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INTRODUCTION

Because of the large number of results in graph theory which involve the degrees
of the vertices one is led very naturally to attempt to articulate in some general way
the relation between the degrees of the vertices and the structure of a graph. This
gives rise to the concept of the degree sequence of a graph: If a graph G has vertices
Xy, ..., X, Where d, = degx; = ... = d, = deg x, then (d,, ..., d,) is said to be the
degree sequence of G. Conversely a sequence S is graphical if there is a graph G
with degree sequence S in which case we say G realizes S, or G is a realization of S,
or G belongs to S.

The study of the relation between graphs and their degree sequences leads, in turn
to questions of the following sort. How many non-isomorphic graphs realize a given
sequence? Given a positive integer n is there a graphical sequence with exactly n
realizations? Given a positive integer n are there usefull bounds on the number of
realizations on a sequence of length n. This paper develops methods for answering
these questions.

In section A ordinary generating functions (0.g.f.’s) are used to ecnumerate the
realizations of graphical sequences of elementary and common character. In section B
we enumerate the realizations of two results are then used in section C where the
problem of bounds on realizations of sequences is taken up. In this section the
question “For a given positive integer n is there a sequence with n realizations™ is
also discussed. The latter, “Nat Turner’s Problem”, goes back to SENIOR ([5], 1951).

For convenience we introduce the following notation. If S = (s, ..., s,) is graphical
sequence, then |S| = |(s1, i s,,)] denotes the number of nonisomorphic realizations
of S. If S is not graphical, we set |[S| = 0. Also if r; = |{s;|s; =i,1 =j < p}|
fori =0,...,p — 1, then S can also be written 0°1"2" ... meaning that S has r,
zero entries, r, one entries, ... . For example if S is a sequence of length p such
that S = (2,...,2) then S = 27. This latter notation is commonly used in con-
nection with ‘partitions’.
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Throughout this paper the concept of ‘ordinary generating function’ (0.g.f.) is
used. One o.g.f. that is used frequently in the sequel is P(x) = 1/(1 — x) (1 — x?).
(1 = x?) ... where the coefficient of x" is p,, the number of partitions of n. The
terminology and notation used in this paper follows that of [1].

A. COUNTING REALIZATIONS FOR ELEMENTARY GRAPHICAL SEQUENCES

We first find ordinary generating functions which enumerate the number of realiza-
tions of sequences of rather simple structure. These latter are then used to construct
the ordinary generating functions for sequences that are somewhat more complicated.

Proposition 1. The number of realizations of S = (2, ..., 2) = 2% is the coef-
ficient ¢, of x” in

*) C(x) = 1)(1 = x*) (1 — x*)....

Proof. For p a natural number consider any partition (pl, ... py) of p where
pr2...2p 23, py +... +p, = p. It is clear that the graph C, v ...u C,
a realization of 27 = (2, ..., 2).

Conversely consider any realization G of 2”. Since each point of VG has degree
two G is the union of disjoint cycles—say C,, ..., C, wherep, = 3fori=1,...,r
isand p; + ... + p, = p.

Thus there is a one-to-one correspondence between partitions of p, each part
greater than or equal to three and the realizations of 2°. Now by the same reasoning
that P(x) = 1/(1 — x) (1 — x*) (1 — x?)..., it follows that 1/(1 — x*) (1 — x*)...
has as coefficient of x", n > 0, equal to (2, e 2) = 2". For convenience we say that
¢o = 1 so that now

C(x) =Y ex' = 1/(1 - x%) (1 —x*) ...
i=0
Proposition 2. The number of realizations of the sequence (2, 2,1, 1) of
length p is the coefficient of x? in

x
1 —x

C(x) -

where C(x) is as above.

Proof. Let d, denote the number of realizations of the p-part sequence (2, ...
.. 2,1, 1). Any realization of (2, ..., 2, 1, 1) must have the following form: ¢, ...
ey Cpp Cpo,, Where p+1=p; + ... + p, + ppyy. If ¢; is the coefficient of x,

0
i 2 0,in ) c;x’ then there are c,_, realizations of (2, ..., 2, 1, 1) that have a path
i=0



of length one, c,_; realizations that have a path of length two, and so on. It follows
that

dy=1¢_5 +Ci3+ ... +c3+1=
=Chy +C3+ ... 3+ +cp + o=

(since ¢; = ¢; =0 and ¢, = 1)

