
Czechoslovak Mathematical Journal

Charles W. Swartz
Translation invariant linear operators and generalized functions

Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 2, 202–213

Persistent URL: http://dml.cz/dmlcz/101311

Terms of use:
© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101311
http://dml.cz


Czechoslovak Mathematical Journal, 25 (100) 1975, Praha 

TRANSLATION INVARIANT LINEAR OPERATORS 
AND GENERALIZED FUNCTIONS 

CHARLES SWARTZ, Las duces 

(Received October 17, 1973) 

Scattered throughout the literature are various results which characterize con­
tinuous linear maps between generalized function spaces (or test spaces) which com­
mute with translations. For example, it is well-known that if Lis a continuous linear 
map from ^ into ^' which commutes with translations, then there is a unique TEE' 
suchthat Ьф = Т* ф for ф E ^ ([^4])* Applications of such results are well-known; 
see for example [10] or [4], Corollary 2 of 5.11.3. In this paper we attempt to collect 
these various results and put them in a unified setting which should shed some light 
on the reasons for their validity, Many of the results are well-known, but by con­
sidering them in a general setting they become more transparent. A number of the 
results in sections 1 and 4 do not seem to have been recorded although they may 
be „well-known". 

We adopt the approach to generalized functions {gj's) as in GELFAND and SHILOV 
([8]). For any complex-valued function/ on R" and /г e R" denote by т^/the function 
Tf,f : X ~> f{x + h). A test space (over R") is a subspace Ф of C'^(R'') with a locally 
convex Hausdorff topology such that 

(i) ^ Ç Ф with the injection continuous and ^ dense in Ф; 
(ii) if the net {ф^} converges to 0 in Ф, then for each x E R", фг{х) -> 0; 
(iii) if P{D) is a partial differential operator with constant coefficients, then the map 

Ф -> P{D) Ф is continuous on Ф; 
(iv) for each XE R" and ф E Ф, т^ф E Ф and the map т̂  : ф -> т̂ ф is continuous on Ф. 

(Condition (iv) is usually not assumed for test spaces ([8], [7]); but since we will be 
dealing exclusively with problems concerning convolution, we assume this condition 
to simplify the terminology. See [7] and section III.3.1 of [8].) Note that (i) implies 
the dual, Ф\ of Ф may be identified with a subspace of ^ ' , i.e., every element of Ф' 
is a distribution. We refer to the dual of a test space as a space of generahzed functions 
(g.f. space). 
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If Ф is a test space, Th{h e R") will also denote the translation operator on Ф' defined 
as usual by (т^Г, ф} = <Т, т.^ф) for феФ, Те Ф'. For Те Ф' and феФ, the con­
volution of Т and ф, Т^ ф, is defined to be the function T^ ф : x -> <^T, т^ф} 
{xeR"). (Here we employ the definition in [8]; unfortunately, the definition of 
convolution varies through the literature. See [20] for example.) If Ф and W are both 
tests spaces, an element Те Ф' is said to be a convolution operator from Ф into W 
if T* Ф eW for each ф e Ф and if the map ф -^ T* ф is continuous from Ф into W. 
We denote by &c{^, T) the subspace of Ф' consisting of all convolution operators 
from Ф into W. If Те Ф'с{Ф, ^) , the convolution of Tand any 5 e !F' is the element 
Т^ЗеФ' defined by <Г* S, ф> == <S, T* ф> for феФ. (Again, there are other 
definitions used in the literature.) That is, the map S -^ T* S from W into Ф' is just 
the conjugate of the map ф -^ T* ф from Ф into T. From this observation it follows 
that the map S -» T* S is continuous from W into Ф' when both of these spaces 
are equipped with the strong topologies (respectively, weak topologies [20], II.19.5). 
When Ф = ^, we set б?;(Ф, W) - б?;(Ф). 

