \in G$ is real on a dense open subset Y of X. Then $G(g)$ is a subring of $C(Y)$ and so by 4.14 $G(g) \subseteq S(Y)$. Therefore g is a real valued step function in $D(X)$ and hence $G \subseteq S(X)$.

Theorem 6.2. If $G \in \mathcal{G}$ is an f-ring with no nilpotent element, then $S(X)$ is the essential ring closure of G in \mathcal{G}.

212
Proof. Let H be an essential f-ring extension of G in \mathcal{S}. Then clearly H has no nilpotent elements, and the Stone space associated with H is X (see [13]). Thus by the Lemma we can embed H into $S(X)$ as an f-ring.

In order to get rid of the hypotheses that G contains no nilpotent elements we need the following concept. An l-group G is strongly projectable ("SP-group") if

$$G = C \oplus C'$$

for each polar C of G.

In [14] it is shown that each archimedean l-group G admits a unique SP-hull G^{SP}. Thus G^{SP} is the minimal essential extension of G that is an SP-group.

Proposition 6.3. a) If $G \in \mathcal{S}$ then $G^{SP} \in \mathcal{S}$.

b) If $G \in \mathcal{S}$ then $G^{SP} \in \mathcal{S}$.

Proof. a) For each polar C of G, $G/C' \in \mathcal{S}$ and so each G_C used in the construction of G^{SP} belongs to \mathcal{S} (see [14] Theorem A). Now G^{SP} is a direct limit of these G_C and since we have a two element characterization of the groups in \mathcal{S} (Theorem 1.1 (4) or (6)) the direct limit G^{SP} must also be epi-archimedean.

b) We show that the essential closure $S(X)$ of G in \mathcal{S} is an SP-group. Then G^{SP} is the intersection of all l-subgroups of $S(X)$ that contain G and are SP-group and so $G^{SP} \in \mathcal{S}$.

Let T be a polar in $S(X)$ and let

$$X_T = \{x \in X \mid t(x) \neq 0 \text{ for some } t \in T\}.$$

Then the closure Y of X_T is clopen and

$$T = \{s \in S(X) \mid \text{ the support of } s \text{ is contained in } Y\}.$$

Therefore

$$S(X) = S(Y) \oplus S(X \setminus Y) = T \oplus S(X \setminus Y).$$

Corollary 1. If $G \in \mathcal{S}$ is an f-ring then G^{SP} is also an epi-archimedean f-ring. Thus the radical of G^{SP} is a cardinal summand

$$G^{SP} = \text{rad } G^{SP} \oplus H$$

where H is an f-ring with no nilpotent element and rad G^{SP} has the zero multiplication.

Corollary II. If $G \in \mathcal{S}$ is an f-ring then the f-ring essential closure of G in \mathcal{S} is of the form

$$S(Y) \oplus S(W)$$
where \(Y \) and \(W \) are Stone spaces. \(\mathbb{S}(W) \) has the natural multiplication and \(\mathbb{S}(Y) \) has the zero multiplication.

The proofs of these corollaries follow from the Proposition and from the theory in Section 6 of [14].

7. EXAMPLES AND OPEN QUESTIONS

Example 7.1. A divisible epi-archimedean \(l \)-group \(G \) with an order unit such that \(G \notin \mathcal{S} \). Let \(H = \prod_{i=1}^{\infty} R_i \) and let
\[
G = \{ h \in H \mid \text{there exist rationals } r, s \text{ such that } h_i = r(\pi + 1/i) + s \text{ for almost all } i \}.
\]

Clearly \(G \) is a divisible subgroup of \(H \) and \(G \supseteq \sum_{i=1}^{\infty} R_i \).

a) \(G \) is an \(l \)-subgroup of \(H \). For consider \(g \in G \) where \(g_i = r(\pi + 1/i) + s \) for almost all \(i \). It suffices to show that almost all the \(g_i \) are positive or almost all of them are negative. For then \(g \vee 0 \in G \) or \(g \vee 0 \in \sum R_i \subseteq G \) and so \(G \) is an \(l \)-subgroup of \(H \).