M=

Ci = Cp — Cpy

]

i=0

where n = 2. Setting d; = 0, d, = 0 we have

n
dx" =Y ex" — ¢, x" — ¢, X", nz=1
=

i=

and thus

éld,-x" =i§ j;iocjxf () - 1) - xizoc,-xi _Y Sex— (1)1

=1 i=1j=0

Thus since d, = 0 and ¢y = 1 we have

i

godix" =§0( S e xi = C(x) (1 + x) = C(x) (1 — x)~* — C(x) (1 +x) =

i=o

1 x?
=Cx)| — - (1 +x)| = C(x)
1 —x 1 —x
Proposition 3. The sequence (4,2,...,2) of length n, has p,_s realizations,
where p;, i =1,2,..., is the coefficient of x' in P(x) = 1/(1 — x)(1 — x?)....

Or, the ordinary generating function of (4,2, ...,2) = 42"~" is x° P(x).

Proof. First it is clear that any realization consists of the union of a ‘figure eight’
(a connected graph with one point of degree four, the rest of degree two) with
disjoint cycles. In the same spirit as Proposition 2 we count the number of realizations
of (4,2, ...,2) by counting those with a figure eight with five points, six points, ... .
To this end we first find the ordinary generating function (0.g.f.) for {f,> where f,
is number of figure eights on n points. If a figure eight has n points then it has n — 1
points distributed on two loops. Hence there is a one-to-one correspondence between
figure eights on n points and partitions of n — 1 into two parts each part greater
than or equal to two, n = 5. It is easy to verify that the values of f, forn = 1, ..., 12
are 0,...,0,1,1,2,2,3,4,4. It is easily shown by induction that the latter pattern

575



continues. We first find the o.g.f. for <1, 1,2,2,3,3,...>. The open form for the
generating function is

Z(k+])x2k+z(k+l))€2k+l =Zxk+ZkX2k+l +ka2k:
k=0 k=0 k=0 k= k=1

1

1 y 1
-+ (1 + x = +
1 —x ( )l—yz 1 —x

It

a0 o0 o0
Yoxk e+ xY kvt + Y k=
k=0 k=0 K=o

x? 1
+(1+x)————=_ ° _(where y = x?).
T T a -y -y ey =)
To obtain the ordinary generating function for the f, we merely multiply the above
by x°:
F(x) =Y fx" = x°|(1 — x) (1 — x?).
n=0
Back to computing a, = |(4,2, ..., 2)|, where (4,2, ..., 2) is of length p. Let C(x) =

= Y ¢;x" be as per Proposition 1. Then by the remark at the beginning of the proof,
forp = 5,

)4
a, = cof, + fp—161 + ... + folp = 2 frCpi -
k=0
Defining a, = ... = a, = 0 we have
)4
a,=Y fucp—x for p=20,1,2,....
k=0

Hence the o.g.f. for a, must be

F(x) Cx) = [x(1 = x) (1 = ) [1)(1 = ) (1 = x)..] =
=x1—=x)(1 = x*)(1 —x*)(1 —x*) ... = x° P(x).
We now give a sequence a lemmas which will yield a generalization of Proposition

3. The proofs depend on ‘Ferrers’ graphs (see [4, p. 114—117]) and I doubt that these
lemmas are original.

Lemma 4. There is a one-to-one correspondence between partitions of n — 1
into m parts each part being greater than or equal to two and the partitions of
n — 1 — 2m having no part greater than m.

Proof. It will suffice to consider the Ferrers graphs and their conjugates. The
conjugate of a partition of n — 1 into m parts each part greater than or equal to two
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will have m dots in each of the first two rows. The remaining rows of the conjugate
will have m or fewer dots, since the original partition had m or fewer dots in each
column. Finally it is clear that the third, fourth, ..., etc, rows of the conjugate uniquely
determine the original and vice versa. The result follows.

Lemma 5. The number of partitions of n — 1 into m parts, each part being greater
than or equal to two is the coefficient of X" in the expansion of x*"*'(1 — x)™" ...
s (= xm)7h

Proof. The number of partitions of n into parts no greater than m is the
coefficient of x™ in (1 —x)™'...(1 — x™)”'. Hence the coefficient of x" in
X1 = x)7h . (1 = x™)~' is number of partitions of n —2m + 1 =
= (n — ]) — 2m with parts no greater than m. By Lemma 4 the result follows.

Lemma 6. The number of realizations of the n-part sequence (2m,2,...,2)
which are connected is the coefficient of x" in x™*!|(1 — x)™'...(1 — x™)~L.