In section 1 we consider linear continuous maps L between test spaces Ф and W 
which commute with translations and show that any such map has the form Ьф = 
= Г* Ф for a unique Те Ф'^Ф, W). We then give characterizations of ^^(Ф, W) for 
various test spaces Ф and W. In section 2 a similar result is shown to hold for hnear 
continuous maps between certain g.f. spaces. In section 3 we consider linear con­
tinuous maps from ^ into certain spaces of distributions s/ which we call convolution 
regular; j / is convolution regular if j / Ç ^ ' with continuous injection and if when­
ever T^ Ф e j ^ for each ф eSJ, then Те se. If s^ i^ convolution regular and L : 
Q) -^ se i^ Hnear, continuous and commutes with translations, the there is a unique 
Te se such that Ьф = T^ ф. The class of convolution regular spaces of distributions 
is shown to be the natural class of spaces for which this conclusion is valid. In the 
final section we show that many of the familiar spaces of distributions are convolution 
regular so the results of section 3 are applicable to these spaces. 

1. MAPPINGS BETWEEN TEST SPACES 

Throughout this section Ф and Ч! will denote test spaces. A linear map L: Ф -^ W 
is said to commute with translations if Ь(т:^ф) = т^Ьф for every he R", ф e Ф, 
We obtain immediately from the definition of convolution operator: 

Proposition 1. Let S e б?̂ (Ф, !F) and denote by L the map from Ф into W defined 
by Ьф =^ S * ф. Then L is linear, continuous and commutes with translations. 

We next show that the converse of Proposition 1 holds, thus characterizing linear 
continuous maps between test spaces which commute with translations. As above, 
if w is a linear map и :W -^ Ф', we say that и commutes with translations if м(тд.Т) = 
= T̂  u{T) for each x e R" and Те W. 
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Lemma 2. Let Ф, W be test spaces. If a linear continuous map L: Ф -^ W commutes 
with translations, then so does its conjugate L : T' -^ Ф\ 

Proof. Let xeR\ TeW and феФ, Then <L'(T^T), 0> = <T, L(T_^0)> = 
= {x^LT, ФУ which gives the desired result. 

Theorem 3. Let Ф, W be test spaces. If L: Ф -^ W is a continuous linear map which 
commutes with translations, then there is a unique S e (Р'^{Ф, W) such that L[ф) = 
= S * Ф for each ф еФ. 

Proof. Set S = L'(5 = ÔL. Then for феФ^хе R", we have L{ф) (x) = <(5̂ , Lф} = 
= <T_,5, LфУ = <L(T_,^) , ФУ = iT.^LÔ, ФУ = iLÔ, т^фУ = <S, т^фУ = S * ф{х). 
This gives the representation Lф = S * ф, and the fact that L is continuous shows 
that S e Ф'с{ф, T). Uniqueness is clear. 

To apply Theorem 3 it is necessary to know the space of convolution operators 
between the test spaces Ф and W. For example, it is „well-known" that O^i^, ̂ ) = S' 
and that Ф'с{^, ê) = S', (The first equality follows froni the hypocontinuity of the 
convolution from i' x 9 -^ 9 ([14], VL4) and Corollary b of Theorem 1 of [2]; 
the second equaUty from the hypocontinuity of the convolution from S' x ê -^ S 
([14], VL4).) Thus we obtain 

Corollary 4, If L: 9 -^ 9{L: ê -^ ê) is linear, continuous and commutes with 
translations, then there is a unique Tee" such that Lф = Т^ф for each фе^ 
(фее). 

Remark 5. See [3] p. 121 - i22 for these results. 
Consider the spaces 9+ and ^_ of L. SCHWARTZ ([14], YL 5).Ифе9+, then ф 

has support bounded on the left so that for any x, т^ф e 9+. Recall the dual of ^+ 
is the space of distributions in 9'{R) with support bounded on the right, denoted 
by i?'_. Thus if Гб ^ 1 and Ф e ^+ , <T, х^фУ = T* ф(х) is an element of ^+ and 
as in VI.5 of [14], the map ф -^ T^ ф is continuous. (Note here we are using a dif­
ferent definition of T^ ф than that employed in [14] so that the results are somewhat 
different.) Summarizing, we have Ф'Х^+,9+) = ^ 1 . Also since 9+ Я â{R) and 
the injection is continuous, we must also have Фс{^+, ê) = ®1. From Theorem 3 
we obtain ' 

Corollary 6. If L: 9+ -^ 9+ (L: &+ -> S') is continuous, linear and commutes 
with translations, then there is a unique Te 9L such that Lф = T=¥ ф for ф e 9+. 