If \(r = 0 \) then \(g_i = s \) for almost all \(i \). If \(r > 0 \) then \(r(\pi + 1/i) + s < r(\pi + 1/j) + s \) for all \(i > j \). Thus if \(r(\pi + 1/j) + s < 0 \) for some \(j \) then almost all the \(g_i \) are negative and otherwise almost all \(g_i \) are positive. If \(r < 0 \) then \(r(\pi + 1/i) + s > r(\pi + 1/j) + s \) for all \(j > i \). Thus if \(r(\pi + 1/i) + s > 0 \) for some \(i \) then almost all \(g_i \) are positive and otherwise almost all \(g_i \) are negative.

b) \(G \in \mathcal{S} \). If \(0 < g \in G \) then clearly the \(g_i \) are bounded from above and since \(\lim g_i = r\pi + s \geq 0 \) it follows that the \(g_i \neq 0 \) are bounded away from zero. Thus by Lemma \(A \) \(G \in \mathcal{S} \).

c) It follows from Proposition 1.5 that the \(l \)-subgroup of \(G \) generated by \((1, 1, 1, \ldots) \) and \((\pi + 1, \pi + 1/2, \pi + 1/3, \ldots) \) does not belong to \(\mathcal{S} \) and hence \(G \notin \mathcal{S} \).

This is a limiting example in many ways.

1) \(G^r \notin \mathcal{S} \) and so \(G^r \) is not an \(a \)-extension of \(G \). For if \(G^r \in \mathcal{S} \) then by Proposition 1.2 \(G^r \in \mathcal{S} \) and hence \(G \in \mathcal{S} \).

2) \(G_i = \{ g \in G \mid g_i = 0 \} \) for \(i = 1, 2, \ldots \) and \(\sum R_i \) are the prime \(l \)-ideals of \(G \).

Proof. Clearly the \(G_i \) are maximal \(l \)-ideals and since they are polars they are also minimal primes. Next the map
\[
\sum R_i + g \rightarrow r\pi + s
\]
where \(g_i = r(\pi + 1/i) + s \) for almost all \(i \), is an \(o \)-isomorphism of \(G/\sum R_i \) onto \(Q\pi + Q \) and so \(\sum R_i \) is also a maximal \(l \)-ideal. Now if \(M \neq G \) is a prime \(l \)-ideal of \(G \)

214
and if for each i there is a $0 < g \in G$ such that $g_i > 0$ then $M = \Sigma R_i$. Otherwise $M \subseteq G_i$ for some i and hence $M = G_i$.

Next let E be the l-group of all eventually constant sequences of rational numbers. Then $E \in \mathcal{S}$ and it follows from (2) that G is an a-extension of E. Therefore

3) There is an a-closure (essential closure) of E that belongs to \mathcal{E} but not \mathcal{S} and also an a-closure (essential closure) of E in \mathcal{S}. E^a is the a-closure of E in \mathcal{S}.

4) Let K be an a-closure of E that is not in \mathcal{S}. Then $K \in \mathcal{E}$ and K is not a vector lattice. Also K^a is not an a-extension of K.

Proof. If K is a vector lattice then by Proposition 1.2 $K \in \mathcal{S}$.

Example 7.2. An f-ring G that belongs to \mathcal{E} but not \mathcal{S}.

Let l_1, l_2, \ldots be a sequence of positive rationals that converge to π and let G be the l-subring of $\prod_{i=1}^{\infty} R_i$ that is generated by $l = (l_1, l_2, \ldots)$, $(1, 1, 1, \ldots)$ and $\sum_{i=1}^{\infty} R_i$. Then G consists of $\Sigma R_i +$ polynomial in l with integral coefficients. For if $0 \neq f(x) \in \mathbb{Z}[x]$ then $f(\pi) \neq 0$ and so $f(\pi)$ and $f(l_i)$ agree in sign for almost all i. It follows from this that G is an l-subring of ΠR_i and that it satisfies Lemma A and hence belongs to \mathcal{E}.

If $G \in \mathcal{S}$ then so does G^a but then it follows from Proposition 1.5 that this representation of G consists of functions with finite range.

Theorem 1.1 asserts that an l-group is epi-archimedean if and only if the set P of proper prime subgroups is trivially ordered with respect to inclusion. In general, P is a root system (that is, a po set such that the elements above any fixed element form a chain).

A maximal chain in P will be called a root.

If G is an l-group and E is the epi-archimedean kernel and if G/E is also epi-archimedean then [20] each root in P has length at most 2. The next example shows that the converse is false.
Example 7.3. For the free vector lattice G on two generators P looks like

![Diagram](https://via.placeholder.com/150)

one for each point on the unit circle (see [2]). But Bleier (Tulane Dissertation 1971) showed that G contains no l-ideals that are invariant under all l-automorphisms and hence $E = 0$.