Proof. Any connected realization of (2m, 2, ..., 2) consists of m cycles ‘joined’
at a single point. If the cycles are C,,...,C, then r; >3 for i = 1,...,m and
(ry = 1) + ... + (rm — 1) = n — 1. Thus the number of non-isomorphic graphs of
this type is clearly the number of partitions of n — 1 into m — 1 parts each part
greater than or equal to two. The result now follows from the previous lemmas.

Remark. A connected realization of the n-part (2m)2"~' = (2m, 2, ..., 2) is
called a rose on n points with m petals. Thus the 0.g.f. R"(x) of m-petaled roses given

by Y riix" = x*"(1 = x) ... (1 — x™).
n=1

Proposition 7. Let S, be the n-part sequence (2m, 2, ...,2). Then the o.g.f. of
{|S,]> is C(x) R™(x) when R™ and C are as above.

Proof. Again, in the spirit of previous proofs, it is clear that any realization of
S, = (2m, 2, ..., 2) must be the union of a m-petaled rose and disjoint cycles. Rea-
soning as before we have for n = 2m + 1, |s,,| =t 1Ch—ami1 + --o + Fh_zc3 +

n
+ ry. Since r7 = 0 for 0 < j < 2m we have ]s,,l = ) ric,—; But this latter shows
k=0

that the o.g.f. for {|s,| is the product of R"(x) and C(x) and hence the result.

Remark. Taking m = 2 in Proposition 7 yields Proposition 3. The interest of
Proposition 3 is the curious occurrence of P(x). '

Now consider realizations of the p-part partition F, = (2m,2n,2, ...,2) with
m > n > 1. Let rJ". and c; denote the same quantities as in the previous propositions
and let p,(j) denote the number of partitions of j into k parts. If G is a realization
of F, let a, b e V(G) be the points of degree 2m and 2n respectively.
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Any realization G of F, may be classified according to the number of such paths is
of the form 21, 0 < 21 < 2n. There are two cases: (a) one of these paths consists of
an edge and (b) each of the paths contain at least two edges.

Case(a). If there are 2 edge disjoint paths of G joining a and b then there are m — |
cycles at a not containing b and n — [ cycles at be not containing a. Suppose that
i + 1 points of G lie on cycles adjacent to a and j + 1 points of G lie on cycles con-
taining b. Let p, ,(j) denote a number of partitions of j into ¢ parts, each part greater
than or equal to two. For the purpose that there are k points (other than a and b)
distributed on the 2/ — 1 disjoint paths (one path consists simply of the edge ab).
We then have

Pu—1.2(0) Pm—1.2(J) le—x(k) ¢ i+k+j+t=p-—2

such graphs G which realize F,. Hence the total number is

(*) Z an—l,Z(i) Pm—z,z(j) PZI—I(k) Cy

itjtk+t=p-—

where 0 < | < n and for the sake of consistency we have set p_ (k) = po..(k) = 1
for all k.

Case (b) Arguing the same way the number of realizations is

i) Z 2Pn—1,2(i) Pm—l,Z(j) le(k) Cp -

i+jtk+t=p—

Next we set

P, ,= Pr,z(x) = Z Pr.z(i) x',
i=0

P, = P(x) = i;wop,(i) xt.

Then letting g, be the sum of (*) and (), multiplying both sides by x” and summing
for p = 2 we have

0

gllz xP = Z Z pfrill,t pr(r{)—l,t Ct(PZI(k) + le_l(k)) xP.

2 p=2 itjtk+tt=p—2

agk!

p

Setting g5 = g7 = 0 we have

()

Ms

g,’;xp = X2Pn~1,sz—1,2C[P21 + Pzt«x] .
o

1]

p

Proposition 8. Let F, = (2m,2n,2,...,2), m > n = 2. If |Fp| =g, the o0.g.f.
for <gp”> is .

x? ZoPn—l,ZPm—l,ZC[PZI + Pyi—i]-
1=

578



Proof. The formula follows from (%) upon summing for [ = 0, ..., n where |

denoted the fact that there were 2 edge disjoint paths joining a and b.

Remark. It is of interest to note that

o= x>/(1 = x) ... (1 = x%)

Pt =x*""9(1 = x)...(1 — x"7*) and that P,_, has a similar expression.
In spite of this Proposition 8 does not admit of an obvious simplification. However
it does follow that the o.g.f’s in the previous proposition have form

P(x) [r(x)/s(x)]

where P is the o.g.f. for partitions, and r and s are polynomials.