Remark 7. Of course, the analogous statements hold if ^+ is replaced by ^_ . 
For the result stated in Corollary 6 see [16]. 

Definition 8. The test space Ф has an equicontinuous translation if for each fc > 0, 
{^h • 1̂1 ^ fc} is equicontinuous in L{Ф, Ф). 
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Remark 9. This is somewhat hke the conditions set forth in [8], 111.3.1. 

Definition 10. The test space Ф has a differentiable translation if for each j 
{^ й J й n) and Ф еФ, hm (т,^^^ — Ф)/̂  = ^]Ф^ where the convergence is in Ф. 

(Here ej is the jth unit vector in R" and Djф{x) = ôф{x)|дxJ. See [8], III.3.3.) 

Remark 11. If Ф has a differentiable translation, note T* фее ïot ТеФ', феФ 
with П\Т^ф) = Т^В^ф. 

Proposition 12. Let Ф have an equicontinuous and differentiable translation. 
Then (9'1Ф, ê) - Ф'. 

Proof. Let к > 0 and m be a positive integer. Then k, m determine a semi-norm 
II II on S defined by ||ф|| = sup {|Z)̂  (^(/)| : |r| ^ Ic, |a| ^ m}. Suppose ТеФ'. 
Since Ф has a diiîerentiable translation, T* ф e ê for each ф e Ф, (Remark 11 above.) 
Now T continuous on Ф implies there is a continuous semi-norm p on Ф such that 
|<Г, <̂>>| ^ р(ф) for Ф G Ф. Since {T;, : \h\ S Щ and {/)" : jaj ^ m} are equicontinuous 
sets in Ь{Ф, Ф), there is a continuous semi-norm ^ on Ф such that P(T^I>"^) ^ ^(ф) 
for |/г| ^ Â:, |a| ^ m, and ф e Ф. Thus, we obtain 

(1) IIГ* ф|| = sup { |D^(T* 0 ) ( / Î ) | : |/i| ^ /c, jaj ^ m} = 

= sup {|<Г, т,0^фУ\ : |/i| ^ k, |a| й m} S 

й sup {К^й1)"ф) :\h\u К jaj ^ m} ^ ^(ф) . 

From (l) we have that the map ф -^ T^ ф is continuous from Ф -^ S, and since T 
is arbitrary, Ф' ç G'J^Ф, S) so that Ф' = б?;(Ф, ê). 

Combining Theorem 3 and Proposition 12, we obtain 

Corollary 13. Let ф satisfy the hypothesis of Proposition 12. If Ь:Ф -^ S is 
linear, continuous and commutes with translations, then there exists a unique 
S еФ' such that Ьф = S ^ ф for ф еФ. 

Remark 14. In particular if Ф = ^ or ^ this corollary is applicable ([11], Proposi­
tion 4.3.4 and Exercise 2 of 4.3.). That is, we have 

Corollary 15. / / L : ^ -> (f (L \ ê -^ S) is a continuous, linear map which com­
mutes with translations, then there is a unique Te S^'{Te S') such that Ьф = 
= Т^ф for each фе9{фее). 

Remark 16. See [3], p. 121-122 for these results. 
Corollary 13 is also applicable when Ф ^ ^ (See [11], Lemma 4.11.2 for a proof 

of the fact that S^ has a differentiable translation.) However, instead of dealing 
directly with ^, we will consider the larger of class of X{M^,} spaces [8] and show 
that Corollary 13 is apphcable to a certain subclass of such spaces. 
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We recall the definition of K{Mp} spaces ([8]). Let {Mp} be a sequence of real-
valued functions defined on R" and such that 1 ^ Mi{x) g M2(x) g ... for x e R". 
The space K{Mp} consists of all infinitely differentiable functions ф on R" such that 

(2) ||ф|1^ = sup {Mp{x) \D^ ф{х)\ :xeR^ \a\ й p} < ^ (p = 1, 2, ...) . 

The space K{Mp} is suppHed with the locally convex topology generated by the 
sequence of norms {|| ||p : p = 1, 2,...} defined in (2). Under this topology K{Mp} 
is a Frechet space ([8], II.2.2). It should be noted that the definition of K{Mp} 
space given in [8] is more general than that given above in that Gelfand and Shilov 
allow the Mp to take on extended real values. 