Example 7.4 (CHAMBLESS) The group $C(X, Z)$ of all continuous integral valued functions on a compact Hausdorff space belongs to \mathcal{S}. This is because the range of such a function is a compact subset of Z and hence finite.

Example 7.5. The group G of eventually constant sequences of reals belongs to \mathcal{S} but is not an SP-group. Note that G is a Specker space.

Example 7.6. $G = \Pi Z_i$ for all $i \in [0, 1]$ has the property that for each maximal l-ideal C, G/C is cyclic (see [10]).

The following conjecture is due to Jorge Martinez. If G is an epi-archimedean l-group and a subdirect sum of integers then is G/C cyclic for each prime subgroup C of G? We show that the answer is no.

1) If the conjecture holds for a particular l-group G then it holds for each l-subgroup H of G.

Proof. Let P be a prime subgroup of H. Then there exists a prime C in G such that $C \cap H = P$. Thus

$$\frac{H}{P} = \frac{H}{(C \cap H)} \simeq \left(\frac{C + H}{C} \subseteq G/C\right) \text{ cyclic}.$$

2) If $0 < s$ is a singular element in the l-group H and (H^a, H_a) is a value of s, then $H_a \ll H^a$ and H^a/H_a is cyclic.

Proof. $H(s)$ is abelian and so $H_a \cap H(s) \ll H(s)$. Thus $H_a \ll H^a$ (see [11]). Now $H_a + s$ is singular in the archimedean o-group H^a/H_a and so H^a/H_a is cyclic.

3) If C is a prime subgroup in the epi-archimedean l-group G, s is singular and $s \notin C$, then G/C is cyclic.

Proof. (G, C) is a value of s.

4) The conjecture is true for the group G of all bounded functions in ΠZ_i.

Proof. If C is a proper prime subgroup of G then $(1, 1, 1, \ldots) \in G \setminus C$.

216
Example 7.7. Let H be the l-group of all step functions in $\prod_{i=1}^{\infty} R_i$ and let α be the l-automorphism of $\prod R_i$ obtained by multiplication by the element $(1, 2, 3, \ldots)$. Let G be the subgroup of $H\alpha$ consisting of all the integral valued functions. Clearly G is an l-subgroup of $H\alpha$ and hence of $\prod_{i=1}^{\infty} Z_i$ and $G \in \mathcal{F}$. Now we construct a prime subgroup C of G such that G/C is not cyclic.

$(0, 1/2, 0, 1/2, 0, \ldots) \in H$ maps onto $x = (0, 1, 0, 2, 0, 3, 0, 4, \ldots)$

and

$(0, 0, 0, 1/4, 0, 0, 1/4, 0, \ldots) \in H$ maps onto $y = (0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, \ldots)$ etc.

Next choose the following subsets of $N = 1, 2, 3, \ldots$

$$\{1, 3, 5, 7, 9, 11, \ldots\}$$

$$\{1, 2, 3; 5, 6, 7; 9, 10, 11; \ldots\}$$

$$\{1, 2, 3, 4, 5, 6, 7; 9, 10, 11, 12, 13, 14, 15; \ldots\}$$

These are contained in a dual ultra filter \mathcal{F} of the set of all proper subsets of N. Let C be the set of all functions in G whose support belongs to this ultrafilter. Then (see [10]) C is prime, but $C + x > C + y > \ldots$ and so G/C is not cyclic. For suppose that $x = y \mod C$, then

$$x - y = (0, 1, 0, 1, 0, 3, 0, 2, 0, 5, 0, 3, 0, 7, 0, 4, \ldots) \in C$$

but this is impossible since

$$(1, 0, 3, 0, 5, 0, 7, \ldots) \in C$$

and this means that C contains a strong order unit of G.

Open questions.
1) If $G \in \mathcal{E}$ and G is a subdirect sum of integers then does $G \in \mathcal{F}$?
2) Does each $G \in \mathcal{E}$ have a representation that satisfies (a) of Lemma A?
3) Find an example of $G \in \mathcal{E}$ that is not contained in an epiarchimedean f-ring with no nilpotent elements.
4) Suppose that G is an l-subgroup of $\prod R_i$ that satisfies (a) of Lemma A. Does the l-subring of $\prod R_i$ generated by G belong to \mathcal{E}?
5) Is a vector lattice in \mathcal{E} a-closed?
References

Author's address: The University of Kansas, Lawrence, Kansas 660 44, U.S.A.