Other sequences whose realizations can be enumerated without great difficulty
are (2,...,2,1,..,1) and (2m + 1,2n + 1,2,....2). Lastly one should note the
relative complexity of the o.g.f. for relatively simple sequences.

P,

B. IMPORTANT SPECIAL CASES

In this section we give the o.g.f. for realizations of sequences which have a much
different structure than those of Section A. The results will then be applied to the
problem of finding bounds on the number of realizations of a graphical sequence.

Proposition 9. Let S, be a sequence of length p? such thatd, = ... = d,=p~—1
and d,. = ... = d,, = 1. Then the o0.g.f. of (IS,,‘} is the 0.g.f. for the number of
graphs on p points.

Proof. K, ,_, v ... v K, ,_; is a realization of S,. Let vy, ..., v, be the centers
of pK; ,—,. Let G be any graph with {0}, ..., v} = V(G). We construct an iso-
morphic copy of G on the centers vy, ...,v, in K; ,_; u...0 K, ,_; as follows. If
viv; € E(G) choose v}, v;eV(K, ,—; U...UK, ,_,) so that v}v,, vjv; are E(K; ,_, U ...
... UK, ,_,). Then transfer vfv; and vjv; for v;v; and vfp}. Since deg v, = deg v} =
= p — 1 the choice of v* and v; is always possible. After such a transfer is made for
each e € E(G) the resulting graph H has an isomorphic copy of G on {v,, ..., v,}
(or {vy,...,v,}> = G); if degv} = ¢ then in H, v, is also adjacent to p — 1 — ¢
vertices of degree one and, finally, there are IE(G)[ components of H which are K,
graphs.

By Theorem 1.1 of [3] any realization of S, can be obtained from K, ,_, U ...

. v K, ,— by a finite sequence of transfers. This implies that if H is such a realiza-
tion then it consists of a graph on p points, H' = {{vy, ..., v,}>, where degv; =
= k in H' implies v, is adjacent to p — 1 — k points of degree one and H has |EH’|
components are K,. Note that the realization H of S, uniquely determines the H’
uniquely and vice versa.
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The above means that there is a one-to-one correspondence between realizations
of S, and graphs on p points. This gives the result.

Corollary 10. Let S be a sequence of kp parts such that d; = ... =d, = k,
dyy,=...=d,=1,1<k<p—1. Then the number of realizations of S
is the number of graphs on p points where each point has degree less than or equal
to k (all p point graphs G with A(G) < k).

Proof. The proof uses the same technique as Proposition 9.

Remark. The above proofs go through only because the star graphs used have the
same size. Otherwise the graphs obtained from transfers are not uniquely determined
by the adjacency of the centers of the star graph.

Proposition 11. Let S, be a sequence on p*(p — 1) + p parts such that
4= (p=1)(p— s = (0~ 1) = 1)(p — 1) dy = 1(p — 1)

and d,. = ... = dppi1y+p = 1. Then the number of realizations of S, is 2(1-’7),
the number of labelled graphs on p points.

Proof. One realization of s, consists of the p star graphs K ,—1);p—1y» ---» Ky p—1-
Any other realization of S, can be obtained by joining the centers of two of the above
stars and then detaching two points of degree one, one each from the centers of the
chosen stars and joining them — the same procedure given in 9. However because
of the differing degrees of the centers of stars it follows that graph determined by
the centers is a labelled graph, the labelling induced by the differing degrees of the
centers. Again it can be verified that there is a one-to-one correspondence between
labelled graphs on p points and realizations of S .

C. BOUNDS FOR THE NUMBER OF REALIZATIONS
OF GRAPHICAL SEQUENCES

We now apply some of the results of the previous two sections to the problem of
estimating the number of realizations of a graphical sequence.

Lemma 12. Given a constant C there exists a natural number p for which the
number of connected realizations of the p-part sequence (21,2, ...,2) is greater
than Cp for at least C positive integers t.

Proof. Given C choose p so that both p/4 > C + 3 and p?[48 — 1 > Cp are
satisfied.

By Lemma 6 the number of connected realizations of the p-part (21, 2, ..., 2) is the
coefficient a, of x” in x>**1/(1 — x) . (1 — x). But the latter is also the o.g.f. of
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the number of partitions of p — 1 — 2t into parts of t or less. Assume 3 < ¢ <
< C + 3 and let p, = p — 1 — 2t. Then the number of partitions of p, into parts
no greater than ¢ is the same as the number of partitions of p, into ¢ or less parts,
1 = 3. Then by the way p was chosen we have

pld>C+32123

Hence p/4 > t and this in turn implies that
*) pe=(p—1)—2t=pf2.