We shall only consider К[Мр} spaces where the sequence {Mp} satisfies some ad­
ditional conditions. We record some of the conditions that will be imposed on 
the {Mp\ below. 

(P) For each p > 0 there is a, p' > p such that Mp{x)\Mp>{x) -* 0 as |x| -^ oo. 
(See [8], II.2.3 and [7], 2.2) 

(M) the functions Mp are quasi-monotonic in each coordinate, i.e., if |xy| ^ |xj|, 
then Mp{xi,..., Xj,..., x„) S CpMp{xi,.,., x j , . . . , x„) for each fixed point 
(x i , . . . , Xy_ 1, Xj+i,..., x„) ([8], II.4.2) 

(N) for each p there is a p' > p such that the ratio Mp(x)lMp'(x) = гПрр^(х) tends to 0 
as |x| ~> 00 and is a summable function on R" ([8], II.4.2) 

(F) each Mp is symmetric, i.e., Mp(x) = Mp( —x) and for each p there is a p' > p 
such that Mp{x - /i) ^ Ср>Мрг{х) Mp{h) for x.heBT ([17]) 

If {Mp\ satisfies condition (P), then К{М^ is a Montel space ([8], II.2.3; the term 
perfect is used in [8].) and 9 is dense in К{Мр\ ([8], II.2.5). Also if {M^ satisfies 
conditions (M), (N) and (F) it is shown in Lemma 1 of [17], that K{M^ is a test 
space with an equicontinuous translation. 

For later use we recall the following fact from [8]. If {Mp\ satisfies (M) and (N), 
the sequence of semi-norms 

(3) s u p j f Ыр{1)\0^Ф{1)\а1:Цйр\ (p = l,2,. . .) 

generates the same locally convex topology as the sequence of norms {|| Ц̂, : /? ^ 1} 
defined in (2). 

Some of the familar g.f. spaces are duals of î {Mp} spaces as the following examples 
show. 

Example 17. If Mp{x) = (1 + |xp)^ x e R\ then К{Мр] = ^ , the space of rapidly 
decreasing functions ([14], VII.3). In this case {М^} satisfies conditions (M), (N) and 
(F)([17]). 
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Example 18. If МДх) = exp{py[x% where y{x) = ^/(1 + |xp), then X{Mj ' 
is the space of distributions of exponential order ([9], [22], [23]). In this case {M^} 
satisfies conditions (M), (N), and (F) ([17]). 

Example 19. ([19]) Let {vj} be a real sequence with 0 < r̂  < Г2 < ... < г and 
Vj -> r. Set Mp(t) = exp (ГрЩ). Again (M), (N) and (F) are satisfied. 

We show that Corollary 13 is applicable to K{Mp} spaces which are such that ( M j 
satisfies (M), (N) and (F). 

Lemma 20. / / {M }̂ satisfies condition (P), then Ф = К{Мр} has a differentiable 
translation. 

Proof. Let г > 0 and p be a positive integer. For ф e Ф, t e R, set ф^ = 
= i'^teJФ - Ф)1^- Now Mp{x) \D^ Ф{Х)\ -> О as |x| -^ 00 for |a| g p + 1 since 
Mp(x)\D^ ф{х)\ й mpp.{x) Mp{x) \D^ ф{х)\ 
Therefore, there is an î  > 0 such that 

(x) \\ф\\р. -^0 by condition (P). 
x| > Я imphes Mp{x) JD"' ф{х)\ < ^a for 

|a| ^ p -b 1. Now D" ф,{х) = DJD^ф{x -Ь öte,), 0 ^ 0 = в{г) й 1, where Dj ф{х) = 
дф{x)|дxJ. For 1̂1 S 1, Mp{x)\D''\l/,{x)\ < ie if |x| > î  + 1, [aj S PI and 

Mp{x) D^'Dj ф{х)\ < is if |x| > Я + 1, |a| g p. But for |x| g il + 1, |a| g p, 
D\il/,{x) - JD̂ . Ф{Х))\ = Mp{x) \D^DJ{ф{x + etej) - ф(х))| < is for ï suf­

ficiently small. Hence ||i^, — I>j<ĵ ||p < e for sufficiently small t. 

Remark 21. Lemma 20 is cleai;ly applicable to У and Jf j . Also note (N) implies (P) 
so Lemma 20 holds when (N) is satisfied. 

From Lemma 20 and the preceding remarks, the conclusion of Corollary 13 is 
valid for K{Mp} spaces satisfying conditions (M), (N), and (F). We have 

Corollary 22. Let {Mp} satisfy (M), (N), and (F) and Ф = К{Мр}, If Ь:Ф-^е 
is continuous, linear and commutes with translations, there is a unique Те Ф' 
such that Ьф = T* ф for each ф e Ф. 

Remark 23. For the case where Ф = У, see [3] p. 151. The result does not seem 
to have been recorded for Ф = JTi. 

For certain test spaces Ф and W, very concrete descriptions of the space of con­
volution operators, O'X^, !F), are known, and the conclusion of Theorem 3 gives 
a precise form for the map L. For example, if Ф = *F = ^ , (^'d^^ ^) ^^ described 
in [14], VII.5; if Ф = »P = X i , O'lc/f^ ^i) is described in [22] and [23]; and if 
Ф = ïp = K{Mp], a description of {р;(Ф, Ф) if given in [17] when {M^ satisfies 
conditions (M), (N) and (F). Also in [17] it is shown that Те Q)' belongs to &1^{M^, 
К{Мр}) iff T* феК{М^ for each фе9 provided (M), (N) and (F) are satisfied. 
Thus, in this case &,{ß^{M^) = (9',(К.{М^,К{М^) and Theorem 3 describes 
the continuous linear maps L : ̂  -^ î {^^p} which commute with translation. 
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2. MAPPINGS BETWEEN GENERALIZED FUNCTION SPACES 

In this section we consider continuous linear maps between g.f. spaces which com­
mute with translation. Again Ф and !F will denote test spaces; we assume that the 
duals Ф' and W are always equipped with the strong topologies although many 
of the statements would also be valid if the weak* topologies were used. From 
Proposition 1 and the definition of convolution, we have 

Proposition 24. Let S e Ф'^Ф, W) and define L:T' -^Ф' by L{T) = S ^ T, Then L 
is linear^ continuous and commutes with translations. 

By using some of the results of section 1 we show that the converse of Proposition 
24 is valid for certain spaces of generalized functions. 

Lemma 25. Let Ф and W be semi-reflexive test spaces. If L: Ф' -^ W is linear, 
continuous and commutes with translations, then its conjugate L : W -^ Ф com­
mutes with translations. 

Proof. Let Te Ф' and ф e T. Then <Г, L{r,\l/)y = {LT, т^^ф} = <Т-_ЙГ, L » = 
= <Т, Tf,Lil/y so that L'(TftiA) = T^Lij/. 

Theorem 26. Let Ф and W be reflexive test spaces. If L: Ф' -> W is continuous, 
linear and commutes with translations, then there is a unique S e O'X^^ Ф) such 
that L{T) = S * Tfor Te Ф\ 

Proof. By the reflexivity assumption, L : W -^ Ф is linear and continuous, and 
by Lemma 25, L commutes with translations. By Theorem 3 there is a unique 
S 6 (P;(ÎF, Ф) such that L{il/) = S ^ ф for ф eW. For ТеФ\ ф e W, we have 
(LT, ФУ = <Г, ЕфУ = <Т, S * iA> = ( S * Т, ФУ which gives LT = S * T. The 
uniqueness is clear. 

Since we have computed the space of convolution operators for several test spaces 
in section 1, Theorem 26 is applicable in a variety of situations. We record some of 
these below in a single statement and include references when the corresponding 
result is known. 

Corollary 27. Suppose Ф and ¥ are test spaces and L: Ф' -^ W is linear, con­
tinuous and commutes with translations. 

(i) if w = 9, Ф =- ê, there is a unique S e 9' such that LT = S * Tfor Te ê' 
( [ И ] , p. 396; [14], VI.3). 

(ii) if Ф = W = 9, there is a unique SeS' such that LT = S * T for Te 9' 
([11], p. 399; [14], VL3). 