Now if ps(n) denotes the number of partitions of n into three parts we have by HALL
[2. p. 30] that

() ps(n) > n?f12 — 1.

Since the number of partitions of p, into t or fewer parts, a, is greater than or equal

to ps(p,) we have (by (*) and (%))

a, 2 ps(p) = pa(p2) > (p[2)?12 = 1 > p?[48 — 1
> Cp by choice of p.

Hence a, > Cp for t = 3, ..., C 4 3. This yields the lemma.

Proposition 13. Let C be a natural number. There is a natural number p for
which there is a graphical sequence S on p-parts with |S| > p©.

Proof. Let C be given. By Lemma 12 there is a p, such that the number of con-
nected realizations of the po-part (21,2, ...,2) is greater than Cp, for at least C
distinct values of ¢: t,,..., tc. Now consider the graphs on p,C points obtained by
taking the union of C connected graphs — one for each (2¢;,2,...,2),i =1, ..., C.
It is clear that these are more than (Cpo)c non-isomorphic ways of constructing such
a union. Moreover each such union is a realization of the p,C — part sequence
(21, ..., 211,2,...,2). Hence we take s to be the latter sequence and p = p,C to
obtain the result.

Corollary 14. For a given integer ¢ there exists an integer p and a sequence S
of length p such that the number of connected realizations, S,., of S exceeds p°.

Proof. Applying the previous proposition to 2¢ we get an m-part sequence which
is realized by a union of 2¢ roses with t,, ..., t, and ¢, petals. To each such realization
adjoin a new point adjacent to the points of degree 2¢,,, ..., 2t,. Hence there is an
m + 1 part sequence with more than m?¢ distinct connected realizations. But for
m = 2, m* = (m*° > (m + 1)°. Taking p = m + 1 gives the result.
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2
Lemma 15. For p = 6 we have (f) >p*—p*+p

Proof. If the left hand side of above is squared out we get
=i+ >p - p' +p

or pP —6p* +5p—4>0 or p(p—5)(p—1)—4>0. Thus the lemma is
equivalent to the latter being true and if p = 6 the latter is trivially true.

Proposition 16. Let n be a positive integer of the form p*> — p*> +p, p = 6.
There is a sequence of length n which has more than 2V" realizations.

Proof. By Proposition 11 there is a sequence on n = p*(p — 1) + p = p* —

14
— p? + p parts which has 2(2) realizations. By the lemma

p*—p)Y>p —p +p=n
or

p .
<2>>p3——p2+p=\/n.

This gives the result.

The meaning of propositions 13 and 16 is not only that there are sequences with
an arbitrarily large number of realizations but also that the ‘order’ of largeness is
itself large. Again, very roughly, there can be no useful bound b, for an arbitrary
positive integer n such that |s| < b, for sequence s on n parts.

Turning in another direction we look briefly at another question raised by Senior
[5] in 1951: For which n does there exist a graphical sequence S such that [S[ = n,
such that S has n realizations. Senior raised the question with respect to multigraphs
with loops and found no solution. The status of the problem has remained essentially
the same and has not been raised with respect to ordinary graphs. It is conjectured
here that the equation [S] = n has solutions for all n = 1,2, .... First note that
the conjecture has been verified for n = 1, .., 8. We now give a few simple results
in the direction of the conjecture.

Proposition 17. Let n be a positive integer. If there is one graphical sequence
S = (4, ..., 5,) such that

(*) |SI =n
then there are an infinite number of graphical sequences which also satisfy (*).

Proof. If S satisfies (x) then the sequence S’ = (p,s; + 1,...,s, + 1), also
satisfies (*). Obviously this process of ‘coning’ can be continued indefinitely so that (x)
must have an infinite number of solutions.
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Notation. If s is a graphical sequence let |S|c denote the number of connected
realizations of s.

Proposition 18. For any positive integer n the equation lSI( = n has a solution.

Proof. Consider the proof of Proposition 3. It was proven there that if f, denotes
the number of ‘figure eights’ on n-points, then the o.g.f. for {f,> is x’/(1 — x).
(1 = x?). It is easily verified that f, = 4(n — 5) + 1 ifn 2 5 and f, =0 for | <
< n £ 4. Now notice that f, assumes all non-negative integer values.
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