(iii) if Ф = W == 9+, there is a unique S e 9L such that LT = S * Tfor Te ^ 1 . 
([1], p. 28; see also [16]). 
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(iv) if9 = 9+,0=ê, there is a unique S e 9L such that LT = S * Tfor Te ê'. 

(v) if Ф is reflexive and has an equicontinuous and differentiable translation and 
W = S', there is a unique S e Ф' such that LT = S * Tfor Te S", 

3. MAPPING FROM ^ INTO GENERALIZED FUNCTION SPACES 

In this section we consider Hnear continuous maps from ^ into certain spaces of 
distributions which commute with translations. We show that such maps are again 
given by convolutions. The class of spaces that we consider is given in the following 
definition. 

Definition 28. Let j / be a subspace of ^' such that J / is dense in ^ ' . Then j ^ is 
said to be convolution regular if 

(i) j / is equipped with a locally convex Hausdorff topology such that the injection 
of j / into ^ ' is continuous 

(ii) when Т е ^ ' is such that T* ф e ^ for any ф e S^, then Te^. 

We show in section 4 that many of the familiar spaces of generalized functions are 
convolution regular. However, we note that not all normal spaces of distributions are 
convolution regular. For example, Uiji'') (1 g p < oo) is not convolution regular. 
For if Te 9 LP but Тф П{Я% then Т^фе F(R") for each фе9 ([14], Th. XXX, 
Ch. VI). 

We show that if .s^ is convolution regular and L : ^ -> j / is linear, continuous and 
commutes with translations (i.e., L{XxФ) = т̂ Ь̂ф for ф eS),xe R"), then Lф = T* ф 
for some (unique) Tes/. It is more convenient to deal with maps Lthat commute 
with convolutions in the following sense. 

Definition 29. Let j ^ / be a subspace of ^' equipped with a locally convex Hausdorff 
topology. A continuous linear map L: ^ -^ s/ is said to commute with convolution 
if L(ф ^ Ф) = L{(1)) * ф for ф,ф e SI. (Note Lф e Q)' so the convolution Ь(ф) * ф 
is defined and is an element of ^.) We have 

Lemma 30. Let se be a subspace of S'. Let L: ^ -^ s/ be linear and continuous 
[with respect to the induced topology from S'). Then L commutes with translations 
iffL commutes with convolutions. 

Proof. See5.1L3of [4]. 

As a consequence of this result it makes no difference whether we consider hnear 
maps which commute with translations or convolution. It is usually more convenient 
to deal with convolutions. 
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Lemma 31. Let s^ be a subspace of ^' such that se is dense in ^' and assume 
that se is equipped with a locally convex Hausdorff topology such that the injection 
of se into ^' is continuous. IfL:^-^s/ commutes with convolution, then L : s/' -> 
-> ^ ' commutes with convolution in the sense that 

(4) Щ * lA) = Е{ф) *il/ = Ь{ф) *ф for ф,фе9 , 

Proof. Note that s^' is a space of distributions so the convolutions in (4) have 
a meaning. If a 6 ̂ , we have {1!.{ф * ф), a> = <ф, L(a) * i/r> = <,Е(ф), i/r * a> = 
= {Е{ф) * Ф, a> so that Е{ф *ф) = Е{ф) * ф. Similarly <L'(0 * ф), a> = {Е{ф), 
ф * ос} = (^ф, Е{ф) * а> = <Ь(ф) * ф, а> so that Е(ф * ф) = Е(ф) * ф. 

Theorem 32. Let se ^ ^' be convolution regular. If L: ^ -^ s/ is a continuous 
linear map which commutes with convolution (translations), then there is a unique 
Te se such that Е{ф) = T^фforфe9. 

Proof. Let {ф„} be a sequence of regularizers in ^ ([15]) so that 0„ -^ ö in ê'. 
Then the sequence {Е{ф^] is strongly bounded in ^' since if a e ^ , by Lemma 31 
Е(ф^ * a = L(a) * ф„ -^ L(a) in 9' and Theorem XXII of Chapter VI, [14], is 
appUcable. Since 9' is a Montel space (with respect to the strong topology), there is 
a Те 9' and a subsequence {L'(0„J} such that L'(0„J -> T in 9'. For фе9, 
Е(ф„^ *ф -^ Т^ф in S" and therefore in S' ; and by Lemma 31, Е(ф„^) *ф = 
= Е{ф) * ф„^ -^ Е{ф) *ô = Е(ф) in 9'. Hence Т^ф = Е(ф) esé for фе9, and 
since j / is convolution regular, Те se. This gives the desired representation for L. 
That Tis unique is clear. 

We also have a partial converse to Theorem 32 which shows that the class of con­
volution regular spaces is the natural class for which the conclusion of Theorem 32 
holds. 

Theorem 33. Let se be a dense subspace of 9' equipped with a locally convex 
Hausdorff topology such that the injection of se into 9' is continuous. Suppose 
the closed graph theorem holds for the pair (9, s^). If se has the property that any 
continuous linear map L\9 ^ se which commutes with convolutions (translations) 
has the form Е(ф) = T* фfor some (unique) Те s^, then se is convolution regular. 

Proof. Let Te 9' be such that Т^фе-^е for each фе9. Define L\9 -^ se 
by Ь(ф) = T^ ф. Then Lis linear and commutes with convolution. To show Lis 
continuous it suffices by hypothesis to show L is closed. Suppose ф,. --^ ф in 9 and 
Е(фг) -^ S in s/, where {фг} is a net. Then T^ ф^ ~> T^ ф in ^ and therefore in 9'. 
Also T* ф̂  -» S in 9' since the inejction ^ -> ^ 4 s continuous. Hence Г* <̂  == S 
and Lis closed. By hypothesis there exists T^e ss/ such that Е(ф) — Т^^ф — Т^ф 
for ф e 9. Hence T^ = Те s^^ and se is convolution regular. 
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Thus to show a linear, continuous map from ^ into a g.f. space se which commutes 
with translation is given by convolution it is only necessary to estabhsh that the 
space j / is convolution regular. In the final section we consider many of the familiar 
g.f. spaces and show that they are convolution regular. 

4. CONVOLUTION REGULAR GENERALIZED FUNCTION SPACES 

In this final section we show that many of the famihar spaces of generahzed func­
tions are convolution regular, and hence the results of section 3 are applicable to 
these spaces. The main tool used throughout this section in showing g.f. spaces are 
convolution regular is the remarkable Theorem 5 of [2]. 

Proposition 34. The generalized function spaces ^', S", ̂ '+{^L) and ^^p (l g 
^ p < со) are convolution regular. 

Proof. It is clear that ^' is convolution regular. That <̂ ' is convolution regular is 
estabhshed in [5], Theorem V.5.15, but we give a proof of this fact based on Theorem 
5 of [2]. Suppose Те ^ ' is such that T* ф e ê' for ф e9. For each j ^ 1 let Bj 
be the set of all continuous functions/ : R^ -^ R such that support (/) Ç {x : ||x|| ^ 
uj} equipped with the sup norm. Note Bj £ Bj+i with the injection continuous. 
Set Б = и В J and equip В with the inductive limit topology from the {Bj}, Then 

for each ф.фе^, Т^ф^феВ so by Theorem 5 of [2], T = (l - Лу/о + Л 
where/о,/i e Б, and thus Те ^'. 

To show ^+ is convolution regular suppose Te^' is such that T* ф e ^+ for 
Ф e ^ . Thus T* фе^+ for фе^. Recall ^+ = ind <̂ (c,oo)5 where (̂c,oo) is equipped 

with the relative topology from i ([14], VI.5). The map ф -^ T* ф from ^[- i , i ] -^ 
-> ^+ has a closed graph and is therefore continuous ([4], 6.7.1). Thus, there exists 
с еЯ such that T* ф e ^^,^) for each ф e ^[- i , i ] ([4], 6.5.1). Take {ф„} to be a regu­
larizing sequence in ^[- i , i ] so that T* ф„-^ T in ^\ Since support (T* ф„) ^ 
с (с, oo) for each n, support (T) Я [с, oo), or Те ^'+. 

To show ^LP ([14], VL8) is convolution regular, we again use Theorem 5 of [2]. 
Suppose Те ^ ' is such that Т*фе ^j^p for фе^. Then Т^ф^фе ^R"") for 
ф.феЗ) ([14], Theorem XXV, Chapter VI). By Theorem 5 of [2], T = (1 - Affo + 
+ / i where/o,/i eL''(R"). Then Te^'^p by Theorem XXV of Chapter VI, [14]. 

Of course, the famihar space of tempered distributions, 6^\ is missing from the list 
of spaces in Proposition 34. Again, instead of treating this space separately, we con­
sider a certain class of К{Мр} spaces which includes the space 6^ and also the space 
of test functions of exponential growth. Again our principle tool is the Theorem 5 
of [2]. It should be remarked that Lemma 1 of [12] establishes the convolution 
regularity of У as well as that of ^^p. 
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Proposition 35. Let {Мр} satisfy conditions (M), (N) and (F). Then К{М }' is 
convolution regular. 

Proof. For p ^ h let Bp = {/ : /continuous and sup |/(r)|/M^,(r) = ||/||^ < 00} 
and equip Bp with the norm || j|p. We have Bp с Bp + i with the injection continuous 
since II \\p ̂  II ||̂ ,+ i. Set В = ind Б ,̂. Suppose Te^' is such that T* феК{МрУ 

for фб^. Then by Theorem 1 of [18] Т^ф^феВрЯ В for each фе^. By 
Theorem 5 of [2], Г = (1 - Affo + / 1 where / o , / i е Б ^ for some /, p. Hence 
Те К{МрУ by II.4.2 of [8] or Theorem 1 of [18], and ЦМр}' is convolution regular. 

Corollary 36. r/î^ spaces 9" and Ж\, are convolution regular. 
By using Lemma 1 of [12], it can be shown that 0'^ is convolution regular. As 

above, by using Theorem 5 of [2], we show that (Р (̂К{М ,̂}) is convolution regular 
for {Mp} as in Proposition 35. 

Proposition 37. Let {Mp} satisfy conditions (M), (N), and (F), then ^;(K{M^}) 
is convolution regular. 

Proof. Given a positive integer /c, set В = {f : /continuous and sup \f{t) Mk{t)\ = 
= l^lfc < 00}. Then В equipped with the norm || ||jt is a Б-space. Suppose Те 9' 
is such that T* феФХК{Мр}) for фе^. Then Г* ф * феК{Мр} for фе^^, and, 
therefore, Т^ф^феВ.By Theorem 5 of [2], Г = (1 - ^ ) 7 o + / 1 , where/0, Л e B. 
By Theorem 3 of [17], Те Ф^Ц^Р})-

CoroUary 38. The spaces (P; ([14], VII.5) and O'l^i) ([23]) are convolution 
regular. 

Other examples of K{M^} spaces are found in [8]; for example, the spaces iS^^ 
of Chapter IV.3 and the S^ spaces which are inductive hmits of such spaces. It is 
not known if the conclusion of Theorem 32 is applicable to the dual of these spaces, 
but the following result may be useful in treating such spaces. 

Proposition 39. Suppose for each n ^ 0 E„ is a normal space of distributions 
such that E„ ^ EQ and f] E^ = Eç^ and EQ = proj E„. If each En is convolution 

regular (n ^ 1), then EQ is convolution regular. 

Proof. Let Te 9' be such that Т*феЕо for each фе^. Then Т*феЕ„ for 
each n so that Те E„ since E„ is convolution regular. Thus TeEç^ and £0 is convolu­
tion regular. 

This result may be apphcable in the following situation. Suppose K^ is a sequence 
of test spaces such that X„ ^ K„+i with continuous injection. Let Xo = U ^n and 

supply KQ with the inductive Umit topology. If Ko is a test space and ind X„ is a regu­

lar inductive Umit ([6], 23.5), then KQ (with the strong topology) is the projective 
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limit of the sequence K'„ (with the strong topology) ([6], 26.2), and if each K^ is 
convolution regular, then Proposition 39 impHes that KQ is also convolution regular. 
This is essentially the situation encountered with respect to the S^ spaces mentioned 
above. However, it does not seem to be known if the inductive limit defining these 
spaces is regular so it remains an open question as to whether Ŝ  is convolution 
regular. 

Of course, there are many other g.f. spaces which do not appear above (see [21]), 
and it remains an open question as to whether such spaces are convolution regular. 
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